Salivary hormones in depression: the future in diagnosis and treatment
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
39962602
PubMed Central
PMC11834473
DOI
10.1186/s12991-025-00548-y
PII: 10.1186/s12991-025-00548-y
Knihovny.cz E-zdroje
- Klíčová slova
- Biomarkers, Cortisol, Depression, Melatonin, Oxytocin, Salivary,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Depression is associated with a significant burden on individuals, families, and communities. It leads to impaired social and occupational functioning, increased disability, decreased quality of life, and higher mortality rates, often due to suicide. A recent estimate from the World Health Organization (WHO) states that over 280 million people of all ages suffer from depression, which equals approximately 3.8% of the world population. Despite effective treatments for mental disorders, a dire treatment gap persists. This treatment gap could be reduced by effective and available diagnostic methods that have the potential to aid in depression diagnosis, stratification of patient subgroups, and treatment monitoring. In this regard, salivary hormones have been studied as potential markers for different types and etiologies of depression due to the convenience of non-invasive sample collection and their correlation with certain aspects of mood and mental health. The literature suggests they can help clinicians assess an individual's stress response, hormonal imbalances, and treatment response, leading to more personalized and effective interventions. In this review, we offer an up-to-date look at all studied salivary hormones associated with depression, including Cortisol, Melatonin, Oxytocin, Serotonin, Dehydroepiandrosterone, Testosterone, Progesterone, and Estradiol.
MEDINET s r o Košická 6 Senec 903 01 Slovakia
Psychiatric Clinic The University Hospital Brno Jihlavská 20 Brno 625 00 Czechia
Zobrazit více v PubMed
Bains N, Abdijadid S. Major Depressive Disorder. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2023 Sep 26]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK559078/
World Health Organization (WHO). Depressive disorder (depression) [Internet]. [cited 2023 Sep 26]. Available from: https://www.who.int/news-room/fact-sheets/detail/depression
Global Health Data Exchange (GHDx). [Internet]. Institute for Health Metrics and Evaluation. [cited 2023 Sep 26]. Available from: https://vizhub.healthdata.org/gbd-results
Woody CA, Ferrari AJ, Siskind DJ, Whiteford HA, Harris MG. A systematic review and meta-regression of the prevalence and incidence of perinatal depression. J Affect Disord. 2017;219:86–92. PubMed
Santomauro DF, Herrera AMM, Shadid J, Zheng P, Ashbaugh C, Pigott DM, et al. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet. 2021;398:1700–12. PubMed PMC
Evans-Lacko S, Aguilar-Gaxiola S, Al-Hamzawi A, Alonso J, Benjet C, Bruffaerts R, et al. Socio-economic variations in the mental health treatment gap for people with anxiety, mood, and substance use disorders: results from the WHO World Mental Health (WMH) surveys. Psychol Med. 2018;48:1560–71. PubMed PMC
Kennis M, Gerritsen L, van Dalen M, Williams A, Cuijpers P, Bockting C. Prospective biomarkers of major depressive disorder: a systematic review and meta-analysis. Mol Psychiatry. 2020;25:321–38. PubMed PMC
Thau L, Gandhi J, Sharma S, Physiology. Cortisol. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 [cited 2023 Feb 12]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK538239/
Tonon AC, Pilz LK, Markus RP, Hidalgo MP, Elisabetsky E. Melatonin and depression: a translational perspective from animal models to Clinical studies. Front Psychiatry. 2021;12:638981. PubMed PMC
Chen Q, Zhuang J, Zuo R, Zheng H, Dang J, Wang Z. Exploring associations between postpartum depression and oxytocin levels in cerebrospinal fluid, plasma and saliva. J Affect Disord. 2022;315:198–205. PubMed
Lesch K-P, Waider J. Serotonin in the modulation of neural plasticity and networks: implications for Neurodevelopmental disorders. Neuron. 2012;76:175–91. PubMed
Nenezic N, Kostic S, Strac DS, Grunauer M, Nenezic D, Radosavljevic M, et al. Dehydroepiandrosterone (DHEA): pharmacological effects and potential therapeutic application. Mini Rev Med Chem. 2023;23:941–52. PubMed
McHenry J, Carrier N, Hull E, Kabbaj M. Sex differences in anxiety and depression: role of testosterone. Front Neuroendocrinol. 2014;35:42–57. PubMed PMC
Sovijit WN, Sovijit WE, Pu S, Usuda K, Inoue R, Watanabe G, et al. Ovarian progesterone suppresses depression and anxiety-like behaviors by increasing the Lactobacillus population of gut microbiota in ovariectomized mice. Neurosci Res. 2021;168:76–82. PubMed
Gordon JL, Peltier A, Grummisch JA, Sykes Tottenham L, Estradiol, Fluctuation. Sensitivity to stress, and depressive symptoms in the menopause transition: a pilot study. Front Psychol. 2019;10:1319. PubMed PMC
Wang R, Kogler L, Derntl B. Sex differences in cortisol levels in depression: a systematic review and meta-analysis. Front Neuroendocrinol. 2024;72:101118. PubMed
Young EA, Korszun A. The hypothalamic-pituitary-gonadal axis in mood disorders. Endocrinol Metab Clin North Am. 2002;31:63–78. PubMed
Cook N, Harris B, Walker R, Hailwood R, Jones E, Johns S, et al. Clinical utility of the dexamethasone suppression test assessed by plasma and salivary cortisol determinations. Psychiatry Res. 1986;18:143–50. PubMed
Mander AJ, Rubin RT, Copolov DL, Poland RE. The predictive power of the salivary cortisol dexamethasone suppression test for three-year outcome in major depressive illness. J Psychiatr Res. 1989;23:151–6. PubMed
Foreman DM, Goodyer IM. Salivary cortisol hypersecretion in juvenile depression. J Child Psychol Psychiatry. 1988;29:311–20. PubMed
Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. 2008;31:464–8. PubMed
Stetler C, Miller GE. Depression and hypothalamic-pituitary-adrenal activation: a quantitative summary of four decades of research. Psychosom Med. 2011;73:114–26. PubMed
Hardeland R, Pandi-Perumal SR, Cardinali DP, Melatonin. Int J Biochem Cell Biol. 2006;38:313–6. PubMed
Rahman SA, St Hilaire MA, Gronfier C, Chang A-M, Santhi N, Czeisler CA, et al. Functional decoupling of melatonin suppression and circadian phase resetting in humans. J Physiol. 2018;596:2147–57. PubMed PMC
Tabak BA, Leng G, Szeto A, Parker KJ, Verbalis JG, Ziegler TE, et al. Advances in human oxytocin measurement: challenges and proposed solutions. Mol Psychiatry. 2023;28:127–40. PubMed PMC
Horvat-Gordon M, Granger DA, Schwartz EB, Nelson VJ, Kivlighan KT. Oxytocin is not a valid biomarker when measured in saliva by immunoassay. Physiol Behav. 2005;84:445–8. PubMed
Krimberg JS, Lumertz FS, Orso R, Viola TW, de Almeida RMM. Impact of social isolation on the oxytocinergic system: a systematic review and meta-analysis of rodent data. Neurosci Biobehavioral Reviews. 2022;134:104549. PubMed
Hoge EA, Pollack MH, Kaufman RE, Zak PJ, Simon NM. Oxytocin levels in social anxiety disorder. CNS Neurosci Ther. 2008;14:165–70. PubMed PMC
Berger M, Gray JA, Roth BL. The expanded Biology of Serotonin. Annu Rev Med. 2009;60:355. PubMed PMC
Moncrieff J, Cooper RE, Stockmann T, Amendola S, Hengartner MP, Horowitz MA. The serotonin theory of depression: a systematic umbrella review of the evidence. Mol Psychiatry. 2023;28:3243–56. PubMed PMC
Kendrick T, Collinson S. Antidepressants and the serotonin hypothesis of depression. BMJ. 2022;378:o1993. PubMed
Cosci F, Chouinard G. Chapter 7 - The Monoamine Hypothesis of Depression Revisited: Could It Mechanistically Novel Antidepressant Strategies? In: Quevedo J, Carvalho AF, Zarate CA, editors. Neurobiology of Depression [Internet]. Academic Press; 2019 [cited 2024 Dec 19]. pp. 63–73. Available from: https://www.sciencedirect.com/science/article/pii/B978012813333000007X
Rutkowski K, Sowa P, Rutkowska-Talipska J, Kuryliszyn-Moskal A, Rutkowski R. Dehydroepiandrosterone (DHEA): hypes and hopes. Drugs. 2014;74:1195–207. PubMed
Määttänen I, Gluschkoff K, Komulainen K, Airaksinen J, Savelieva K, García-Velázquez R, et al. Testosterone and specific symptoms of depression: evidence from NHANES 2011–2016. Compr Psychoneuroendocrinol. 2021;6:100044. PubMed PMC
Taraborrelli S. Physiology, production and action of progesterone. Acta Obstet Gynecol Scand. 2015;94(Suppl 161):8–16. PubMed
Bixo M, Andersson A, Winblad B, Purdy RH, Bäckström T. Progesterone, 5alpha-pregnane-3,20-dione and 3alpha-hydroxy-5alpha-pregnane-20-one in specific regions of the human female brain in different endocrine states. Brain Res. 1997;764:173–8. PubMed
Thomas MP, Potter BVL. The structural biology of oestrogen metabolism. J Steroid Biochem Mol Biol. 2013;137:27–49. PubMed PMC
Fischer S, Strawbridge R, Vives AH, Cleare AJ. Cortisol as a predictor of psychological therapy response in depressive disorders: systematic review and meta-analysis. Br J Psychiatry. 2017;210:105–9. PubMed
Vreeburg SA, Hoogendijk WJG, DeRijk RH, van Dyck R, Smit JH, Zitman FG, et al. Salivary cortisol levels and the 2-year course of depressive and anxiety disorders. Psychoneuroendocrinology. 2013;38:1494–502. PubMed
Vreeburg SA, Hoogendijk WJG, van Pelt J, Derijk RH, Verhagen JCM, van Dyck R, et al. Major depressive disorder and hypothalamic-pituitary-adrenal axis activity: results from a large cohort study. Arch Gen Psychiatry. 2009;66:617–26. PubMed
Vreeburg SA, Kruijtzer BP, van Pelt J, van Dyck R, DeRijk RH, Hoogendijk WJG, et al. Associations between sociodemographic, sampling and health factors and various salivary cortisol indicators in a large sample without psychopathology. Psychoneuroendocrinology. 2009;34:1109–20. PubMed
Suijk DLS, Dols A, van Exel E, Stek ML, Veltman E, Bouckaert F, et al. Salivary cortisol as predictor for depression characteristics and remission in electroconvulsive therapy in older persons. World J Biol Psychiatry. 2019;20:683–90. PubMed
Dziurkowska E, Wesolowski M, Dziurkowski M. Salivary cortisol in women with major depressive disorder under selective serotonin reuptake inhibitors therapy. Arch Womens Ment Health. 2013;16:139–47. PubMed PMC
Rahman MS, Zhao X, Liu JJ, Torres EQ, Tibert B, Kumar P, et al. Exercise reduces salivary morning cortisol levels in patients with Depression. Mol Neuropsychiatry. 2019;4:196–203. PubMed PMC
Knorr U, Vinberg M, Kessing LV, Wetterslev J. Salivary cortisol in depressed patients versus control persons: a systematic review and meta-analysis. Psychoneuroendocrinology. 2010;35:1275–86. PubMed
Chojnowska S, Ptaszyńska-Sarosiek I, Kępka A, Knaś M, Waszkiewicz N. Salivary biomarkers of stress, anxiety and depression. J Clin Med. 2021;10:517. PubMed PMC
de Bodinat C, Guardiola-Lemaitre B, Mocaër E, Renard P, Muñoz C, Millan MJ. Agomelatine, the first melatonergic antidepressant: discovery, characterization and development. Nat Rev Drug Discov. 2010;9:628–42. PubMed
Beck-Friis J, von Rosen D, Kjellman BF, Ljunggren JG, Wetterberg L. Melatonin in relation to body measures, sex, age, season and the use of drugs in patients with major affective disorders and healthy subjects. Psychoneuroendocrinology. 1984;9:261–77. PubMed
Bellosta-Batalla M, Del Carmen Blanco-Gandía M, Rodríguez-Arias M, Cebolla A, Pérez-Blasco J, Moya-Albiol L. Brief mindfulness session improves mood and increases salivary oxytocin in psychology students. Stress Health. 2020;36:469–77. PubMed
Voultsios A, Kennaway DJ, Dawson D. Salivary melatonin as a circadian phase marker: validation and comparison to plasma melatonin. J Biol Rhythms. 1997;12:457–66. PubMed
Sundberg I, Ramklint M, Stridsberg M, Papadopoulos FC, Ekselius L, Cunningham JL. Salivary melatonin in relation to depressive Symptom Severity in Young adults. PLoS ONE. 2016;11:e0152814. PubMed PMC
Sundberg I, Rasmusson AJ, Ramklint M, Just D, Ekselius L, Cunningham JL. Daytime melatonin levels in saliva are associated with inflammatory markers and anxiety disorders. Psychoneuroendocrinology. 2020;112:104514. PubMed
Kudo N, Shinohara H, Kagabu S, Kodama H. Evaluation of salivary melatonin concentrations as a circadian phase maker of morning awakening and their association with depressive mood in postpartum mothers. Chronobiol Int. 2021;38:1409–20. PubMed
Ogłodek EA, Just MJ, Szromek AR, Araszkiewicz A. Melatonin and neurotrophins NT-3, BDNF, NGF in patients with varying levels of depression severity. Pharmacol Rep. 2016;68:945–51. PubMed
Miranda-Riestra A, Estrada-Reyes R, Torres-Sanchez ED, Carreño-García S, Ortiz GG, Benítez-King G. Melatonin: A Neurotrophic Factor? Molecules. 2022;27:7742. PubMed PMC
Carvalho LA, Gorenstein C, Moreno RA, Markus RP. Melatonin levels in drug-free patients with major depression from the southern hemisphere. Psychoneuroendocrinology. 2006;31:761–8. PubMed
Juan W-S, Huang S-Y, Chang C-C, Hung Y-C, Lin Y-W, Chen T-Y, et al. Melatonin improves neuroplasticity by upregulating the growth-associated protein-43 (GAP-43) and NMDAR postsynaptic density-95 (PSD-95) proteins in cultured neurons exposed to glutamate excitotoxicity and in rats subjected to transient focal cerebral ischemia even during a long-term recovery period. J Pineal Res. 2014;56:213–23. PubMed
Rădulescu I, Drăgoi AM, Trifu SC, Cristea MB. Neuroplasticity and depression: rewiring the brain’s networks through pharmacological therapy (review). Exp Ther Med. 2021;22:1131. PubMed PMC
Parker KJ, Kenna HA, Zeitzer JM, Keller J, Blasey CM, Amico JA, et al. Preliminary evidence that plasma oxytocin levels are elevated in major depression. Psychiatry Res. 2010;178:359–62. PubMed PMC
Holt-Lunstad J, Birmingham W, Light KC. The influence of depressive symptomatology and perceived stress on plasma and salivary oxytocin before, during and after a support enhancement intervention. Psychoneuroendocrinology. 2011;36:1249–56. PubMed
Nagahashi-Araki M, Tasaka M, Takamura T, Eto H, Sasaki N, Fujita W, et al. Endogenous oxytocin levels in extracted saliva elevates during breastfeeding correlated with lower postpartum anxiety in primiparous mothers. BMC Pregnancy Childbirth. 2022;22:711. PubMed PMC
Martins D, Gabay AS, Mehta M, Paloyelis Y. Salivary and plasmatic oxytocin are not reliable trait markers of the physiology of the oxytocin system in humans. Elife. 2020;9:e62456. PubMed PMC
Karbownik MS, Hicks SD. The Association of Salivary Serotonin With Mood and Cardio-Autonomic Function: A Preliminary Report. Front Psychiatry [Internet]. 2022 [cited 2025 Jan 4];13. Available from: https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2022.788153/full PubMed PMC
Tan Z-L, Bao A-M, Tao M, Liu Y-J, Zhou J-N. Circadian rhythm of salivary serotonin in patients with major depressive disorder. Neuro Endocrinol Lett. 2007;28:395–400. PubMed
Egri C, Dunbar M, Horvath GA. Correlation between salivary, platelet and central serotonin levels in children. Can J Neurol Sci. 2020;47:214–8. PubMed
Lindell SG, Suomi SJ, Shoaf S, Linnoila M, Higley JD. Salivary prolactin as a marker for central serotonin turnover. Biol Psychiatry. 1999;46:568–72. PubMed
Mulligan EM, Hajcak G, Crisler S, Meyer A. Increased dehydroepiandrosterone (DHEA) is associated with anxiety in adolescent girls. Psychoneuroendocrinology. 2020;119:104751. PubMed PMC
Dutheil F, de Saint Vincent S, Pereira B, Schmidt J, Moustafa F, Charkhabi M, et al. DHEA as a biomarker of stress: a systematic review and Meta-analysis. Front Psychiatry. 2021;12:688367. PubMed PMC
Cardoso EML, Contreras LN, Tumilasci EG, Elbert A, Aguirre EC, Aquilano DR, et al. Salivary testosterone for the diagnosis of androgen deficiency in end-stage renal disease. Nephrol Dial Transpl. 2011;26:677–83. PubMed
de Wit AE, Bosker FJ, Giltay EJ, de Kloet CS, Roelofs K, van Pelt J et al. Testosterone in human studies: modest associations between plasma and salivary measurements. Andrologia. 2018;50. PubMed
Aydogan U, Aydogdu A, Akbulut H, Sonmez A, Yuksel S, Basaran Y, et al. Increased frequency of anxiety, depression, quality of life and sexual life in young hypogonadotropic hypogonadal males and impacts of testosterone replacement therapy on these conditions. Endocr J. 2012;59:1099–105. PubMed
Granger DA, Shirtcliff EA, Booth A, Kivlighan KT, Schwartz EB. The trouble with salivary testosterone. Psychoneuroendocrinology. 2004;29:1229–40. PubMed
Hayashi N, Ando S, Jinde S, Fujikawa S, Okada N, Toriyama R, et al. Social Withdrawal and testosterone levels in early adolescent boys. Psychoneuroendocrinology. 2020;116:104596. PubMed
Giltay EJ, Enter D, Zitman FG, Penninx BWJH, van Pelt J, Spinhoven P, et al. Salivary testosterone: associations with depression, anxiety disorders, and antidepressant use in a large cohort study. J Psychosom Res. 2012;72:205–13. PubMed
Mousavizadegan S, Maroufi M. Comparison of salivary testosterone levels in different phases of bipolar I disorder and control group. J Res Med Sci. 2018;23:31. PubMed PMC
Standeven LR, McEvoy KO, Osborne LM. Progesterone, reproduction, and psychiatric illness. Best Pract Res Clin Obstet Gynaecol. 2020;69:108–26. PubMed PMC
Holzhauer CG, Wemm SE, Wulfert E, Cao ZT. Fluctuations in progesterone moderate the relationship between daily mood and alcohol use in young adult women. Addict Behav. 2020;101:106146. PubMed PMC
Hsiao C-C, Liu C-Y, Hsiao M-C. No correlation of depression and anxiety to plasma estrogen and progesterone levels in patients with premenstrual dysphoric disorder. Psychiatry Clin Neurosci. 2004;58:593–9. PubMed
Konishi S, Brindle E, Guyton A, O’Connor KA. Salivary concentration of progesterone and cortisol significantly differs across individuals after correcting for blood hormone values. Am J Phys Anthropol. 2012;149:231–41. PubMed PMC
van der Spuy WJ, Pretorius E. Interrelation between inflammation, thrombosis, and neuroprotection in cerebral ischemia. Rev Neurosci. 2012;23:269–78. PubMed
Kulkarni J, Gavrilidis E, Worsley R, Hayes E. Role of estrogen treatment in the management of schizophrenia. CNS Drugs. 2012;26:549–57. PubMed
Garcia-Segura LM, Azcoitia I, DonCarlos LL. Neuroprotection by estradiol. Prog Neurobiol. 2001;63:29–60. PubMed
Gordon JL, Eisenlohr-Moul TA, Rubinow DR, Schrubbe L, Girdler SS. Naturally occurring changes in estradiol concentrations in the Menopause Transition Predict Morning Cortisol and negative Mood in Perimenopausal Depression. Clin Psychol Sci. 2016;4:919–35. PubMed PMC
Gordon JL, Sander B, Eisenlohr-Moul TA, Sykes Tottenham L. Mood sensitivity to estradiol predicts depressive symptoms in the menopause transition. Psychol Med. 2021;51:1733–41. PubMed
Bartley EJ, Palit S, Kuhn BL, Kerr KL, Terry EL, DelVentura JL, et al. Nociceptive processing in women with premenstrual dysphoric disorder (PMDD): the role of menstrual phase and sex hormones. Clin J Pain. 2015;31:304–14. PubMed
Paludo AC, Cook CJ, Owen JA, Woodman T, Irwin J, Crewther BT. The impact of menstrual-cycle phase on basal and exercise-induced hormones, mood, anxiety and exercise performance in physically active women. J Sports Med Phys Fit. 2021;61:461–7. PubMed
Lončar-Brzak B, Vidranski V, Andabak-Rogulj A, Vidović-Juras D, Todorić-Laidlaw I, Gabrić D, et al. Salivary hormones and quality of life in female postmenopausal burning Mouth Patients-A Pilot Case-Control Study. Dent J (Basel). 2020;8:111. PubMed PMC
Bogetto F, Maina G, Ferro G, Carbone M, Gandolfo S. Psychiatric comorbidity in patients with burning mouth syndrome. Psychosom Med. 1998;60:378–85. PubMed
Tivis LJ, Richardson MD, Peddi E, Arjmandi B. Saliva versus serum estradiol: implications for research studies using postmenopausal women. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:727–32. PubMed