Multi-ancestry genome-wide association study of kidney cancer identifies 63 susceptibility regions

. 2024 May ; 56 (5) : 809-818. [epub] 20240426

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, metaanalýza

Perzistentní odkaz   https://www.medvik.cz/link/pmid38671320

Grantová podpora
001 World Health Organization - International

Odkazy

PubMed 38671320
DOI 10.1038/s41588-024-01725-7
PII: 10.1038/s41588-024-01725-7
Knihovny.cz E-zdroje

Here, in a multi-ancestry genome-wide association study meta-analysis of kidney cancer (29,020 cases and 835,670 controls), we identified 63 susceptibility regions (50 novel) containing 108 independent risk loci. In analyses stratified by subtype, 52 regions (78 loci) were associated with clear cell renal cell carcinoma (RCC) and 6 regions (7 loci) with papillary RCC. Notably, we report a variant common in African ancestry individuals ( rs7629500 ) in the 3' untranslated region of VHL, nearly tripling clear cell RCC risk (odds ratio 2.72, 95% confidence interval 2.23-3.30). In cis-expression quantitative trait locus analyses, 48 variants from 34 regions point toward 83 candidate genes. Enrichment of hypoxia-inducible factor-binding sites underscores the importance of hypoxia-related mechanisms in kidney cancer. Our results advance understanding of the genetic architecture of kidney cancer, provide clues for functional investigation and enable generation of a validated polygenic risk score with an estimated area under the curve of 0.65 (0.74 including risk factors) among European ancestry individuals.

Analytic and Translational Genetics Unit Massachusetts General Hospital Boston MA USA

Biobank Bordeaux Biothèque Santé CHU Bordeaux Bordeaux France

Biobank Resource Centre CHU Angers Angers France

Biosample Repository Fox Chase Cancer Center Temple Health Philadelphia PA USA

Booz Allen Hamilton Inc McLean VA USA

Broad Institute of MIT and Harvard Boston MA USA

Cancer Genomics Research Laboratory Frederick National Laboratory Rockville MD USA

Cancer Signaling and Microenvironment Biosample Repository Facility Fox Chase Cancer Center Temple Health Philadelphia PA USA

Center for Functional Cancer Epigenetics Dana Farber Cancer Institute Boston MA USA

Clinic of Nephrology Faculty of Medicine Military Medical Academy Belgrade Serbia

Clinical and Functional Genomics Group CIPE A C Camargo Cancer Center São Paulo Brazil

Dana Farber Cancer Institute Boston MA USA

Departament of Medical Image Hematology and Oncology Division of Medical Oncology Ribeirao Preto Medical School University of São Paulo Ribeirao Preto Brazil

Department of Cancer Epidemiology and Genetics Masaryk Memorial Cancer Institute Brno Czech Republic

Department of Clinical Epidemiology N N Blokhin National Medical Research Centre of Oncology Moscow Russia

Department of Epidemiology Division of Cancer Prevention and Population Sciences The University of Texas MD Anderson Cancer Center Houston TX USA

Department of Hematology and Medical Oncology Winship Cancer Institute Emory University School of Medicine Atlanta GA USA

Department of Medical Oncology Barretos Cancer Hospital Barretos Brazil

Department of Medical Oncology Dana Farber Cancer Institute Boston MA USA

Department of Medical Oncology Royal Marsden NHS Foundation Trust London UK

Department of Medicine Brigham and Women's Hospital Boston MA USA

Department of Medicine Division of Medical Oncology University of Colorado Anschutz Medical Campus Aurora CO USA

Department of Nuclear Dynamics and Cancer Fox Chase Cancer Center Temple Health Philadelphia PA USA

Department of Occupational Health and Toxicology National Center for Environmental Risk Monitoring National Institute of Public Health Bucharest Romania

Department of Oncology 2nd Faculty of Medicine and University Hospital Motol Charles University Prague Czech Republic

Department of Oncology Cambridge University Hospitals NHS Foundation Trust Cambridge UK

Department of Oncology Leeds Institute of Medical Research at St James's University of Leeds Leeds UK

Department of Oncology Oxford University Hospitals NHS Foundation Trust Oxford UK

Department of Pathology A C Camargo Cancer Center São Paulo Brazil

Department of Pathology CHU Angers Angers France

Department of Pathology Hospital Pasteur Montevideo Uruguay

Department of Pathology University of Colorado Anschutz Medical Campus Aurora CO USA

Department of Population Science American Cancer Society Atlanta GA USA

Department of Population Sciences Genetic Counseling Shared Resource Huntsman Cancer Institute Salt Lake City UT USA

Department of Quantitative Health Sciences Mayo Clinic Jacksonville FL USA

Department of Quantitative Health Sciences Mayo Clinic Rochester MN USA

Department of Surgery Division of Urology Huntsman Cancer Institute and University of Utah Salt Lake City UT USA

Department of Surgery Division of Urology São Paulo Federal University São Paulo Brazil

Department of Surgery University of Cambridge Cambridge UK

Department of Surgery Winship Cancer Institute Emory University School of Medicine Atlanta GA USA

Department of Surgical Oncology Division of Urology Princess Margaret Cancer Centre University Health Network Toronto Ontario Canada

Department of Urology A C Camargo Cancer Center São Paulo Brazil

Department of Urology Barretos Cancer Hospital Barretos Brazil

Department of Urology CHU Angers Angers France

Department of Urology CHU Bordeaux Bordeaux France

Department of Urology Clinical Hospital Center Dr Dragisa Misovic Dedinje Belgrade Serbia

Department of Urology Division of Urologic Oncology West Virginia University Cancer Institute Morgantown WV USA

Department of Urology Fox Chase Cancer Center Temple Health Philadelphia PA USA

Department of Urology Holden Comprehensive Cancer Center University of Iowa Iowa City IA USA

Department of Urology Hospital Pasteur Montevideo Uruguay

Department of Urology Imperial College Healthcare NHS Trust London UK

Department of Urology Mayo Clinic Jacksonville FL USA

Department of Urology Mayo Clinic Rochester MN USA

Department of Urology Newcastle Hospitals NHS Foundation Trust Newcastle UK

Department of Urology Oxford University Hospitals NHS Foundation Trust Oxford UK

Department of Urology Stockport NHS Foundation Trust Stockport UK

Department of Urology The Ohio State University Wexner Medical Center Columbus OH USA

Department of Urology UCLA Jonsson Comprehensive Cancer Center Los Angeles CA USA

Department of Urology Western General Hospital NHS Lothian Edinburgh UK

Department of Urology Winship Cancer Institute Emory University School of Medicine Atlanta GA USA

Departments of Medical Imaging Hematology and Oncology Division of Medical Oncology Ribeirao Preto Medical School University of São Paulo Ribeirao Preto Brazil

Departments of Radiology and Oncology Comprehensive Center for Precision Oncology C2PO Centro de Investigação Translacional em Oncologia Instituto do Cancer do Estado de São Paulo Hospital das Clinicas Faculdade de Medicina Universidade de São Paulo São Paulo Brazil

Departments of Surgery and Anatomy Division of Urology Ribeirao Preto Medical School University of São Paulo Ribeirao Preto Brazil

Diagnostic Development Program Tissue Portal Ontario Institute for Cancer Research Toronto Ontario Canada

Division of Genetics and Epidemiology Institute of Cancer Research Sutton UK

Division of Oncology University of Nottingham Nottingham UK

Faculty of Health Sciences Palacky University Olomouc Czech Republic

Genitourinary Oncology Program Moffitt Cancer Center Tampa FL USA

Genomic Epidemiology Branch International Agency for Research on Cancer Lyon France

Institute for Molecular Medicine Finland University of Helsinki Helsinki Finland

Institute of Hygiene and Epidemiology 1st Faculty of Medicine Charles University Prague Czech Republic

Institute of Public Health and Preventive Medicine 2nd Faculty of Medicine Charles University Prague Czech Republic

Integrative Tumor Epidemiology Branch Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD USA

International Organisation for Cancer Prevention and Research Belgrade Serbia

Laboratory for Pharmacogenomics RIKEN Center for Integrative Medical Sciences Yokohama Japan

Laboratory for Statistical and Translational Genetics RIKEN Center for Integrative Medical Sciences Yokohama Japan

Laboratory of Genetic Susceptibility Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD USA

Laboratory of Translational Genomics Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD USA

Latin American Renal Cancer Group São Paulo Brazil

Leeds Institute of Medical Research at St James's University of Leeds Leeds UK

Life and Health Sciences Research Institute School of Medicine University of Minho Braga Portugal

Metabolic Epidemiology Branch Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD USA

Molecular Oncology Research Center Barretos Cancer Hospital Barretos Brazil

National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation INCIT INOTE São Paulo Brazil

Observational and Pragmatic Research Institute Pte Ltd Singapore Singapore

Occupational and Environmental Epidemiology Branch Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD USA

Oncology Clinical Research Support Team University of Colorado Anschutz Medical Campus Aurora CO USA

Ontario Tumour Bank Ontario Institute for Cancer Research Toronto Ontario Canada

Program in Medical and Population Genetics Broad Institute of MIT and Harvard Cambridge MA USA

Surgery Department Urology Division Instituto do Cancer do Estado de São Paulo Hospital das Clinicas HCFMUSP Faculdade de Medicina Universidade de São Paulo São Paulo Brazil

Tissue Core Moffitt Cancer Center Tampa FL USA

Tumor Bank Hospital Militar Montevideo Uruguay

Urologic Oncology Branch Center for Cancer Research National Cancer Institute Bethesda MD USA

Urology Department Academy of Romanian Scientists Carol Davila University of Medicine and Pharmacy Bucharest Romania

Urology Department Carol Davila University of Medicine and Pharmacy Bucharest Romania

Zobrazit více v PubMed

Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

Znaor, A., Lortet-Tieulent, J., Laversanne, M., Jemal, A. & Bray, F. International variations and trends in renal cell carcinoma incidence and mortality. Eur. Urol. 67, 519–530 (2015). PubMed DOI

Cancer stat facts: kidney and renal pelvis cancer. National Cancer Institute https://seer.cancer.gov/statfacts/html/kidrp.html (2023).

Cancer Facts & Figures 2022. American Cancer Society https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html (2022).

Chow, W. H., Scelo, G. & Tarone, R. E. in Schottenfeld and Fraumeni Cancer Epidemiology and Prevention 4th edn (eds Thun, M. J. et al.) Ch. 51, 961–976 (Oxford Univ. Press, 2018).

Lopez-Beltran, A. et al. 2009 update on the classification of renal epithelial tumors in adults. Int. J. Urol. 16, 432–443 (2009). PubMed DOI

Haas, N. B. & Nathanson, K. L. Hereditary kidney cancer syndromes. Adv. Chronic Kidney Dis. 21, 81–90 (2014). PubMed DOI

Andreou, A. et al. Elongin C (ELOC/TCEB1)-associated von Hippel-Lindau disease. Hum. Mol. Genet. 31, 2728–2737 (2022). PubMed DOI PMC

Lang, M. et al. Clinical and molecular characterization of microphthalmia-associated transcription factor (MITF)-related renal cell carcinoma. Urology 149, 89–97 (2021). PubMed DOI

Schmidt, L. S. et al. PRDM10 RCC: a Birt–Hogg–Dube-like syndrome associated with lipoma and a highly penetrant, aggressive renal tumors morphologically resembling type 2 papillary renal cell carcinoma. Urology 179, 58–70 (2023). PubMed DOI

Scelo, G. et al. Genome-wide association study identifies multiple risk loci for renal cell carcinoma. Nat. Commun. 8, 15724 (2017). PubMed DOI PMC

Grampp, S. et al. Genetic variation at the 8q24.21 renal cancer susceptibility locus affects HIF binding to a MYC enhancer. Nat. Commun. 7, 13183 (2016). PubMed DOI PMC

Schodel, J. et al. Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression. Nat. Genet. 44, 420–425 (2012). DOI

Bigot, P. et al. Functional characterization of the 12p12.1 renal cancer-susceptibility locus implicates BHLHE41. Nat. Commun. 7, 12098 (2016). PubMed DOI PMC

Colli, L. M. et al. Altered regulation of DPF3, a member of the SWI/SNF complexes, underlies the 14q24 renal cancer susceptibility locus. Am. J. Hum. Genet. 108, 1590–1610 (2021). PubMed DOI PMC

Riscal, R. et al. Cholesterol auxotrophy as a targetable vulnerability in clear cell renal cell carcinoma. Cancer Discov. 11, 3106–3125 (2021). PubMed DOI PMC

Grampp, S. et al. Multiple renal cancer susceptibility polymorphisms modulate the HIF pathway. PLoS Genet. 13, e1006872 (2017). PubMed DOI PMC

Schmid, V. et al. Co-incidence of RCC-susceptibility polymorphisms with HIF cis-acting sequences supports a pathway tuning model of cancer. Sci. Rep. 9, 18768 (2019). PubMed DOI PMC

Patel, S. A. et al. The renal lineage factor PAX8 controls oncogenic signalling in kidney cancer. Nature 606, 999–1006 (2022). PubMed DOI PMC

Han, B. & Eskin, E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am. J. Hum. Genet. 88, 586–598 (2011). PubMed DOI PMC

GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

Cancer Genome Atlas Research Network et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013). DOI PMC

Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science 357, eaan2507 (2017). PubMed DOI

Singhal, S. S., Yadav, S., Drake, K., Singhal, J. & Awasthi, S. Hsf-1 and POB1 induce drug sensitivity and apoptosis by inhibiting Ralbp1. J. Biol. Chem. 283, 19714–19729 (2008). PubMed DOI PMC

Oosterhoff, J. K., Kuhne, L. C., Grootegoed, J. A. & Blok, L. J. EGF signalling in prostate cancer cell lines is inhibited by a high expression level of the endocytosis protein REPS2. Int. J. Cancer 113, 561–567 (2005). PubMed DOI

Oosterhoff, J. K., Penninkhof, F., Brinkmann, A. O., Anton Grootegoed, J. & Blok, L. J. REPS2/POB1 is downregulated during human prostate cancer progression and inhibits growth factor signalling in prostate cancer cells. Oncogene 22, 2920–2925 (2003). PubMed DOI

Zhang, H., Duan, C. J., Zhang, H., Cheng, Y. D. & Zhang, C. F. Expression and clinical significance of REPS2 in human esophageal squamous cell carcinoma. Asian Pac. J. Cancer Prev. 14, 2851–2857 (2013). PubMed DOI

He, X. Y. et al. Liver X receptor agonists exert antitumor effects against hepatocellular carcinoma via inducing REPS2 expression. Acta Pharmacol. Sin. 44, 635–646 (2023). PubMed DOI

Du, J. et al. Cytoplasmic localization of IRF5 induces Wnt5a/E-cadherin degradation and promotes gastric cancer cells metastasis. Cancer Gene Ther. 30, 866–877 (2023). PubMed DOI

Bi, X. et al. Loss of interferon regulatory factor 5 (IRF5) expression in human ductal carcinoma correlates with disease stage and contributes to metastasis. Breast Cancer Res 13, R111 (2011). PubMed DOI PMC

Massimino, M. et al. IRF5 promotes the proliferation of human thyroid cancer cells. Mol. Cancer 11, 21 (2012).

Guiteras, J. et al. The gene silencing of IRF5 and BLYSS effectively modulates the outcome of experimental lupus nephritis. Mol. Ther. Nucleic Acids 24, 807–821 (2021). PubMed DOI PMC

Zou, Y., Carbonetto, P., Wang, G. & Stephens, M. Fine-mapping from summary data with the ‘Sum of Single Effects’ model. PLoS Genet. 18, e1010299 (2022). PubMed DOI PMC

Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014). PubMed DOI PMC

Iotchkova, V. et al. GARFIELD classifies disease-relevant genomic features through integration of functional annotations with association signals. Nat. Genet. 51, 343–353 (2019). PubMed DOI PMC

Kulakovskiy, I. V. et al. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res. 46, D252–D259 (2018). PubMed DOI

Nassar, A. H. et al. Epigenomic charting and functional annotation of risk loci in renal cell carcinoma. Nat. Commun. 14, 346 (2023). PubMed DOI PMC

Mucci, L. A. et al. Familial risk and heritability of cancer among twins in nordic countries. JAMA 315, 68–76 (2016). PubMed DOI PMC

Zhang, Y., Qi, G., Park, J. H. & Chatterjee, N. Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits. Nat. Genet. 50, 1318–1326 (2018). PubMed DOI

Zhang, Y. D. et al. Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers. Nat. Commun. 11, 3353 (2020). PubMed DOI PMC

Linehan, W. M., Srinivasan, R. & Schmidt, L. S. The genetic basis of kidney cancer: a metabolic disease. Nat. Rev. Urol. 7, 277–285 (2010). PubMed DOI PMC

Chan, J. J., Tabatabaeian, H. & Tay, Y. 3′UTR heterogeneity and cancer progression. Trends Cell Biol. 33, 568–582 (2023). PubMed DOI

Yang, Y. et al. The deubiquitinase USP38 promotes NHEJ repair through regulation of HDAC1 activity and regulates cancer cell response to genotoxic insults. Cancer Res. 80, 719–731 (2020). PubMed DOI

Cancer Genome Atlas Research Network et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N. Engl. J. Med. 374, 135–145 (2016).

Olshan, A. F. et al. Racial difference in histologic subtype of renal cell carcinoma. Cancer Med 2, 744–749 (2013). PubMed DOI PMC

Usher-Smith, J., Simmons, R. K., Rossi, S. H. & Stewart, G. D. Current evidence on screening for renal cancer. Nat. Rev. Urol. 17, 637–642 (2020). PubMed DOI PMC

Jin, Y., Schaffer, A. A., Feolo, M., Holmes, J. B. & Kattman, B. L. GRAF-pop: a fast distance-based method to infer subject ancestry from multiple genotype datasets without principal components analysis. G3 9, 2447–2461 (2019). PubMed DOI PMC

Database of Genotypes and Phenotypes (NCBI, 2014); https://www.ncbi.nlm.nih.gov/gap/

Brown, D. W., Myers, T. A. & Machiela, M. J. PCAmatchR: a flexible R package for optimal case-control matching using weighted principal components. Bioinformatics 37, 1178–1181 (2021). PubMed DOI

Chen, S. et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature 625, 92–100 (2022). DOI

Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021). PubMed DOI PMC

Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016). PubMed DOI PMC

Purdue, M. P. et al. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat. Genet. 43, 60–65 (2011). PubMed DOI

Wu, X. et al. A genome-wide association study identifies a novel susceptibility locus for renal cell carcinoma on 12p11.23. Hum. Mol. Genet 21, 456–462 (2012). PubMed DOI

Shu, X. et al. Potential susceptibility loci identified for renal cell carcinoma by targeting obesity-related genes. Cancer Epidemiol. Biomark. Prev. 26, 1436–1442 (2017). DOI

Henrion, M. et al. Common variation at 2q22.3 (ZEB2) influences the risk of renal cancer. Hum. Mol. Genet 22, 825–831 (2013). PubMed DOI

Purdue, M. P. et al. A genome-wide association study of renal cell carcinoma among African Americans. Cancer Epidemiol. Biomark. Prev. 23, 209–214 (2014). DOI

Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010). PubMed DOI PMC

Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020). PubMed DOI PMC

Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018). PubMed DOI PMC

Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023). PubMed DOI PMC

Nagai, A. et al. Overview of the BioBank Japan Project: study design and profile. J. Epidemiol. 27, S2–S8 (2017). PubMed DOI PMC

Index (BioBank Japan, 2017); https://biobankjp.org/en/index.html

Terao, C. et al. Chromosomal alterations among age-related haematopoietic clones in Japan. Nature 584, 130–135 (2020). PubMed DOI PMC

Tanaka, N. et al. Eight novel susceptibility loci and putative causal variants in atopic dermatitis. J. Allergy Clin. Immunol. 148, 1293–1306 (2021). PubMed DOI

Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007). PubMed DOI PMC

Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015). PubMed DOI PMC

Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018). PubMed DOI PMC

Begg, C. B. & Zhang, Z. F. Statistical analysis of molecular epidemiology studies employing case-series. Cancer Epidemiol. Biomark. Prev. 3, 173–175 (1994).

Lyon, M. S. et al. The variant call format provides efficient and robust storage of GWAS summary statistics. Genome Biol. 22, 32 (2021). PubMed DOI PMC

Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021). PubMed DOI PMC

freeseek (Github, 2022); https://github.com/freeseek/score

Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010). PubMed DOI PMC

Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012). PubMed DOI PMC

Lin, S. H., Brown, D. W. & Machiela, M. J. LDtrait: an online tool for identifying published phenotype associations in linkage disequilibrium. Cancer Res. 80, 3443–3446 (2020). PubMed DOI PMC

Consortium, E. P. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020). DOI

Coetzee, S. G., Coetzee, G. A. & Hazelett, D. J. motifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sites. Bioinformatics 31, 3847–3849 (2015). PubMed DOI PMC

Yang, J. et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat. Genet. 47, 1114–1120 (2015). PubMed DOI PMC

Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015). PubMed DOI PMC

Fingenius (FINBB, 2024); https://site.fingenious.fi/en/

Data (FINDATA, 2017); https://findata.fi/en/data/

Laboratory for Statistical and Translational Genetics (Japanese ENcyclopedia of GEnetic associations by Riken, 2021); http://jenger.riken.jp/en/

GARFIELD (EMBL-EBI, 2015); https://www.ebi.ac.uk/birney-srv/GARFIELD/

GTEx Portal (GTEx, 2017); https://gtexportal.org/home/

Repository (Genomic Data Commons, 2024); https://portal.gdc.cancer.gov/repository

Cis-eQTLs and Trans-eQTLs in 33 Cancer Types (PancanQTL, 2018); http://gong_lab.hzau.edu.cn/PancanQTL/

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace