Development of Prolinol Containing Inhibitors of Hypoxanthine-Guanine-Xanthine Phosphoribosyltransferase: Rational Structure-Based Drug Design
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural
PubMed
38651522
PubMed Central
PMC11089518
DOI
10.1021/acs.jmedchem.4c00021
Knihovny.cz E-resources
- MeSH
- Enzyme Inhibitors * pharmacology chemistry chemical synthesis MeSH
- Catalytic Domain MeSH
- Crystallography, X-Ray MeSH
- Humans MeSH
- Models, Molecular MeSH
- Molecular Structure MeSH
- Pentosyltransferases * antagonists & inhibitors metabolism MeSH
- Drug Design * MeSH
- Trypanosoma brucei brucei drug effects enzymology MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- hypoxanthine-guanine-xanthine phosphoribosyltransferase MeSH Browser
- Enzyme Inhibitors * MeSH
- Pentosyltransferases * MeSH
Inhibition of hypoxanthine-guanine-xanthine phosphoribosyltransferase activity decreases the pool of 6-oxo and 6-amino purine nucleoside monophosphates required for DNA and RNA synthesis, resulting in a reduction in cell growth. Therefore, inhibitors of this enzyme have potential to control infections, caused by Plasmodium falciparum and Plasmodium vivax, Trypanosoma brucei, Mycobacterium tuberculosis, and Helicobacter pylori. Five compounds synthesized here that contain a purine base covalently linked by a prolinol group to one or two phosphonate groups have Ki values ranging from 3 nM to >10 μM, depending on the structure of the inhibitor and the biological origin of the enzyme. X-ray crystal structures show that, on binding, these prolinol-containing inhibitors stimulated the movement of active site loops in the enzyme. Against TBr in cell culture, a prodrug exhibited an EC50 of 10 μM. Thus, these compounds are excellent candidates for further development as drug leads against infectious diseases as well as being potential anticancer agents.
The Centre for Microscopy and Microanalysis The University of Queensland Brisbane 4072 Australia
University of Chemical Technology Prague Technická 5 Prague 6 CZ 166 28 Czech Republic
See more in PubMed
Holy A. Antiviral acyclic nucleoside phosphonates structure activity studies. Antiviral Res. 2006, 71 (2–3), 248–253. 10.1016/j.antiviral.2006.06.002. PubMed DOI
Gardner M. J.; Shallom S. J.; Carlton J. M.; Salzberg S. L.; Nene V.; Shoaibi A.; Ciecko A.; Lynn J.; Rizzo M.; Weaver B.; et al. Sequence of Plasmodium falciparum chromosomes 2, 10, 11 and 14. Nature 2002, 419 (6906), 531–534. 10.1038/nature01094. PubMed DOI
Carlton J. M.; Adams J. H.; Silva J. C.; Bidwell S. L.; Lorenzi H.; Caler E.; Crabtree J.; Angiuoli S. V.; Merino E. F.; Amedeo P.; et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 2008, 455 (7214), 757–763. 10.1038/nature07327. PubMed DOI PMC
Zhang Y.; Morar M.; Ealick S. E. Structural biology of the purine biosynthetic pathway. Cell. Mol. Life Sci.: CMLS 2008, 65 (23), 3699–3724. 10.1007/s00018-008-8295-8. PubMed DOI PMC
Keough D. T.; Ng A. L.; Winzor D. J.; Emmerson B. T.; de Jersey J. Purification and characterization of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase and comparison with the human enzyme. Mol. Biochem. Parasitol. 1999, 98 (1), 29–41. 10.1016/S0166-6851(98)00139-X. PubMed DOI
Keough D. T.; Wun S. J.; Baszczyňski O.; Eng W. S.; Špaček P.; Panjikar S.; Naesens L.; Pohl R.; Rejman D.; Hocková D.; et al. Helicobacter pylori xanthine–Guanine–Hypoxanthine Phosphoribosyltransferase—A Putative Target for Drug Discovery against Gastrointestinal Tract Infections. J. Med. Chem. 2021, 64 (9), 5710–5729. 10.1021/acs.jmedchem.0c02184. PubMed DOI
Keough D. T.; Hocková D.; Rejman D.; Špaček P.; Vrbková S.; Krečmerová M.; Eng W. S.; Jans H.; West N. P.; Naesens L. M. J.; et al. Inhibition of the Escherichia coli 6-Oxopurine Phosphoribosyltransferases by Nucleoside phosphonates: Potential for New Antibacterial Agents. J. Med. Chem. 2013, 56 (17), 6967–6984. 10.1021/jm400779n. PubMed DOI
Keough D. T.; Skinner-Adams T.; Jones M. K.; Ng A.-L.; Brereton I. M.; Guddat L. W.; de Jersey J. Lead Compounds for Antimalarial Chemotherapy: Purine Base Analogs Discriminate between Human and P. falciparum 6-Oxopurine Phosphoribosyltransferases. J. Med. Chem. 2006, 49 (25), 7479–7486. 10.1021/jm061012j. PubMed DOI
Keough D. T.; Rejman D.; Pohl R.; Zborníková E.; Hocková D.; Croll T.; Edstein M. D.; Birrell G. W.; Chavchich M.; Naesens L. M. J.; et al. Design of Plasmodium vivax Hypoxanthine-Guanine Phosphoribosyltransferase Inhibitors as Potential Antimalarial Therapeutics. ACS Chem. Biol. 2018, 13 (1), 82–90. 10.1021/acschembio.7b00916. PubMed DOI
Doleželová E.; Terán D.; Gahura O.; Kotrbová Z.; Procházková M.; Keough D.; Špaček P.; Hocková D.; Guddat L.; Zíková A. Evaluation of the Trypanosoma brucei 6-oxopurine salvage pathway as a potential target for drug discovery. PLoS Negl. Trop. Dis. 2018, 12 (2), e000630110.1371/journal.pntd.0006301. PubMed DOI PMC
Eng W. S.; Hocková D.; Špaček P.; Janeba Z.; West N. P.; Woods K.; Naesens L. M. J.; Keough D. T.; Guddat L. W. First Crystal Structures of Mycobacterium tuberculosis 6-Oxopurine Phosphoribosyltransferase: Complexes with GMP and Pyrophosphate and with Acyclic Nucleoside phosphonates Whose Prodrugs Have Antituberculosis Activity. J. Med. Chem. 2015, 58 (11), 4822–4838. 10.1021/acs.jmedchem.5b00611. PubMed DOI
Cassera M. B.; Hazleton K. Z.; Riegelhaupt P. M.; Merino E. F.; Luo M.; Akabas M. H.; Schramm V. L. Erythrocytic adenosine monophosphate as an alternative purine source in Plasmodium falciparum. J. Biol. Chem. 2008, 283 (47), 32889–32899. 10.1074/jbc.M804497200. PubMed DOI PMC
Cassera M. B.; Zhang Y.; Hazleton K. Z.; Schramm V. L. Purine and pyrimidine pathways as targets in Plasmodium falciparum. Curr. Top. Med. Chem. 2011, 11 (16), 2103–2115. 10.2174/156802611796575948. PubMed DOI PMC
Berriman M.; Ghedin E.; Hertz-Fowler C.; Blandin G.; Renauld H.; Bartholomeu D. C.; Lennard N. J.; Caler E.; Hamlin N. E.; Haas B.; et al. The genome of the African trypanosome Trypanosoma brucei. Science 2005, 309 (5733), 416–422. 10.1126/science.1112642. PubMed DOI
Alm R. A.; Trust T. J. Analysis of the genetic diversity of Helicobacter pylori: the tale of two genomes. J. Mol. Med. (Berl.) 1999, 77 (12), 834–846. 10.1007/s001099900067. PubMed DOI
Doig P.; de Jonge B. L.; Alm R. A.; Brown E. D.; Uria-Nickelsen M.; Noonan B.; Mills S. D.; Tummino P.; Carmel G.; Guild B. C.; et al. Helicobacter pylori physiology predicted from genomic comparison of two strains. Microbiol. Mol. Biol. Rev. 1999, 63 (3), 675–707. 10.1128/MMBR.63.3.675-707.1999. PubMed DOI PMC
Mendz G. L.; Jimenez B. M.; Hazell S. L.; Gero A. M.; O’Sullivan W. J. Salvage synthesis of purine nucleotides by Helicobacter pylori. J. Appl. Bacteriol. 1994, 77 (6), 674–681. 10.1111/j.1365-2672.1994.tb02818.x. PubMed DOI
Liechti G.; Goldberg J. B. Helicobacter pylori relies primarily on the purine salvage pathway for purine nucleotide biosynthesis. J. Bacteriol. 2012, 194 (4), 839–854. 10.1128/JB.05757-11. PubMed DOI PMC
Luscher A.; Lamprea-Burgunder E.; Graf F. E.; de Koning H. P.; Maser P. Trypanosoma brucei adenine-phosphoribosyltransferases mediate adenine salvage and aminopurinol susceptibility but not adenine toxicity. Int. J. Parasitol. Drugs Drug Resist. 2014, 4 (1), 55–63. 10.1016/j.ijpddr.2013.12.001. PubMed DOI PMC
Vodnala M.; Fijolek A.; Rofougaran R.; Mosimann M.; Maser P.; Hofer A. Adenosine kinase mediates high affinity adenosine salvage in Trypanosoma brucei. J. Biol. Chem. 2008, 283 (9), 5380–5388. 10.1074/jbc.M705603200. PubMed DOI
Franco J. R.; Cecchi G.; Paone M.; Diarra A.; Grout L.; Kadima Ebeja A.; Simarro P. P.; Zhao W.; Argaw D. The elimination of human African trypanosomiasis: Achievements in relation to WHO road map targets for 2020. PLoS Negl. Trop. Dis. 2022, 16 (1), e001004710.1371/journal.pntd.0010047. PubMed DOI PMC
Griffin J. E.; Gawronski J. D.; Dejesus M. A.; Ioerger T. R.; Akerley B. J.; Sassetti C. M. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog. 2011, 7 (9), e100225110.1371/journal.ppat.1002251. PubMed DOI PMC
Wang L.; Wang Y.; Han N.; Wang X.; Ruan M. HPRT promotes proliferation and metastasis in head and neck squamous cell carcinoma through direct interaction with STAT3. Exp. Cell Res. 2021, 399 (1), 112424.10.1016/j.yexcr.2020.112424. PubMed DOI
Ahmadi M.; Eftekhari Kenzerki M.; Akrami S. M.; Pashangzadeh S.; Hajiesmaeili F.; Rahnavard S.; Habibipour L.; Saffarzadeh N.; Mousavi P. Overexpression of HPRT1 is associated with poor prognosis in head and neck squamous cell carcinoma. FEBS Open Bio. 2021, 11 (9), 2525–2540. 10.1002/2211-5463.13250. PubMed DOI PMC
Townsend M. H.; Felsted A. M.; Burrup W.; Robison R. A.; O’Neill K. L. Examination of Hypoxanthine Guanine Phosphoribosyltransferase as a biomarker for colorectal cancer patients. Mol. Cell. Oncol. 2018, 5 (4), e148181010.1080/23723556.2018.1481810. PubMed DOI PMC
Yin J.; Wang X.; Ge X.; Ding F.; Shi Z.; Ge Z.; Huang G.; Zhao N.; Chen D.; Zhang J.; et al. Hypoxanthine phosphoribosyl transferase 1 metabolizes Temozolomide to activate AMPK for driving chemoresistance of glioblastomas. Nat. commun. 2023, 14 (1), 5913.10.1038/s41467-023-41663-2. PubMed DOI PMC
Li C. M.; Tyler P. C.; Furneaux R. H.; Kicska G.; Xu Y.; Grubmeyer C.; Girvin M. E.; Schramm V. L. Transition-state analogs as inhibitors of human and malarial hypoxanthine-guanine phosphoribosyltransferases. Nat. Struct. Biol. 1999, 6 (6), 582–587. 10.1038/9367. PubMed DOI
Keough D. T.; Hocková D.; Holý A.; Naesens L. M. J.; Skinner-Adams T. S.; de Jersey J.; Guddat L. W. Inhibition of Hypoxanthine-Guanine Phosphoribosyltransferase by Acyclic Nucleoside phosphonates: A New Class of Antimalarial Therapeutics. J. Med. Chem. 2009, 52 (14), 4391–4399. 10.1021/Jm900267n. PubMed DOI
Hockova D.; Janeba Z.; Naesens L.; Edstein M. D.; Chavchich M.; Keough D. T.; Guddat L. W. Antimalarial activity of Prodrugs of N-branched acyclic nucleoside phosphonate inhibitors of 6-oxopurine phosphoribosyltransferases. Bioorg. Med. Chem. 2015, 23 (17), 5502–5510. 10.1016/j.bmc.2015.07.038. PubMed DOI
Keough D. T.; Hockova D.; Janeba Z.; Wang T. H.; Naesens L.; Edstein M. D.; Chavchich M.; Guddat L. W. Aza-acyclic nucleoside phosphonates containing a second phosphonate group as inhibitors of the human, Plasmodium falciparum and vivax 6-oxopurine phosphoribosyltransferases and their Prodrugs as antimalarial agents. J. Med. Chem. 2015, 58 (2), 827–846. 10.1021/jm501416t. PubMed DOI
Klejch T.; Keough D. T.; King G.; Dolezelova E.; Cesnek M.; Budesinsky M.; Zikova A.; Janeba Z.; Guddat L. W.; Hockova D. Stereo-Defined Acyclic Nucleoside phosphonates are Selective and Potent Inhibitors of Parasite 6-Oxopurine Phosphoribosyltransferases. J. Med. Chem. 2022, 65 (5), 4030–4057. 10.1021/acs.jmedchem.1c01881. PubMed DOI
Hazleton K. Z.; Ho M. C.; Cassera M. B.; Clinch K.; Crump D. R.; Rosario I. Jr.; Merino E. F.; Almo S. C.; Tyler P. C.; Schramm V. L. Acyclic immucillin phosphonates: second-generation inhibitors of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase. Chem. Biol. 2012, 19 (6), 721–730. 10.1016/j.chembiol.2012.04.012. PubMed DOI PMC
Eng W. S.; Rejman D.; Pohl R.; West N. P.; Woods K.; Naesens L. M. J.; Keough D. T.; Guddat L. W. pyrrolidine nucleoside bisphosphonates as antituberculosis agents targeting hypoxanthine-guanine phosphoribosyltransferase. Eur. J. Med. Chem. 2018, 159, 10–22. 10.1016/j.ejmech.2018.09.039. PubMed DOI
Keough D. T.; Wun S. J.; Baszczynski O.; Eng W. S.; Spacek P.; Panjikar S.; Naesens L.; Pohl R.; Rejman D.; Hockova D.; et al. Helicobacter pylori xanthine-Guanine-Hypoxanthine Phosphoribosyltransferase-A Putative Target for Drug Discovery against Gastrointestinal Tract Infections. J. Med. Chem. 2021, 64 (9), 5710–5729. 10.1021/acs.jmedchem.0c02184. PubMed DOI
Kaiser M. M.; Baszczynski O.; Hockova D.; Postova-Slavetinska L.; Dracinsky M.; Keough D. T.; Guddat L. W.; Janeba Z. Acyclic Nucleoside phosphonates Containing 9-Deazahypoxanthine and a Five-Membered heterocycle as Selective Inhibitors of Plasmodial 6-Oxopurine Phosphoribosyltransferases. ChemMedChem. 2017, 12 (14), 1133–1141. 10.1002/cmdc.201700293. PubMed DOI
Frydrych J.; Keough D. T.; Chavchich M.; Travis J.; Dracinsky M.; Edstein M. D.; Guddat L. W.; Hockova D.; Janeba Z. Nucleotide analogues containing a pyrrolidine, piperidine or piperazine ring: Synthesis and evaluation of inhibition of plasmodial and human 6-oxopurine phosphoribosyltransferases and in vitro antimalarial activity. Eur. J. Med. Chem. 2021, 219, 11341610.1016/j.ejmech.2021.113416. PubMed DOI
Keough D. T.; Rejman D.; Pohl R.; Zbornikova E.; Hockova D.; Croll T.; Edstein M. D.; Birrell G. W.; Chavchich M.; Naesens L. M. J.; et al. Design of Plasmodium vivax Hypoxanthine-Guanine Phosphoribosyltransferase Inhibitors as Potential Antimalarial Therapeutics. ACS Chem. Biol. 2018, 13 (1), 82–90. 10.1021/acschembio.7b00916. PubMed DOI
Keough D. T.; Skinner-Adams T.; Jones M. K.; Ng A. L.; Brereton I. M.; Guddat L. W.; de Jersey J. Lead compounds for antimalarial chemotherapy: purine base analogs discriminate between human and P. falciparum 6-oxopurine phosphoribosyltransferases. J. Med. Chem. 2006, 49 (25), 7479–7486. 10.1021/jm061012j. PubMed DOI
Giacomello A.; Salerno C. Human hypoxanthine-guanine phosphoribosyltransferase. Steady state kinetics of the forward and reverse reactions. J. Biol. Chem. 1978, 253 (17), 6038–6044. 10.1016/S0021-9258(17)34576-3. PubMed DOI
Keough D. T.; Hockova D.; Holy A.; Naesens L. M.; Skinner-Adams T. S.; Jersey J.; Guddat L. W. Inhibition of hypoxanthine-guanine phosphoribosyltransferase by acyclic nucleoside phosphonates: a new class of antimalarial therapeutics. J. Med. Chem. 2009, 52 (14), 4391–4399. 10.1021/jm900267n. PubMed DOI
Keough D. T.; Hockova D.; Krecmerova M.; Cesnek M.; Holy A.; Naesens L.; Brereton I. M.; Winzor D. J.; de Jersey J.; Guddat L. W. Plasmodium vivax hypoxanthine-guanine phosphoribosyltransferase: A target for anti-malarial chemotherapy. Mol. Biochem. Parasitol. 2010, 173 (2), 165–169. 10.1016/j.molbiopara.2010.05.018. PubMed DOI
Teran D.; Hockova D.; Cesnek M.; Zikova A.; Naesens L.; Keough D. T.; Guddat L. W. Crystal structures and inhibition of Trypanosoma brucei hypoxanthine-guanine phosphoribosyltransferase. Sci. Rep. 2016, 6, 35894.10.1038/srep35894. PubMed DOI PMC
Eng W. S.; Hockova D.; Spacek P.; Janeba Z.; West N. P.; Woods K.; Naesens L. M.; Keough D. T.; Guddat L. W. First Crystal Structures of Mycobacterium tuberculosis 6-Oxopurine Phosphoribosyltransferase: Complexes with GMP and Pyrophosphate and with Acyclic Nucleoside phosphonates Whose Prodrugs Have Antituberculosis Activity. J. Med. Chem. 2015, 58 (11), 4822–4838. 10.1021/acs.jmedchem.5b00611. PubMed DOI
Keough D. T.; Hockova D.; Rejman D.; Spacek P.; Vrbkova S.; Krecmerova M.; Eng W. S.; Jans H.; West N. P.; Naesens L. M.; et al. Inhibition of the Escherichia coli 6-oxopurine phosphoribosyltransferases by nucleoside phosphonates: potential for new antibacterial agents. J. Med. Chem. 2013, 56 (17), 6967–6976. 10.1021/jm400779n. PubMed DOI
Vos S.; de Jersey J.; Martin J. L. Crystal structure of Escherichia coli xanthine phosphoribosyltransferase. Biochemistry 1997, 36 (14), 4125–4134. 10.1021/bi962640dbi962640d. PubMed DOI
Keough D. T.; Brereton I. M.; de Jersey J.; Guddat L. W. The crystal structure of free human hypoxanthine-guanine phosphoribosyltransferase reveals extensive conformational plasticity throughout the catalytic cycle. J. Mol. Biol. 2005, 351 (1), 170–181. 10.1016/j.jmb.2005.05.061. PubMed DOI
Shi W.; Li C. M.; Tyler P. C.; Furneaux R. H.; Grubmeyer C.; Schramm V. L.; Almo S. C. The 2.0 Å structure of human hypoxanthine-guanine phosphoribosyltransferase in complex with a transition-state analog inhibitor. Nat. Struct. Biol. 1999, 6 (6), 588–593. 10.1038/9376. PubMed DOI
Hazleton K. Z.; Ho M. C.; Cassera M. B.; Clinch K.; Crump D. R.; Rosario I. Jr.; Merino E. F.; Almo S. C.; Tyler P. C.; Schramm V. L. Acyclic immucillin phosphonates: second-generation inhibitors of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase. Chem. Biol. 2012, 19 (6), 721–730. 10.1016/j.chembiol.2012.04.012. PubMed DOI PMC
Xu Y.; Eads J.; Sacchettini J. C.; Grubmeyer C. Kinetic Mechanism of Human Hypoxanthine–Guanine Phosphoribosyltransferase: Rapid Phosphoribosyl Transfer Chemistry. Biochemistry 1997, 36 (12), 3700–3712. 10.1021/bi9616007. PubMed DOI
Munagala N. R.; Chin M. S.; Wang C. C. Steady-State Kinetics of the Hypoxanthine-Guanine-xanthine Phosphoribosyltransferase from Tritrichomonas foetus: The Role of Threonine-47. Biochemistry 1998, 37 (12), 4045–4051. 10.1021/bi972515h. PubMed DOI
Wenck M. A.; Medrano F. J.; Eakin A. E.; Craig S. P. Steady-state kinetics of the hypoxanthine phosphoribosyltransferase from Trypanosoma cruzi. Biochim. Biophys. Acta - Proteins and Proteomics 2004, 1700 (1), 11–18. 10.1016/j.bbapap.2004.03.009. PubMed DOI
Kalčic F.; Zgarbová M.; Hodek J.; Chalupský K.; Dračínský M.; Dvořáková A.; Strmeň T.; Šebestík J.; Baszczyňski O.; Weber J.; et al. Discovery of Modified amidate (ProTide) Prodrugs of Tenofovir with Enhanced Antiviral Properties. J. Med. Chem. 2021, 64 (22), 16425–16449. 10.1021/acs.jmedchem.1c01444. PubMed DOI
Eng W. S.; Hockova D.; Spacek P.; Janeba Z.; West N. P.; Woods K.; Naesens L. M.; Keough D. T.; Guddat L. W. First crystal structures of Mycobacterium tuberculosis 6-oxopurine phosphoribosyltransferase: Complexes with GMP and pyrophosphate and with acyclic nucleoside phosphonates whose Prodrugs have antituberculosis activity. J. Med. Chem. 2015, 58 (11), 4822–4838. 10.1021/acs.jmedchem.5b00611. PubMed DOI
Keough D. T.; Špaček P.; Hocková D.; Tichý T.; Vrbková S.; Slavětínská L.; Janeba Z.; Naesens L.; Edstein M. D.; Chavchich M.; et al. Acyclic Nucleoside phosphonates Containing a Second Phosphonate Group Are Potent Inhibitors of 6-Oxopurine Phosphoribosyltransferases and Have Antimalarial Activity. J. Med. Chem. 2013, 56 (6), 2513–2526. 10.1021/jm301893b. PubMed DOI
Mullen N. J.; Singh P. K. Nucleotide metabolism: a pan-cancer metabolic dependency. Nat. Rev. Cancer 2023, 23 (5), 275–294. 10.1038/s41568-023-00557-7. PubMed DOI PMC
Townsend M. H.; Robison R. A.; O’Neill K. L. A review of HPRT and its emerging role in cancer. Med. Oncol. 2018, 35 (6), 89.10.1007/s12032-018-1144-1. PubMed DOI
Lim J.; Altman M. D.; Baker J.; Brubaker J. D.; Chen H.; Chen Y.; Fischmann T.; Gibeau C.; Kleinschek M. A.; Leccese E.; et al. Discovery of 5-Amino-N-(1H-pyrazol-4-yl)pyrazolo[1,5-a]pyrimidine-3-carboxamide Inhibitors of IRAK4. ACS Med. Chem. Lett. 2015, 6 (6), 683–688. 10.1021/acsmedchemlett.5b00107. PubMed DOI PMC
Aragao D.; Aishima J.; Cherukuvada H.; Clarken R.; Clift M.; Cowieson N. P.; Ericsson D. J.; Gee C. L.; Macedo S.; Mudie N.; et al. MX2: a high-flux undulator microfocus beamline serving both the chemical and macromolecular crystallography communities at the Australian Synchrotron. J. Syn. Rad. 2018, 25, 885–891. 10.1107/S1600577518003120. PubMed DOI PMC
Adams P. D.; Afonine P. V.; Bunkoczi G.; Chen V. B.; Davis I. W.; Echols N.; Headd J. J.; Hung L. W.; Kapral G. J.; Grosse-Kunstleve R. W.; et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66 (2), 213–221. 10.1107/S0907444909052925. PubMed DOI PMC
Emsley P.; Lohkamp B.; Scott W. G.; Cowtan K. Features and development of Coot. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66 (Pt 4), 486–501. 10.1107/S0907444910007493. PubMed DOI PMC
Räz B.; Iten M.; Grether-Bühler Y.; Kaminsky R.; Brun R. The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop. 1997, 68 (2), 139–147. 10.1016/S0001-706X(97)00079-X. PubMed DOI