Plant-Based Emulsions as Dairy Cream Alternatives: Comparison of Viscoelastic Properties and Colloidal Stability of Various Model Products
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38672897
PubMed Central
PMC11049096
DOI
10.3390/foods13081225
PII: foods13081225
Knihovny.cz E-zdroje
- Klíčová slova
- colour parameters, cream products, emulsifier, o/w emulsions, recipe formulation, rheological behaviour, viscoelastic moduli,
- Publikační typ
- časopisecké články MeSH
In the context of growing interest in plant-based food products for their potential health benefits and sustainability, this study investigates the effect of mono- and diglycerides of fatty acids application on physico-chemical properties of various plant-based cream products, compared to lecithin application in rice cream. Rheological and textural parameters, colour profile, and colloidal stability were analysed. The application of mono- and diglycerides modified the creams' viscoelastic behaviour, showing a decrease in viscoelasticity across the samples; although in oat-coconut cream resulted in a higher viscoelasticity, indicating the formation of a gel-like structure. Rice cream with lecithin emulsifier showed lower viscoelastic properties characterised by higher phase angle (tan δ). All samples behaved as pseudoplastic materials (with a flow behaviour index n < 1). For coconut and almond creams, the consistency coefficient increased and flow behaviour index decreased after emulsifier application. Interestingly, the emulsifier addition did not significantly affect the cream's colour profile, characterised by yellow hue angle (h*) as a dominant spectral component. The colloidal stability, indicated by a stability index (SI), was determined as well.
Zobrazit více v PubMed
McClements D.J. Food Emulsions. Principles, Practices, and Techniques. 2nd ed. CRC Press; Boca Raton, FL, USA: London, UK: New York, NY, USA: Washington, DC, USA: 2005. p. 633. DOI
Wu S., Zhang Z., Liu C., Ma T. Effect of pH-Shifting and Sonication-Assisted Treatment on Properties and Stability of Vegetable Oil-Based Whipped Cream Stabilized by Kidney Bean Protein Aggregates. Food Hydrocoll. 2023;141:108736. doi: 10.1016/j.foodhyd.2023.108736. DOI
Lv S., Zhou H., Bai L., Rojas O.J., McClements D.J. Development of Food-Grade Pickering Emulsions Stabilized by a Mixture of Cellulose Nanofibrils and Nanochitin. Food Hydrocoll. 2021;113:106451. doi: 10.1016/j.foodhyd.2020.106451. DOI
Iftikhar S.A., Dutta H. Use of Raw and Physically Modified Rice Starches as Fat Replacer in Whipping Cream. Curr. Res. Nutr. Food Sci. 2020;8:122–130. doi: 10.12944/CRNFSJ.8.1.11. DOI
Ghribi A.M., Zouari M., Attia H., Besbes S. Study of Protein/K-Carrageenan Mixture’s Effect on Low-Fat Whipping Cream Formulation. LWT. 2021;147:111647. doi: 10.1016/j.lwt.2021.111647. DOI
Nikbakht Nasrabadi M., Goli S.A.H., Sedaghat Doost A., Roman B., Dewettinck K., Stevens C.V., Van der Meeren P. Plant Based Pickering Stabilization of Emulsions using Soluble Flaxseed Protein and Mucilage Nano-Assemblies. Colloids Surf. A Physicochem. Eng. Asp. 2019;563:170–182. doi: 10.1016/j.colsurfa.2018.12.004. DOI
Semenzato A., Costantini A., Meloni M., Maramaldi G., Meneghin M., Baratto G. Formulating O/W Emulsions with Plant-Based Actives: A Stability Challenge for an Effective Product. Cosmetics. 2018;5:59. doi: 10.3390/cosmetics5040059. DOI
Derossi A., De Pilli T., Severini C. Prediction of Water Activity in Vegetable Creams: Note 2. J. Food Eng. 2007;79:1280–1286. doi: 10.1016/j.jfoodeng.2006.04.049. DOI
Verdú S., Pérez A.J., Barat J.M., Grau R. Laser Backscattering Imaging as a Control Technique for Fluid Foods: Application to Vegetable-Based Creams Processing. J. Food Eng. 2019;241:58–66. doi: 10.1016/j.jfoodeng.2018.08.003. DOI
Yiu C., Liang S., Mukhtar K., Kim W., Wang Y., Selomulya C. Food Emulsion Gels from Plant-Based Ingredients: Formulation, Processing, and Potential Applications. Gels. 2023;9:366. doi: 10.3390/gels9050366. PubMed DOI PMC
Morávková T., Stern P. Rheological and Textural Properties of Cosmetic Emulsions. Appl. Rheol. 2011;21:35200. doi: 10.3933/applrheol-21-35200. DOI
del Río-Ortuño Y., Streitenberger-Jacobi S., Bermejo-Fernández R., Marín-Iniesta F. Stability in Plant-Based Creams. An. Vet. Murcia. 2022;36:1–21.
Nimbkar S., Negi A., Thirukumaran R., Moses J.A., Sinija V.R. Effect of Thermal and Nonthermal Techniques on the Physicochemical Quality of High-fat Coconut Cream. J. Food Process Eng. 2023;46:e14462. doi: 10.1111/jfpe.14462. DOI
Islam M.A., Amin M.N., Siddiqui S.A., Hossain M.P., Sultana F., Kabir M.R. Trans Fatty Acids and Lipid Profile: A Serious Risk Factor to Cardiovascular Disease, Cancer and Diabetes. Diabetes Metab. Syndr. 2019;13:1643–1647. doi: 10.1016/j.dsx.2019.03.033. PubMed DOI
da Silva Faresin L., Devos R.J.B., Reinehr C.O., Colla L.M. Development of Ice Cream with Reduction of Sugar and Fat by the Addition of Inulin, Spirulina Platensis or Phycocyanin. Int. J. Gastron. Food Sci. 2022;27:100445. doi: 10.1016/j.ijgfs.2021.100445. DOI
Wang X., Ma D., Liu Y., Wang Y., Qiu C., Wang Y. Physical Properties of Oleogels Fabricated by the Combination of Diacylglycerols and Monoacylglycerols. J. Am. Oil Chem. Soc. 2022;99:1007–1018. doi: 10.1002/aocs.12622. DOI
Lapčíková B., Lapčík L., Valenta T., Majar P., Ondroušková K. Effect of the Rice Flour Particle Size and Variety Type on Water Holding Capacity and Water Diffusivity in Aqueous Dispersions. LWT. 2021;142:111082. doi: 10.1016/j.lwt.2021.111082. DOI
Kumar M., Tomar M., Potkule J., Reetu, Punia S., Dhakane-Lad J., Singh S., Dhumal S., Chandra Pradhan P., Bhushan B., et al. Functional Characterization of Plant-Based Protein to Determine its Quality for Food Applications. Food Hydrocoll. 2022;123:106986. doi: 10.1016/j.foodhyd.2021.106986. DOI
Kumar M., Tomar M., Punia S., Grasso S., Arrutia F., Choudhary J., Singh S., Verma P., Mahapatra A., Patil S., et al. Cottonseed: A Sustainable Contributor to Global Protein Requirements. Trends Food Sci. Technol. 2021;111:100–113. doi: 10.1016/j.tifs.2021.02.058. DOI
Sá A.G.A., Silva D.C.d., Pacheco M.T.B., Moreno Y.M.F., Carciofi B.A.M. Oilseed by-Products as Plant-Based Protein Sources: Amino Acid Profile and Digestibility. Future Foods. 2021;3:100023. doi: 10.1016/j.fufo.2021.100023. DOI
Shin J., Hong Y., Lee K. Development and Physicochemical Properties of Low Saturation Alternative Fat for Whipping Cream. Molecules. 2021;26:4586. doi: 10.3390/molecules26154586. PubMed DOI PMC
Fam V.W., Charoenwoodhipong P., Sivamani R.K., Holt R.R., Keen C.L., Hackman R.M. Plant-Based Foods for Skin Health: A Narrative Review. J. Acad. Nutr. Diet. 2022;122:614–629. doi: 10.1016/j.jand.2021.10.024. PubMed DOI
Galani E., Ly I., Laurichesse E., Schmitt V., Xenakis A., Chatzidaki M.D. Pea and Soy Protein Stabilized Emulsions: Formulation, Structure, and Stability Studies. Colloids Interfaces. 2023;7:30. doi: 10.3390/colloids7020030. DOI
The European Commission Commission Regulation (EU) 2019/801 of 17 may 2019 Amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council as Regards the use of Mono- and Diglycerides of Fatty Acids (E 471) on Certain Fresh Fruits. Off. J. Eur. Union. 2019;132:18–20.
Council of the European Union Council Directive 98/83 about Water Quality Intended for Human Consumption. Off. J. Eur. Communities Legis. 1998;330:32–54.
Council of the European Union Directive 95/2/EC. Food Additives Other than Colours and Sweeteners. Off. J. Eur. Communities. 1995;61:1–40.
Lapčíková B., Valenta T., Lapčík L. Rheological Properties of Food Hydrocolloids Based on Polysaccharides. J. Polym. Mater. 2017;34:621–635.
Whitcomb K. Determining the Linear Viscoelastic Region in Oscillatory Measurements. Volume RH 107. TA Instruments; New Castle, DE, USA: 2022. pp. 1–4.
Bemer H.L., Limbaugh M., Cramer E.D., Harper W.J., Maleky F. Vegetable Organogels Incorporation in Cream Cheese Products. Food Res. Int. 2016;85:67–75. doi: 10.1016/j.foodres.2016.04.016. PubMed DOI
Pětová M., Polášek Z., Lapčíková B., Lapčík L., Buňková L., Pospiech M., Foltin P., Talár J., Salek R.N., Kůrová V., et al. Evaluation of the Viscoelastic Properties of Pork Liver Pâté during Sterilisation Observed In Situ. LWT. 2024;191:115614. doi: 10.1016/j.lwt.2023.115614. DOI
Chudy S., Gierałtowska U. Influence of the Background Color on the Cheese Color Parameters. Int. J. Dairy Sci. 2020;15:108. doi: 10.3923/ijds.2020.108.113. DOI
Rubel I.A., Iraporda C., Gallo A., Manrique G.D., Genovese D.B. Spreadable Ricotta Cheese with Hydrocolloids: Effect on Physicochemical and Rheological Properties. Int. Dairy J. 2019;94:7–15. doi: 10.1016/j.idairyj.2019.03.002. DOI
Yu W., Xu D., Li D., Guo L., Su X., Zhang Y., Wu F., Xu X. Effect of Pigskin-Originated Gelatin on Properties of Wheat Flour Dough and Bread. Food Hydrocoll. 2019;94:183–190. doi: 10.1016/j.foodhyd.2019.03.016. DOI
Ali A.H., Wei W., Wang X. Characterisation of Bovine and Buffalo Anhydrous Milk Fat Fractions along with Infant Formulas Fat: Application of Differential Scanning Calorimetry, Fourier Transform Infrared Spectroscopy, and Colour Attributes. LWT. 2020;129:109542. doi: 10.1016/j.lwt.2020.109542. DOI
Wadhwani R., McMahon D.J. Color of Low-Fat Cheese Influences Flavor Perception and Consumer Liking. J. Dairy Sci. 2012;95:2336–2346. doi: 10.3168/jds.2011-5142. PubMed DOI
Nikzade V., Tehrani M.M., Saadatmand-Tarzjan M. Optimization of Low-Cholesterol–low-Fat Mayonnaise Formulation: Effect of using Soy Milk and some Stabilizer by a Mixture Design Approach. Food Hydrocoll. 2012;28:344–352. doi: 10.1016/j.foodhyd.2011.12.023. DOI
Espert M., Salvador A., Sanz T., Hernández M.J. Cellulose Ether Emulsions as Fat Source in Cocoa Creams: Thermorheological Properties (Flow and Viscoelasticity) LWT. 2020;117:108640. doi: 10.1016/j.lwt.2019.108640. DOI
Lapčík L. Full Professorship Thesis. VUTIUM [Brno University of Technology Publishing House]; Brno, Czech Republic: 2002. Gel Form of Matter as a Foundation of the Material-Engineering Elements; p. 20.
Almdal K., Dyre J., Hvidt S., Kramer O. Towards a Phenomenological Definition of the Term ‘gel’. Polym. Gels Netw. 1993;1:5–17. doi: 10.1016/0966-7822(93)90020-I. DOI
Burchard W., Ross-Murphy S.B. Physical Networks: Polymers and Gels. 1st ed. Springer Science & Business Media; Dordrecht, The Netherlands: 1990. p. 418.
Zhang Y., Jin T. Crystal Structure of Cocosin, a Potential Food Allergen from Coconut (Cocos nucifera) J. Allergy Clin. Immunol. 2017;139:AB261. doi: 10.1016/j.jaci.2016.12.841. PubMed DOI
Deffenbaugh L. Emulsifier-Carbohydrate Interactions. In: Hasenhuettl G.L., Hartel R.W., editors. Food Emulsifiers and Their Applications. 3rd ed. Springer International Publishing; Cham, Switzerland: 2019. pp. 65–100. DOI
Aisyah Y., Irfan, Yunita D., Ikhwana Y. Formulation and Characteristics of Skin Cream with the Addition of Essential Oil Blend. IOP Conf. Ser. Earth Environ. 2024;1297:012080. doi: 10.1088/1755-1315/1297/1/012080. DOI
Rohmani S., Dinda K.E., Ainurofiq A. Formulation and Evaluation of the Cream made from Potassium Azeloyl Diglycinate as an Anti-Aging. J. Phys. Conf. Ser. 2021;1912:012041. doi: 10.1088/1742-6596/1912/1/012041. DOI
Aydar A.Y. An Overview of Plant-Based Food Alternatives (PBFAs): Classification, Textural and Sensory Characteristics. In: Aydar A.Y., editor. Plant-Based Foods: Ingredients, Technology and Health Aspects. 1st ed. Springer International Publishing; Cham, Switzerland: 2023. pp. 1–17. DOI
Gupta M.K., Torrico D.D., Ong L., Gras S.L., Dunshea F.R., Cottrell J.J. Plant and Dairy-Based Yogurts: A Comparison of Consumer Sensory Acceptability Linked to Textural Analysis. Foods. 2022;11:463. doi: 10.3390/foods11030463. PubMed DOI PMC
Cascone G., Crescente G., Sorrentino A., Volpe M.G., Moccia S. Physicochemical Characterization of a Functional Chestnut Sweet Cream Enriched with Carotenoids and Fiber. LWT. 2023;177:114583. doi: 10.1016/j.lwt.2023.114583. DOI
Sun Y., Chen H., Chen W., Zhong Q., Shen Y., Zhang M. Effect of Ultrasound on pH-Shift to Improve Thermal Stability of Coconut Milk by Modifying Physicochemical Properties of Coconut Milk Protein. LWT. 2022;167:113861. doi: 10.1016/j.lwt.2022.113861. PubMed DOI PMC
Tangsuphoom N., Coupland J.N. Effect of pH and Ionic Strength on the Physicochemical Properties of Coconut Milk Emulsions. J. Food Sci. 2008;73:E274–E280. doi: 10.1111/j.1750-3841.2008.00819.x. PubMed DOI
Nylander T., Arnebrant T., Cárdenas M., Bos M., Wilde P. Protein/Emulsifier Interactions. In: Hasenhuettl G.L., Hartel R.W., editors. Food Emulsifiers and Their Applications. 3rd ed. Springer International Publishing; Cham, Switzerland: 2019. pp. 101–192. DOI
Yan G., Wang S., Li Y., He L., Li Y., Zhang L. Effect of Emulsifier HLB on Aerated Emulsions: Stability, Interfacial Behavior, and Aeration Properties. J. Food Eng. 2023;351:111505. doi: 10.1016/j.jfoodeng.2023.111505. DOI
Zhang Z., Goff H.D. Protein Distribution at Air Interfaces in Dairy Foams and Ice Cream as Affected by Casein Dissociation and Emulsifiers. Int. Dairy J. 2004;14:647–657. doi: 10.1016/j.idairyj.2003.12.007. DOI
Ariyaprakai S. Freeze Thaw Stability and Heat Stability of Coconut Oil-in-Water Emulsions and Coconut Milk Emulsions Stabilized by Enzyme-Modified Soy Lecithin. Food Biophys. 2022;17:557–567. doi: 10.1007/s11483-021-09711-w. DOI
Okuro P.K., Gomes A., Costa A.L.R., Adame M.A., Cunha R.L. Formation and Stability of W/O-High Internal Phase Emulsions (HIPEs) and Derived O/W Emulsions Stabilized by PGPR and Lecithin. Food Res. Int. 2019;122:252–262. doi: 10.1016/j.foodres.2019.04.028. PubMed DOI
Yamamoto Y., Araki M. Effects of Lecithin Addition in Oil or Water Phase on the Stability of Emulsions made with Whey Proteins. Biosci. Biotechnol. Biochem. 1997;61:1791–1795. doi: 10.1271/bbb.61.1791. PubMed DOI
Tan Y., McClements D.J. Plant-Based Colloidal Delivery Systems for Bioactives. Molecules. 2021;26:6895. doi: 10.3390/molecules26226895. PubMed DOI PMC
Reiner J., Schüler C., Gaukel V., Karbstein H.P. Effects of Cooling Rate and Emulsifier Combination on the Colloidal Stability of Crystalline Dispersions Stabilized by Phospholipids and β-Lactoglobulin. Colloids Interfaces. 2023;7:45. doi: 10.3390/colloids7020045. DOI