Multi-ancestry genome-wide association study of kidney cancer identifies 63 susceptibility regions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, metaanalýza
Grantová podpora
001
World Health Organization - International
PubMed
38671320
DOI
10.1038/s41588-024-01725-7
PII: 10.1038/s41588-024-01725-7
Knihovny.cz E-zdroje
- MeSH
- běloši genetika MeSH
- celogenomová asociační studie * MeSH
- černoši MeSH
- genetická predispozice k nemoci * MeSH
- jednonukleotidový polymorfismus * MeSH
- karcinom z renálních buněk * genetika MeSH
- lidé MeSH
- lokus kvantitativního znaku * MeSH
- nádorový supresorový protein VHL genetika MeSH
- nádory ledvin * genetika MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- Názvy látek
- nádorový supresorový protein VHL MeSH
Here, in a multi-ancestry genome-wide association study meta-analysis of kidney cancer (29,020 cases and 835,670 controls), we identified 63 susceptibility regions (50 novel) containing 108 independent risk loci. In analyses stratified by subtype, 52 regions (78 loci) were associated with clear cell renal cell carcinoma (RCC) and 6 regions (7 loci) with papillary RCC. Notably, we report a variant common in African ancestry individuals ( rs7629500 ) in the 3' untranslated region of VHL, nearly tripling clear cell RCC risk (odds ratio 2.72, 95% confidence interval 2.23-3.30). In cis-expression quantitative trait locus analyses, 48 variants from 34 regions point toward 83 candidate genes. Enrichment of hypoxia-inducible factor-binding sites underscores the importance of hypoxia-related mechanisms in kidney cancer. Our results advance understanding of the genetic architecture of kidney cancer, provide clues for functional investigation and enable generation of a validated polygenic risk score with an estimated area under the curve of 0.65 (0.74 including risk factors) among European ancestry individuals.
Analytic and Translational Genetics Unit Massachusetts General Hospital Boston MA USA
Biobank Bordeaux Biothèque Santé CHU Bordeaux Bordeaux France
Biobank Resource Centre CHU Angers Angers France
Biosample Repository Fox Chase Cancer Center Temple Health Philadelphia PA USA
Booz Allen Hamilton Inc McLean VA USA
Broad Institute of MIT and Harvard Boston MA USA
Cancer Genomics Research Laboratory Frederick National Laboratory Rockville MD USA
Center for Functional Cancer Epigenetics Dana Farber Cancer Institute Boston MA USA
Clinic of Nephrology Faculty of Medicine Military Medical Academy Belgrade Serbia
Clinical and Functional Genomics Group CIPE A C Camargo Cancer Center São Paulo Brazil
Dana Farber Cancer Institute Boston MA USA
Department of Cancer Epidemiology and Genetics Masaryk Memorial Cancer Institute Brno Czech Republic
Department of Medical Oncology Barretos Cancer Hospital Barretos Brazil
Department of Medical Oncology Dana Farber Cancer Institute Boston MA USA
Department of Medical Oncology Royal Marsden NHS Foundation Trust London UK
Department of Medicine Brigham and Women's Hospital Boston MA USA
Department of Nuclear Dynamics and Cancer Fox Chase Cancer Center Temple Health Philadelphia PA USA
Department of Oncology Cambridge University Hospitals NHS Foundation Trust Cambridge UK
Department of Oncology Oxford University Hospitals NHS Foundation Trust Oxford UK
Department of Pathology A C Camargo Cancer Center São Paulo Brazil
Department of Pathology CHU Angers Angers France
Department of Pathology Hospital Pasteur Montevideo Uruguay
Department of Pathology University of Colorado Anschutz Medical Campus Aurora CO USA
Department of Population Science American Cancer Society Atlanta GA USA
Department of Quantitative Health Sciences Mayo Clinic Jacksonville FL USA
Department of Quantitative Health Sciences Mayo Clinic Rochester MN USA
Department of Surgery Division of Urology São Paulo Federal University São Paulo Brazil
Department of Surgery University of Cambridge Cambridge UK
Department of Surgery Winship Cancer Institute Emory University School of Medicine Atlanta GA USA
Department of Urology A C Camargo Cancer Center São Paulo Brazil
Department of Urology Barretos Cancer Hospital Barretos Brazil
Department of Urology CHU Angers Angers France
Department of Urology CHU Bordeaux Bordeaux France
Department of Urology Clinical Hospital Center Dr Dragisa Misovic Dedinje Belgrade Serbia
Department of Urology Fox Chase Cancer Center Temple Health Philadelphia PA USA
Department of Urology Holden Comprehensive Cancer Center University of Iowa Iowa City IA USA
Department of Urology Hospital Pasteur Montevideo Uruguay
Department of Urology Imperial College Healthcare NHS Trust London UK
Department of Urology Mayo Clinic Jacksonville FL USA
Department of Urology Mayo Clinic Rochester MN USA
Department of Urology Newcastle Hospitals NHS Foundation Trust Newcastle UK
Department of Urology Oxford University Hospitals NHS Foundation Trust Oxford UK
Department of Urology Stockport NHS Foundation Trust Stockport UK
Department of Urology The Ohio State University Wexner Medical Center Columbus OH USA
Department of Urology UCLA Jonsson Comprehensive Cancer Center Los Angeles CA USA
Department of Urology Western General Hospital NHS Lothian Edinburgh UK
Department of Urology Winship Cancer Institute Emory University School of Medicine Atlanta GA USA
Division of Genetics and Epidemiology Institute of Cancer Research Sutton UK
Division of Oncology University of Nottingham Nottingham UK
Faculty of Health Sciences Palacky University Olomouc Czech Republic
Genitourinary Oncology Program Moffitt Cancer Center Tampa FL USA
Genomic Epidemiology Branch International Agency for Research on Cancer Lyon France
Institute for Molecular Medicine Finland University of Helsinki Helsinki Finland
International Organisation for Cancer Prevention and Research Belgrade Serbia
Laboratory for Pharmacogenomics RIKEN Center for Integrative Medical Sciences Yokohama Japan
Latin American Renal Cancer Group São Paulo Brazil
Leeds Institute of Medical Research at St James's University of Leeds Leeds UK
Life and Health Sciences Research Institute School of Medicine University of Minho Braga Portugal
Molecular Oncology Research Center Barretos Cancer Hospital Barretos Brazil
Observational and Pragmatic Research Institute Pte Ltd Singapore Singapore
Oncology Clinical Research Support Team University of Colorado Anschutz Medical Campus Aurora CO USA
Ontario Tumour Bank Ontario Institute for Cancer Research Toronto Ontario Canada
Program in Medical and Population Genetics Broad Institute of MIT and Harvard Cambridge MA USA
Tissue Core Moffitt Cancer Center Tampa FL USA
Tumor Bank Hospital Militar Montevideo Uruguay
Urologic Oncology Branch Center for Cancer Research National Cancer Institute Bethesda MD USA
Urology Department Carol Davila University of Medicine and Pharmacy Bucharest Romania
Zobrazit více v PubMed
Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).
Znaor, A., Lortet-Tieulent, J., Laversanne, M., Jemal, A. & Bray, F. International variations and trends in renal cell carcinoma incidence and mortality. Eur. Urol. 67, 519–530 (2015). PubMed DOI
Cancer stat facts: kidney and renal pelvis cancer. National Cancer Institute https://seer.cancer.gov/statfacts/html/kidrp.html (2023).
Cancer Facts & Figures 2022. American Cancer Society https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html (2022).
Chow, W. H., Scelo, G. & Tarone, R. E. in Schottenfeld and Fraumeni Cancer Epidemiology and Prevention 4th edn (eds Thun, M. J. et al.) Ch. 51, 961–976 (Oxford Univ. Press, 2018).
Lopez-Beltran, A. et al. 2009 update on the classification of renal epithelial tumors in adults. Int. J. Urol. 16, 432–443 (2009). PubMed DOI
Haas, N. B. & Nathanson, K. L. Hereditary kidney cancer syndromes. Adv. Chronic Kidney Dis. 21, 81–90 (2014). PubMed DOI
Andreou, A. et al. Elongin C (ELOC/TCEB1)-associated von Hippel-Lindau disease. Hum. Mol. Genet. 31, 2728–2737 (2022). PubMed DOI PMC
Lang, M. et al. Clinical and molecular characterization of microphthalmia-associated transcription factor (MITF)-related renal cell carcinoma. Urology 149, 89–97 (2021). PubMed DOI
Schmidt, L. S. et al. PRDM10 RCC: a Birt–Hogg–Dube-like syndrome associated with lipoma and a highly penetrant, aggressive renal tumors morphologically resembling type 2 papillary renal cell carcinoma. Urology 179, 58–70 (2023). PubMed DOI
Scelo, G. et al. Genome-wide association study identifies multiple risk loci for renal cell carcinoma. Nat. Commun. 8, 15724 (2017). PubMed DOI PMC
Grampp, S. et al. Genetic variation at the 8q24.21 renal cancer susceptibility locus affects HIF binding to a MYC enhancer. Nat. Commun. 7, 13183 (2016). PubMed DOI PMC
Schodel, J. et al. Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression. Nat. Genet. 44, 420–425 (2012). DOI
Bigot, P. et al. Functional characterization of the 12p12.1 renal cancer-susceptibility locus implicates BHLHE41. Nat. Commun. 7, 12098 (2016). PubMed DOI PMC
Colli, L. M. et al. Altered regulation of DPF3, a member of the SWI/SNF complexes, underlies the 14q24 renal cancer susceptibility locus. Am. J. Hum. Genet. 108, 1590–1610 (2021). PubMed DOI PMC
Riscal, R. et al. Cholesterol auxotrophy as a targetable vulnerability in clear cell renal cell carcinoma. Cancer Discov. 11, 3106–3125 (2021). PubMed DOI PMC
Grampp, S. et al. Multiple renal cancer susceptibility polymorphisms modulate the HIF pathway. PLoS Genet. 13, e1006872 (2017). PubMed DOI PMC
Schmid, V. et al. Co-incidence of RCC-susceptibility polymorphisms with HIF cis-acting sequences supports a pathway tuning model of cancer. Sci. Rep. 9, 18768 (2019). PubMed DOI PMC
Patel, S. A. et al. The renal lineage factor PAX8 controls oncogenic signalling in kidney cancer. Nature 606, 999–1006 (2022). PubMed DOI PMC
Han, B. & Eskin, E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am. J. Hum. Genet. 88, 586–598 (2011). PubMed DOI PMC
GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).
Cancer Genome Atlas Research Network et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013). DOI PMC
Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science 357, eaan2507 (2017). PubMed DOI
Singhal, S. S., Yadav, S., Drake, K., Singhal, J. & Awasthi, S. Hsf-1 and POB1 induce drug sensitivity and apoptosis by inhibiting Ralbp1. J. Biol. Chem. 283, 19714–19729 (2008). PubMed DOI PMC
Oosterhoff, J. K., Kuhne, L. C., Grootegoed, J. A. & Blok, L. J. EGF signalling in prostate cancer cell lines is inhibited by a high expression level of the endocytosis protein REPS2. Int. J. Cancer 113, 561–567 (2005). PubMed DOI
Oosterhoff, J. K., Penninkhof, F., Brinkmann, A. O., Anton Grootegoed, J. & Blok, L. J. REPS2/POB1 is downregulated during human prostate cancer progression and inhibits growth factor signalling in prostate cancer cells. Oncogene 22, 2920–2925 (2003). PubMed DOI
Zhang, H., Duan, C. J., Zhang, H., Cheng, Y. D. & Zhang, C. F. Expression and clinical significance of REPS2 in human esophageal squamous cell carcinoma. Asian Pac. J. Cancer Prev. 14, 2851–2857 (2013). PubMed DOI
He, X. Y. et al. Liver X receptor agonists exert antitumor effects against hepatocellular carcinoma via inducing REPS2 expression. Acta Pharmacol. Sin. 44, 635–646 (2023). PubMed DOI
Du, J. et al. Cytoplasmic localization of IRF5 induces Wnt5a/E-cadherin degradation and promotes gastric cancer cells metastasis. Cancer Gene Ther. 30, 866–877 (2023). PubMed DOI
Bi, X. et al. Loss of interferon regulatory factor 5 (IRF5) expression in human ductal carcinoma correlates with disease stage and contributes to metastasis. Breast Cancer Res 13, R111 (2011). PubMed DOI PMC
Massimino, M. et al. IRF5 promotes the proliferation of human thyroid cancer cells. Mol. Cancer 11, 21 (2012).
Guiteras, J. et al. The gene silencing of IRF5 and BLYSS effectively modulates the outcome of experimental lupus nephritis. Mol. Ther. Nucleic Acids 24, 807–821 (2021). PubMed DOI PMC
Zou, Y., Carbonetto, P., Wang, G. & Stephens, M. Fine-mapping from summary data with the ‘Sum of Single Effects’ model. PLoS Genet. 18, e1010299 (2022). PubMed DOI PMC
Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014). PubMed DOI PMC
Iotchkova, V. et al. GARFIELD classifies disease-relevant genomic features through integration of functional annotations with association signals. Nat. Genet. 51, 343–353 (2019). PubMed DOI PMC
Kulakovskiy, I. V. et al. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res. 46, D252–D259 (2018). PubMed DOI
Nassar, A. H. et al. Epigenomic charting and functional annotation of risk loci in renal cell carcinoma. Nat. Commun. 14, 346 (2023). PubMed DOI PMC
Mucci, L. A. et al. Familial risk and heritability of cancer among twins in nordic countries. JAMA 315, 68–76 (2016). PubMed DOI PMC
Zhang, Y., Qi, G., Park, J. H. & Chatterjee, N. Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits. Nat. Genet. 50, 1318–1326 (2018). PubMed DOI
Zhang, Y. D. et al. Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers. Nat. Commun. 11, 3353 (2020). PubMed DOI PMC
Linehan, W. M., Srinivasan, R. & Schmidt, L. S. The genetic basis of kidney cancer: a metabolic disease. Nat. Rev. Urol. 7, 277–285 (2010). PubMed DOI PMC
Chan, J. J., Tabatabaeian, H. & Tay, Y. 3′UTR heterogeneity and cancer progression. Trends Cell Biol. 33, 568–582 (2023). PubMed DOI
Yang, Y. et al. The deubiquitinase USP38 promotes NHEJ repair through regulation of HDAC1 activity and regulates cancer cell response to genotoxic insults. Cancer Res. 80, 719–731 (2020). PubMed DOI
Cancer Genome Atlas Research Network et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N. Engl. J. Med. 374, 135–145 (2016).
Olshan, A. F. et al. Racial difference in histologic subtype of renal cell carcinoma. Cancer Med 2, 744–749 (2013). PubMed DOI PMC
Usher-Smith, J., Simmons, R. K., Rossi, S. H. & Stewart, G. D. Current evidence on screening for renal cancer. Nat. Rev. Urol. 17, 637–642 (2020). PubMed DOI PMC
Jin, Y., Schaffer, A. A., Feolo, M., Holmes, J. B. & Kattman, B. L. GRAF-pop: a fast distance-based method to infer subject ancestry from multiple genotype datasets without principal components analysis. G3 9, 2447–2461 (2019). PubMed DOI PMC
Database of Genotypes and Phenotypes (NCBI, 2014); https://www.ncbi.nlm.nih.gov/gap/
Brown, D. W., Myers, T. A. & Machiela, M. J. PCAmatchR: a flexible R package for optimal case-control matching using weighted principal components. Bioinformatics 37, 1178–1181 (2021). PubMed DOI
Chen, S. et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature 625, 92–100 (2022). DOI
Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021). PubMed DOI PMC
Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016). PubMed DOI PMC
Purdue, M. P. et al. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat. Genet. 43, 60–65 (2011). PubMed DOI
Wu, X. et al. A genome-wide association study identifies a novel susceptibility locus for renal cell carcinoma on 12p11.23. Hum. Mol. Genet 21, 456–462 (2012). PubMed DOI
Shu, X. et al. Potential susceptibility loci identified for renal cell carcinoma by targeting obesity-related genes. Cancer Epidemiol. Biomark. Prev. 26, 1436–1442 (2017). DOI
Henrion, M. et al. Common variation at 2q22.3 (ZEB2) influences the risk of renal cancer. Hum. Mol. Genet 22, 825–831 (2013). PubMed DOI
Purdue, M. P. et al. A genome-wide association study of renal cell carcinoma among African Americans. Cancer Epidemiol. Biomark. Prev. 23, 209–214 (2014). DOI
Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010). PubMed DOI PMC
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020). PubMed DOI PMC
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018). PubMed DOI PMC
Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023). PubMed DOI PMC
Nagai, A. et al. Overview of the BioBank Japan Project: study design and profile. J. Epidemiol. 27, S2–S8 (2017). PubMed DOI PMC
Index (BioBank Japan, 2017); https://biobankjp.org/en/index.html
Terao, C. et al. Chromosomal alterations among age-related haematopoietic clones in Japan. Nature 584, 130–135 (2020). PubMed DOI PMC
Tanaka, N. et al. Eight novel susceptibility loci and putative causal variants in atopic dermatitis. J. Allergy Clin. Immunol. 148, 1293–1306 (2021). PubMed DOI
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007). PubMed DOI PMC
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015). PubMed DOI PMC
Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018). PubMed DOI PMC
Begg, C. B. & Zhang, Z. F. Statistical analysis of molecular epidemiology studies employing case-series. Cancer Epidemiol. Biomark. Prev. 3, 173–175 (1994).
Lyon, M. S. et al. The variant call format provides efficient and robust storage of GWAS summary statistics. Genome Biol. 22, 32 (2021). PubMed DOI PMC
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021). PubMed DOI PMC
freeseek (Github, 2022); https://github.com/freeseek/score
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010). PubMed DOI PMC
Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012). PubMed DOI PMC
Lin, S. H., Brown, D. W. & Machiela, M. J. LDtrait: an online tool for identifying published phenotype associations in linkage disequilibrium. Cancer Res. 80, 3443–3446 (2020). PubMed DOI PMC
Consortium, E. P. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020). DOI
Coetzee, S. G., Coetzee, G. A. & Hazelett, D. J. motifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sites. Bioinformatics 31, 3847–3849 (2015). PubMed DOI PMC
Yang, J. et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat. Genet. 47, 1114–1120 (2015). PubMed DOI PMC
Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015). PubMed DOI PMC
Fingenius (FINBB, 2024); https://site.fingenious.fi/en/
Data (FINDATA, 2017); https://findata.fi/en/data/
Laboratory for Statistical and Translational Genetics (Japanese ENcyclopedia of GEnetic associations by Riken, 2021); http://jenger.riken.jp/en/
GARFIELD (EMBL-EBI, 2015); https://www.ebi.ac.uk/birney-srv/GARFIELD/
GTEx Portal (GTEx, 2017); https://gtexportal.org/home/
Repository (Genomic Data Commons, 2024); https://portal.gdc.cancer.gov/repository
Cis-eQTLs and Trans-eQTLs in 33 Cancer Types (PancanQTL, 2018); http://gong_lab.hzau.edu.cn/PancanQTL/