Reactivity of phenoxathiin-based thiacalixarenes towards C-nucleophiles
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38665507
PubMed Central
PMC11043795
DOI
10.1039/d4ra02524e
PII: d4ra02524e
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A starting thiacalix[4]arene can be easily transformed into oxidized phenoxathiin-based macrocycles 9 and 9', representing an unusual structural motif in calixarene chemistry. The presence of electron-withdrawing groups (SO2, SO) and the considerable internal strain caused by the condensed heterocyclic moiety render these molecules susceptible to nucleophilic attack. The reaction with various organolithium reagents provides a number of different products resulting from the cleavage of either the calixarene skeleton or the phenoxathiin group or both ways simultaneously. This enables the preparation of thiacalixarene analogues with unusual structural features, including systems containing a biphenyl fragment as a part of the macrocyclic skeleton. The above-described transformations, unparalleled in classical calixarene chemistry, clearly demonstrate the synthetic potential of this thiacalixarene subgroup.
Department of Solid State Chemistry UCTP 166 28 Prague 6 Czech Republic
Laboratory of NMR Spectroscopy UCTP 166 28 Prague 6 Czech Republic
Zobrazit více v PubMed
Kumagai H. Hasegawa M. Miyanari S. Sugawa Y. Sato Y. Hori T. Ueda S. Kamiyama H. Miyano S. Tetrahedron Lett. 1997;38:3971–3972. doi: 10.1016/S0040-4039(97)00792-2. DOI
Gutsche C. D., Calixarenes Revisited, Royal Society of Chemistry, Cambridge, UK, 1998
Gutsche C. D., Calixarenes: an Introduction, RSC Publishing, Cambridge, UK, 2nd edn, 2008
Mandolini L. and Ungaro R., Calixarenes in Action, World Scientific Publishing Company, 2000
Neri P., Sessler J. L. and Wang M. X., Calixarenes and beyond, Springer Cham, 2016
Kumar R. Lee Y. O. Bhalla V. Kumar M. Kim J. S. Chem. Soc. Rev. 2014;43:4824–4870. doi: 10.1039/C4CS00068D. PubMed DOI
Lhoták P. Eur. J. Org Chem. 2004;2004:1675–1692. doi: 10.1002/ejoc.200300492. DOI
Morohashi N. Narumi F. Iki N. Hattori T. Miyano S. Chem. Rev. 2006;106:5291–5316. doi: 10.1021/cr050565j. PubMed DOI
Iki N. Kumagai H. Morohashi N. Ejima K. Hasegawa M. Miyanari S. Miyano S. Tetrahedron Lett. 1998;39:7559–7562. doi: 10.1016/S0040-4039(98)01645-1. DOI
Morohashi N. Iki N. Kabuto C. Miyano S. Tetrahedron Lett. 2000;41:2933–2937. doi: 10.1016/S0040-4039(00)00313-0. DOI
Morohashi N. Katagiri H. Iki N. Yamane Y. Kabuto C. Hattori T. Miyano S. J. Org. Chem. 2003;68:2324–2333. doi: 10.1021/jo026801x. PubMed DOI
Miksatko J. Eigner V. Dvorakova H. Lhotak P. Tetrahedron Lett. 2016;57:3781–3784. doi: 10.1016/j.tetlet.2016.07.022. DOI
Iki N. Miyano S. J. Inclusion Phenom. Macrocyclic Chem. 2001;41:99–105. doi: 10.1023/A:1014406709512. DOI
Litwak A. M. Biali S. E. J. Org. Chem. 1992;57:1943–1945. doi: 10.1021/jo00033a001. DOI
Simaan S. Agbaria K. Biali S. E. J. Org. Chem. 2002;67:6136–6142. doi: 10.1021/jo025949d. PubMed DOI
Biali S. E. Synlett. 2003;2003:0001–0011. doi: 10.1055/s-2003-36212. DOI
Agbaria K. Biali S. E. J. Am. Chem. Soc. 2001;123:12495–12503. doi: 10.1021/ja0117480. PubMed DOI
Thulasi S. Savithri A. Varma R. L. Supramol. Chem. 2011;23:501–508. doi: 10.1080/10610278.2011.556252. DOI
Litwak A. M. Grynszpan F. Aleksiuk O. Cohen S. Biali S. E. J. Org. Chem. 1993;58:393–402. doi: 10.1021/jo00054a023. DOI
Morohashi N. Kojima M. Suzuki A. Ohba Y. Heterocycl. Commun. 2005;11:249–254.
Polivkova K. Simanova M. Budka J. Curinova P. Cisarova I. Lhotak P. Tetrahedron Lett. 2009;50:6347–6350. doi: 10.1016/j.tetlet.2009.08.105. DOI
Vrzal L. Kratochvilova-Simanova M. Landovsky T. Polivkova K. Budka J. Dvorakova H. Lhotak P. Org. Biomol. Chem. 2015;13:9610–9618. doi: 10.1039/C5OB01424G. PubMed DOI
Landovsky T. Tichotova M. Vrzal L. Budka J. Eigner V. Dvorakova H. Lhotak P. Tetrahedron. 2018;74:902–907. doi: 10.1016/j.tet.2018.01.020. DOI
Landovsky T. Dvorakova H. Eigner V. Babor M. Krupicka M. Kohout M. Lhotak P. New J. Chem. 2018;42:20074–20086. doi: 10.1039/C8NJ04690E. DOI
Broftová N. Landovský T. Dvořáková H. Eigner V. Krupička M. Lhoták P. Org. Biomol. Chem. 2023;21:4620–4630. doi: 10.1039/D3OB00530E. PubMed DOI
Landovsky T. Eigner V. Babor M. Tichotova M. Dvorakova H. Lhotak P. Chem. Commun. 2020;56:78–81. doi: 10.1039/C9CC08335A. PubMed DOI
Landovsky T. Babor M. Cejka J. Eigner V. Dvorakova H. Krupicka M. Lhotak P. Org. Biomol. Chem. 2021;19:8075–8085. doi: 10.1039/D1OB01487K. PubMed DOI
Williams D. R. Fu L. Org. Lett. 2010;12:808–811. doi: 10.1021/ol902833p. PubMed DOI PMC
Bannwarth C. Caldeweyher E. Ehlert S. Hansen A. Pracht P. Seibert J. Spicher S. Grimme S. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2021;11:e1493.
Bannwarth C. Ehlert S. Grimme S. J. Chem. Theory Comput. 2019;15:1652–1671. doi: 10.1021/acs.jctc.8b01176. PubMed DOI
Flippin L. A. Carter D. S. Dubree N. J. P. Tetrahedron Lett. 1993;34:3255–3258. doi: 10.1016/S0040-4039(00)73675-6. DOI
El Rayes S. Linden A. Abou-Hadeed K. Hansen H.-J. Helv. Chim. Acta. 2010;93:1894–1911. doi: 10.1002/hlca.201000191. DOI
Farmer S. C. Berg S. H. Molecules. 2008;13:1345–1352. doi: 10.3390/molecules13061345. PubMed DOI PMC
Yu T. Y. Zheng Z. J. Bai J. H. Fang H. Wei H. Adv. Synth. Catal. 2019;361:2020–2024. doi: 10.1002/adsc.201801733. DOI
Takahashi F. Nogi K. Yorimitsu H. Org. Lett. 2018;20:6601–6605. doi: 10.1021/acs.orglett.8b02972. PubMed DOI
Gilman H. Swayampati D. R. J. Am. Chem. Soc. 1955;77:3387–3389. doi: 10.1021/ja01617a072. DOI
Kimura T. Horie Y. Ogawa S. Furukawa N. Iwasaki F. Heteroat. Chem. 1993;4:243–252. doi: 10.1002/hc.520040219. DOI
Kimura T. Ishikawa Y. Ueki K. Horie Y. Furukawa N. J. Org. Chem. 1994;59:7117–7124. doi: 10.1021/jo00102a043. DOI
Miksatko J. Eigner V. Lhotak P. RSC Adv. 2017;7:53407–53414. doi: 10.1039/C7RA11218A. DOI
Neese F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012;2:73–78.
Ehlert S. Stahn M. Spicher S. Grimme S. J. Chem. Theory Comput. 2021;17:4250–4261. doi: 10.1021/acs.jctc.1c00471. PubMed DOI
Bruker, APEX4, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2021
Palatinus L. Chapuis G. J. Appl. Crystallogr. 2007;40:786–790. doi: 10.1107/S0021889807029238. DOI
Betteridge P. Carruthers J. Cooper R. Prout K. Watkin D. J. Appl. Crystallogr. 2003;36:1487. doi: 10.1107/S0021889803021800. DOI
Rohlicek J. Husak M. J. Appl. Crystallogr. 2007;40:600–601. doi: 10.1107/S0021889807018894. DOI
Altomare A. Cascarano G. Giacovazzo C. Guagliardi A. Burla M. C. Polidori G. Camalli M. J. Appl. Crystallogr. 1994;27:435.