Targeting NRAS via miR-1304-5p or farnesyltransferase inhibition confers sensitivity to ALK inhibitors in ALK-mutant neuroblastoma
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
NBUKTurner19
Neuroblastoma UK (NBUK)
16-209
CHILDREN with CANCER UK
C9685/A25117
Cancer Research UK (CRUK)
PubMed
38653965
PubMed Central
PMC11039739
DOI
10.1038/s41467-024-47771-x
PII: 10.1038/s41467-024-47771-x
Knihovny.cz E-resources
- MeSH
- Anaplastic Lymphoma Kinase * genetics metabolism antagonists & inhibitors MeSH
- Apoptosis drug effects genetics MeSH
- Drug Resistance, Neoplasm genetics drug effects MeSH
- Dibenzocycloheptenes * MeSH
- Farnesyltranstransferase * antagonists & inhibitors metabolism MeSH
- GTP Phosphohydrolases * genetics metabolism MeSH
- Protein Kinase Inhibitors * pharmacology therapeutic use MeSH
- Humans MeSH
- Membrane Proteins metabolism genetics MeSH
- MicroRNAs * genetics metabolism MeSH
- Mutation MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Neuroblastoma * drug therapy genetics pathology metabolism MeSH
- Piperidines * pharmacology therapeutic use MeSH
- Pyridines * pharmacology therapeutic use MeSH
- Gene Expression Regulation, Neoplastic drug effects MeSH
- Drug Synergism MeSH
- Xenograft Model Antitumor Assays MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- ALK protein, human MeSH Browser
- Anaplastic Lymphoma Kinase * MeSH
- Dibenzocycloheptenes * MeSH
- Farnesyltranstransferase * MeSH
- GTP Phosphohydrolases * MeSH
- Protein Kinase Inhibitors * MeSH
- lonafarnib MeSH Browser
- Membrane Proteins MeSH
- MicroRNAs * MeSH
- NRAS protein, human MeSH Browser
- Piperidines * MeSH
- Pyridines * MeSH
Targeting Anaplastic lymphoma kinase (ALK) is a promising therapeutic strategy for aberrant ALK-expressing malignancies including neuroblastoma, but resistance to ALK tyrosine kinase inhibitors (ALK TKI) is a distinct possibility necessitating drug combination therapeutic approaches. Using high-throughput, genome-wide CRISPR-Cas9 knockout screens, we identify miR-1304-5p loss as a desensitizer to ALK TKIs in aberrant ALK-expressing neuroblastoma; inhibition of miR-1304-5p decreases, while mimics of this miRNA increase the sensitivity of neuroblastoma cells to ALK TKIs. We show that miR-1304-5p targets NRAS, decreasing cell viability via induction of apoptosis. It follows that the farnesyltransferase inhibitor (FTI) lonafarnib in addition to ALK TKIs act synergistically in neuroblastoma, inducing apoptosis in vitro. In particular, on combined treatment of neuroblastoma patient derived xenografts with an FTI and an ALK TKI complete regression of tumour growth is observed although tumours rapidly regrow on cessation of therapy. Overall, our data suggests that combined use of ALK TKIs and FTIs, constitutes a therapeutic approach to treat high risk neuroblastoma although prolonged therapy is likely required to prevent relapse.
Center for Biomarker Research in Medicine Graz Austria
Chelsea and Westminster Hospital NHS Foundation Trust London SW10 9NH UK
Christian Doppler Laboratory for Applied Metabolomics Medical University of Vienna Vienna Austria
Department of Life Sciences Birmingham City University Birmingham UK
Department of Medicine University of Cambridge Addenbrookes Hospital Hills Road Cambridge CB2 0QQ UK
Department of Pathology Medical University of Vienna Vienna 1090 Austria
Department of Radiology University of Cambridge Cambridge Biomedical Campus Cambridge CB2 0QQ UK
European Research Initiative for ALK related malignancies Cambridge CB2 0QQ UK
Faculty of Medicine Masaryk University Brno Czech Republic
Functional Genomics GlaxoSmithKline Stevenage SG1 2NY UK
Merck and Co 2000 Galloping Hill Rd Kenilworth NJ 07033 USA
Nottingham Trent University School of Science and Technology Clifton Lane Nottingham NG11 8NS UK
OncoSec San Diego CA 92121 USA
St Anna Children's Cancer Research Institute CCRI Zimmermannplatz 10 1090 Vienna Austria
Unit of Laboratory Animal Pathology University of Veterinary Medicine Vienna Vienna Austria
See more in PubMed
Redaelli S, et al. Lorlatinib treatment elicits multiple on- and off-target mechanisms of resistance in ALK-driven cancer. Cancer Res. 2018;78:6866–6880. doi: 10.1158/0008-5472.CAN-18-1867. PubMed DOI
Mehlman C, et al. Ceritinib ALK T1151R resistance mutation in lung cancer with initial response to brigatinib. J. Thorac. Oncol. 2019;14:e95–e96. doi: 10.1016/j.jtho.2018.12.036. PubMed DOI
Friboulet L, et al. The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov. 2014;4:662–673. doi: 10.1158/2159-8290.CD-13-0846. PubMed DOI PMC
Sharma GG, et al. A compound L1196M/G1202R ALK mutation in a patient with ALK-positive lung cancer with acquired resistance to brigatinib also confers primary resistance to lorlatinib. J. Thorac. Oncol. 2019;14:e257–e259. doi: 10.1016/j.jtho.2019.06.028. PubMed DOI
Trigg RM, et al. The targetable kinase PIM1 drives ALK inhibitor resistance in high-risk neuroblastoma independent of MYCN status. Nat. Commun. 2019;10:5428. doi: 10.1038/s41467-019-13315-x. PubMed DOI PMC
Prokoph N, et al. IL10RA modulates crizotinib sensitivity in NPM1-ALK+ anaplastic large cell lymphoma. Blood. 2020;136:1657–1669. PubMed PMC
Arosio G, et al. Synergistic drug combinations prevent resistance in ALK+ anaplastic large cell lymphoma. Cancers (Basel) 2021;13:1–17. doi: 10.3390/cancers13174422. PubMed DOI PMC
Tucker ER, et al. Combination therapies targeting ALK-aberrant neuroblastoma in preclinical models. Clin. Cancer Res. 2023;29:1317–1331. doi: 10.1158/1078-0432.CCR-22-2274. PubMed DOI PMC
Westerhout EM, et al. Mesenchymal-type neuroblastoma cells escape ALK inhibitors. Cancer Res. 2022;82:484–496. doi: 10.1158/0008-5472.CAN-21-1621. PubMed DOI
Mossë YP, et al. Identification of ALK as the major familial neuroblastoma predisposition gene. Nature. 2008;455:930–935. doi: 10.1038/nature07261. PubMed DOI PMC
Zafar A, et al. Molecular targeting therapies for neuroblastoma: progress and challenges. Med. Res. Rev. 2021;41:961–1021. doi: 10.1002/med.21750. PubMed DOI PMC
Brady SW, et al. Pan-neuroblastoma analysis reveals age- and signature-associated driver alterations. Nat. Commun. 2020;11:1–13. doi: 10.1038/s41467-020-18987-4. PubMed DOI PMC
Almstedt E, et al. Integrative discovery of treatments for high-risk neuroblastoma. Nat. Commun. 2020;11:71. doi: 10.1038/s41467-019-13817-8. PubMed DOI PMC
Matthay, K. K. et al. Neuroblastoma. Nat. Rev. Dis. Prim. 2, 16078 (2016). PubMed
Schleiermacher G, Janoueix-Lerosey I, Delattre O. Recent insights into the biology of neuroblastoma. Int. J. Cancer. 2014;135:2249–2261. doi: 10.1002/ijc.29077. PubMed DOI
Brodeur GM. Spontaneous regression of neuroblastoma. Cell Tissue Res. 2018;372:277–286. doi: 10.1007/s00441-017-2761-2. PubMed DOI PMC
Pinto NR, et al. Advances in risk classification and treatment strategies for neuroblastoma. J. Clin. Oncol. 2015;33:3008–3017. doi: 10.1200/JCO.2014.59.4648. PubMed DOI PMC
Bresler SC, et al. ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma. Cancer Cell. 2014;26:682–694. doi: 10.1016/j.ccell.2014.09.019. PubMed DOI PMC
Bellini A, et al. Frequency and prognostic impact of alk amplifications and mutations in the european neuroblastoma study group (siopen) high-risk neuroblastoma trial (hr-nbl1) J. Clin. Oncol. 2021;39:3377–3390. doi: 10.1200/JCO.21.00086. PubMed DOI PMC
Ackermann S, et al. A mechanistic classification of clinical phenotypes in neuroblastoma. Science. 2018;362:1165–1170. doi: 10.1126/science.aat6768. PubMed DOI PMC
Pearson ADJ, et al. Second paediatric strategy forum for anaplastic lymphoma kinase (ALK) inhibition in paediatric malignancies: ACCELERATE in collaboration with the European Medicines Agency with the participation of the Food and Drug Administration. Eur. J. Cancer. 2021;157:198–213. doi: 10.1016/j.ejca.2021.08.022. PubMed DOI
Goldsmith KC, et al. Lorlatinib with or without chemotherapy in ALK-driven refractory/relapsed neuroblastoma: phase 1 trial results. Nat. Med. 2023;29:1092–1102. doi: 10.1038/s41591-023-02297-5. PubMed DOI PMC
Facchinetti F, et al. Crizotinib-resistant ROS1 mutations reveal a predictive kinase inhibitor sensitivity model for ROS1- and ALK-rearranged lung cancers. Clin. Cancer Res. 2016;22:5983–5991. doi: 10.1158/1078-0432.CCR-16-0917. PubMed DOI
Gadgeel SM, et al. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol. 2014;15:1119–1128. doi: 10.1016/S1470-2045(14)70362-6. PubMed DOI
Passerini CG, et al. Crizotinib in advanced, chemoresistant anaplastic lymphoma kinase-positive lymphoma patients. J. Natl. Cancer Inst. 2014;106:2–5. PubMed
Shalem O, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science= 2014;343:84–87. doi: 10.1126/science.1247005. PubMed DOI PMC
Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11:783–784. doi: 10.1038/nmeth.3047. PubMed DOI PMC
Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA. 2005;102:15545–15550. doi: 10.1073/pnas.0506580102. PubMed DOI PMC
Liberzon A, et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–1740. doi: 10.1093/bioinformatics/btr260. PubMed DOI PMC
Liu T, et al. Exceptional response to the ALK and ROS1 inhibitor lorlatinib and subsequent mechanism of resistance in relapsed ALK F1174L-mutated neuroblastoma. Cold Spring Harb. Mol. Case Stud. 2021;7:1–15. doi: 10.1101/mcs.a006064. PubMed DOI PMC
Hrustanovic G, et al. RAS-MAPK dependence underlies a rational polytherapy strategy in EML4-ALK–positive lung cancer. Nat. Med. 2015;21:1038–1047. doi: 10.1038/nm.3930. PubMed DOI PMC
Valencia-Sama I, et al. NRAS status determines sensitivity to SHP2 inhibitor combination therapies targeting the RAS-MAPK pathway in neuroblastoma. Cancer Res. 2020;80:3413–3423. doi: 10.1158/0008-5472.CAN-19-3822. PubMed DOI
TARGET. TARGET, 2018, phs000218 (Study ID phs000467). https://ocg.cancer.gov/programs/target (2018).
Wang HQ, et al. Combined ALK and MDM2 inhibition increases antitumor activity and overcomes resistance in human ALK mutant neuroblastoma cell lines and xenograft models. Elife. 2017;6:1–19. doi: 10.7554/eLife.17137. PubMed DOI PMC
Yan J, et al. Analysis of NRAS gain in 657 patients with melanoma and evaluation of its sensitivity to a MEK inhibitor. Eur. J. Cancer. 2018;89:90–101. doi: 10.1016/j.ejca.2017.11.011. PubMed DOI
FDA. FDA Approves first treatment for hutchinson-gilford progeria syndrome and some progeroid laminopathies https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-hutchinson-gilford-progeria-syndrome-and-some-progeroid-laminopathies (2020).
Umapathy G, et al. MEK inhibitor trametinib does not prevent the growth of anaplastic lymphoma kinase (ALK)-addicted neuroblastomas. Sci. Signal. 2017;10:eaam7550. doi: 10.1126/scisignal.aam7550. PubMed DOI
Dhillon S. Lonafarnib: first approval. Drugs. 2021;81:283–289. doi: 10.1007/s40265-020-01464-z. PubMed DOI PMC
Ready NE, et al. Phase I study of the farnesyltransferase inhibitor lonafarnib with weekly paclitaxel in patients with solid tumors. Clin. Cancer Res. 2007;13:576–583. doi: 10.1158/1078-0432.CCR-06-1262. PubMed DOI
Katayama R, et al. Mechanisms of acquired crizotinib resistance in ALK- rearranged lung cancers. Bone. 2012;23:1–7. PubMed PMC
van der Velden DL, et al. The drug rediscovery protocol facilitates the expanded use of existing anticancer drugs. Nature. 2019;574:127–131. doi: 10.1038/s41586-019-1600-x. PubMed DOI
New Approaches to Neuroblastoma Therapy Consortium. NANT 2015-02: A Phase 1 Study of Lorlatinib (PF-06463922). https://clinicaltrials.gov/ct2/show/NCT03107988?term=ALK&cond=Neuroblastoma&draw=2&rank=4. (2024).
Pfizer. An investigational drug, crizotinib (PF-02341066), is being studied in tumors, except non-small cell lung cancer, that are positive for anaplastic lymphoma kinase (ALK). https://clinicaltrials.gov/ct2/show/NCT01121588?term=ALK&cond=Neuroblastoma&draw=2&rank=9. (2023).
National Cancer Institute. Ensartinib in treating patients with relapsed or refractory advanced solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with ALK or ROS1 genomic alterations (a pediatric MATCH Treatment Trial). https://clinicaltrials.gov/ct2/show/NCT03213652?term=ALK&cond=Neuroblastoma&draw=2&rank=7. (2024).
BFox Chase Cancer Center. Brigatinib in relapsed or refractory ALK-positive anaplastic large cell lymphoma. https://clinicaltrials.gov/ct2/show/NCT03719898. (2024).
National Cancer Institute. Brentuximab vedotin or crizotinib and combination chemotherapy in treating patients with newly diagnosed stage II-IV anaplastic large cell lymphoma. https://classic.clinicaltrials.gov/ct2/show/NCT01979536 (2024).
Debruyne DN, et al. BORIS promotes chromatin regulatory interactions in treatment-resistant cancer cells. Nature. 2019;572:676–680. doi: 10.1038/s41586-019-1472-0. PubMed DOI PMC
Debruyne DN, et al. ALK inhibitor resistance in ALKF1174L-driven neuroblastoma is associated with AXL activation and induction of EMT. Oncogene. 2016;35:3681–3691. doi: 10.1038/onc.2015.434. PubMed DOI PMC
Berko ER, et al. Circulating tumor DNA reveals mechanisms of lorlatinib resistance in patients with relapsed/refractory ALK-driven neuroblastoma. Nat. Commun. 2023;14:2601. doi: 10.1038/s41467-023-38195-0. PubMed DOI PMC
Wang Z, Lei H, Sun Q. MicroRNA-141 and its associated gene FUS modulate proliferation, migration and cisplatin chemosensitivity in neuroblastoma cell lines. Oncol. Rep. 2016;35:2943–2951. doi: 10.3892/or.2016.4640. PubMed DOI PMC
Liu S, Liu B. Overexpression of nitrogen permease regulator like-2 (NPRL2) enhances sensitivity to irinotecan (CPT-11) in colon cancer cells by activating the DNA damage checkpoint pathway. Med. Sci. Monit. 2018;24:1424–1433. doi: 10.12659/MSM.909186. PubMed DOI PMC
Yu MJ, Zhao N, Shen H, Wang H. Long noncoding RNA MRPL39 inhibits gastric cancer proliferation and progression by directly targeting miR-130. Genet. Test Mol. Biomarkers. 2018;22:656–663. doi: 10.1089/gtmb.2018.0151. PubMed DOI
Kim BR, et al. The anti-tumor activator sMEK1 and paclitaxel additively decrease expression of HIF-1α and VEGF via mTORC1-S6K/4E-BP-dependent signaling pathways. Oncotarget. 2014;5:6540–6551. doi: 10.18632/oncotarget.2119. PubMed DOI PMC
Liu, Q., Zhou, Q. & Zhong, P. circ_0067934 increases bladder cancer cell proliferation, migration and invasion through suppressing miR‑1304 expression and increasing Myc expression levels. Exp. Ther. Med. 19, 3751–3759 (2020). PubMed PMC
Du W, et al. Circ-PRMT5 promotes gastric cancer progression by sponging miR-145 and miR-1304 to upregulate MYC. Artif. Cells Nanomed. Biotechnol. 2019;47:4120–4130. doi: 10.1080/21691401.2019.1671857. PubMed DOI
Schirripa M, et al. Early modifications of circulating microRNAs levels in metastatic colorectal cancer patients treated with regorafenib. Pharmacogenomics J. 2019;19:455–464. doi: 10.1038/s41397-019-0075-3. PubMed DOI
Di Paolo D, et al. Combined replenishment of miR-34a and let-7b by targeted nanoparticles inhibits tumor growth in neuroblastoma preclinical models. Small. 2020;16:1–15. doi: 10.1002/smll.201906426. PubMed DOI
Marengo B, et al. Etoposide-resistance in a neuroblastoma model cell line is associated with 13q14.3 mono-allelic deletion and miRNA-15a/16-1 down-regulation. Sci. Rep. 2018;8:1–15. doi: 10.1038/s41598-018-32195-7. PubMed DOI PMC
Pucci P. Combination therapy and noncoding RNAs: a new era of cancer personalized medicine. Epigenomics. 2022;14:117–120. doi: 10.2217/epi-2021-0405. PubMed DOI
Naveed A, et al. NEAT1 polyA-modulating antisense oligonucleotides reveal opposing functions for both long non-coding RNA isoforms in neuroblastoma. Cell. Mol. Life Sci. 2021;78:2213–2230. doi: 10.1007/s00018-020-03632-6. PubMed DOI PMC
Li CG, et al. MicroRNA-1304 suppresses human non-small cell lung cancer cell growth in vitro by targeting heme oxygenase-1. Acta Pharmacol. Sin. 2017;38:110–119. doi: 10.1038/aps.2016.92. PubMed DOI PMC
Kumar V, et al. Pharmacokinetics and biodistribution of polymeric micelles containing miRNA and small-molecule drug in orthotopic pancreatic tumor-bearing mice. Theranostics. 2018;8:4033–4049. doi: 10.7150/thno.24945. PubMed DOI PMC
Daige CL, et al. Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer. Mol. Cancer Ther. 2014;13:2352–2360. doi: 10.1158/1535-7163.MCT-14-0209. PubMed DOI
van Zandwijk N, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 2017;18:1386–1396. doi: 10.1016/S1470-2045(17)30621-6. PubMed DOI
Hong DS, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br. J. Cancer. 2020;122:1630–1637. doi: 10.1038/s41416-020-0802-1. PubMed DOI PMC
Khan AA, et al. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat. Biotechnol. 2009;27:549–555. doi: 10.1038/nbt.1543. PubMed DOI PMC
Grimm D, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006;441:537–541. doi: 10.1038/nature04791. PubMed DOI
Zhang S, Cheng Z, Wang Y, Han T. The risks of mirna therapeutics: In a drug target perspective. Drug Des. Devel. Ther. 2021;15:721–733. doi: 10.2147/DDDT.S288859. PubMed DOI PMC
Zhou B, Cox AD. Up-front polytherapy for ALK-positive lung cancer. Nat. Med. 2015;21:974–975. doi: 10.1038/nm.3942. PubMed DOI
Kwong LN, et al. Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nat. Med. 2012;18:1503–1510. doi: 10.1038/nm.2941. PubMed DOI PMC
Flex E, et al. Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis. Hum. Mol. Genet. 2014;23:4315–4327. doi: 10.1093/hmg/ddu148. PubMed DOI PMC
Jameson KatherineL, et al. IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase–driven tumors. Nat. Med. 2013;19:626–630. doi: 10.1038/nm.3165. PubMed DOI PMC
Roy M, Li Z, Sacks DB. IQGAP1 is a scaffold for mitogen-activated protein kinase signaling. Mol. Cell. Biol. 2005;25:7940–7952. doi: 10.1128/MCB.25.18.7940-7952.2005. PubMed DOI PMC
Dietrich P, et al. Neuroblastoma RAS viral oncogene homolog (NRAS) is a novel prognostic marker and contributes to sorafenib resistance in hepatocellular carcinoma. Neoplasia (United States) 2019;21:257–268. doi: 10.1016/j.neo.2018.11.011. PubMed DOI PMC
Linardou H, et al. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol. 2008;9:962–972. doi: 10.1016/S1470-2045(08)70206-7. PubMed DOI
Ninomiya K, et al. MET or NRAS amplification is an acquired resistance mechanism to the third-generation EGFR inhibitor naquotinib. Sci. Rep. 2018;8:1–11. doi: 10.1038/s41598-018-20326-z. PubMed DOI PMC
Berlak M, et al. Mutations in ALK signaling pathways conferring resistance to ALK inhibitor treatment lead to collateral vulnerabilities in neuroblastoma cells. Mol. Cancer. 2022;21:1–19. doi: 10.1186/s12943-022-01583-z. PubMed DOI PMC
Asati V, Mahapatra DK, Bharti SK. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. Eur. J. Med. Chem. 2016;109:314–341. doi: 10.1016/j.ejmech.2016.01.012. PubMed DOI
Yaari S, et al. Disruption of cooperation between Ras and MycN in human neuroblastoma cells promotes growth arrest. Clin. Cancer Res. 2005;11:4321–4330. doi: 10.1158/1078-0432.CCR-04-2071. PubMed DOI
Bachireddy P, Bendapudi PK, Felsher D. Getting at MYC through RAS. Clin. Cancer Res. 2005;11:4278–4281. doi: 10.1158/1078-0432.CCR-05-0534. PubMed DOI
Healy JR, et al. Limited anti-tumor activity of combined BET and MEK inhibition in neuroblastoma. Pediatr. Blood Cancer. 2021;67:1–15. PubMed PMC
Zhang Xiaoling, et al. Critical role for GAB2 in neuroblastoma pathogenesis through the promotion of SHP2/MYCN cooperation. Cell Rep. 2017;18:2932–2942. doi: 10.1016/j.celrep.2017.02.065. PubMed DOI PMC
Hart LS, et al. Preclinical therapeutic synergy of MEK1/2 and CDK4/6 inhibition in neuroblastoma. Clin. Cancer Res. 2017;23:1785–1796. doi: 10.1158/1078-0432.CCR-16-1131. PubMed DOI
Li W, et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 2014;15:554. doi: 10.1186/s13059-014-0554-4. PubMed DOI PMC
LOEWE, S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung3, 285–290 (1953). PubMed
Zheng S, et al. SynergyFinder Plus: toward better interpretation and annotation of drug combination screening datasets. Genomics, Proteom. Bioinform. 2022;20:587–596. doi: 10.1016/j.gpb.2022.01.004. PubMed DOI PMC