Enzymatically stable unsaturated hyaluronan-derived oligosaccharides with selective cytostatic properties
Language English Country Great Britain, England Media print-electronic
Document type Journal Article
PubMed
38670770
DOI
10.1016/j.carbpol.2024.122129
PII: S0144-8617(24)00355-2
Knihovny.cz E-resources
- Keywords
- CD44, Fragmentation, Hyaluronan, Oligosaccharide, Reduction, Stability,
- MeSH
- Hyaluronan Receptors metabolism MeSH
- HT29 Cells MeSH
- Cytostatic Agents * pharmacology chemistry chemical synthesis MeSH
- Fibroblasts drug effects MeSH
- Hyaluronoglucosaminidase * metabolism antagonists & inhibitors MeSH
- Hyaluronic Acid * chemistry pharmacology MeSH
- Humans MeSH
- Mice MeSH
- Oligosaccharides * chemistry pharmacology MeSH
- Cell Proliferation * drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Hyaluronan Receptors MeSH
- Cytostatic Agents * MeSH
- Hyaluronoglucosaminidase * MeSH
- Hyaluronic Acid * MeSH
- Oligosaccharides * MeSH
Hyaluronan, a linear glycosaminoglycan comprising D-N-acetylglucosamine and D-glucuronic acid, is the main component of the extracellular matrix. Its influence on cell proliferation, migration, inflammation, signalling, and other functions, depends heavily on its molecular weight and chemical modification. Unsaturated HA oligosaccharides are available in defined length and purity. Their potential therapeutic utility can be further improved by chemical modification, e. g., reduction. No synthesis of such modified oligosaccharides, either stepwise or by hyaluronan cleavage, has been reported yet. Here we show a three-step synthesis (esterification, depolymerization and reduction) of unsaturated even numbered hyaluronan oligosaccharides with carboxylates and the reducing terminus reduced to an alcohol. Particular oligosaccharides were synthesised. The modified oligosaccharides are not cleaved by mammalian or bacterial hyaluronidase and do not affect the growth of mouse and human fibroblasts. Further, MTT and NRU viability tests showed that they inhibit the growth of human colon carcinoma cells HT-29 by 20-50 % in concentrations 500-1000 μg/mL. Interestingly, this effect takes place regardless of CD44 receptor expression and was not observed with unmodified HA oligosaccharides. These compounds could serve as enzymatically stable building blocks for biologically active substances.
References provided by Crossref.org