Astroglial Kir4.1 potassium channel deficit drives neuronal hyperexcitability and behavioral defects in Fragile X syndrome mouse model
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural
Grant support
683154
EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
722053
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
1535
Fondation Jérôme Lejeune (Jérôme Lejeune Foundation)
PubMed
38678030
PubMed Central
PMC11055954
DOI
10.1038/s41467-024-47681-y
PII: 10.1038/s41467-024-47681-y
Knihovny.cz E-resources
- MeSH
- Astrocytes * metabolism MeSH
- Behavior, Animal MeSH
- Potassium metabolism MeSH
- Potassium Channels, Inwardly Rectifying * metabolism genetics MeSH
- Hippocampus metabolism MeSH
- Kcnj10 Channel MeSH
- RNA, Messenger metabolism genetics MeSH
- Disease Models, Animal MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Neurons * metabolism physiology MeSH
- Fragile X Mental Retardation Protein * metabolism genetics MeSH
- Fragile X Syndrome * metabolism genetics physiopathology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Potassium MeSH
- Potassium Channels, Inwardly Rectifying * MeSH
- Fmr1 protein, mouse MeSH Browser
- Kcnj10 Channel MeSH
- RNA, Messenger MeSH
- Fragile X Mental Retardation Protein * MeSH
Fragile X syndrome (FXS) is an inherited form of intellectual disability caused by the loss of the mRNA-binding fragile X mental retardation protein (FMRP). FXS is characterized by neuronal hyperexcitability and behavioral defects, however the mechanisms underlying these critical dysfunctions remain unclear. Here, using male Fmr1 knockout mouse model of FXS, we identify abnormal extracellular potassium homeostasis, along with impaired potassium channel Kir4.1 expression and function in astrocytes. Further, we reveal that Kir4.1 mRNA is a binding target of FMRP. Finally, we show that the deficit in astroglial Kir4.1 underlies neuronal hyperexcitability and several behavioral defects in Fmr1 knockout mice. Viral delivery of Kir4.1 channels specifically to hippocampal astrocytes from Fmr1 knockout mice indeed rescues normal astrocyte potassium uptake, neuronal excitability, and cognitive and social performance. Our findings uncover an important role for astrocyte dysfunction in the pathophysiology of FXS, and identify Kir4.1 channel as a potential therapeutic target for FXS.
Department of Biomedical Sciences University of Antwerp Antwerp Belgium
Department of Genetics Regional Hospital Orléans France
Department of Physiology 2nd Faculty of Medicine Charles University Prague Czech Republic
See more in PubMed
Bagni C, Zukin RS. A Synaptic Perspective of Fragile X Syndrome and Autism Spectrum Disorders. Neuron. 2019;101:1070–1088. doi: 10.1016/j.neuron.2019.02.041. PubMed DOI PMC
Berry-Kravis E. Mechanism-Based Treatments in Neurodevelopmental Disorders: Fragile X Syndrome. Pediatr. Neurol. 2014;50:297–302. doi: 10.1016/j.pediatrneurol.2013.12.001. PubMed DOI
Santos AR, Kanellopoulos AK, Bagni C. Learning and behavioral deficits associated with the absence of the fragile X mental retardation protein: what a fly and mouse model can teach us. Learn. Memory. 2014;21:543–555. doi: 10.1101/lm.035956.114. PubMed DOI PMC
Pieretti M, et al. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell. 1991;66:817–822. doi: 10.1016/0092-8674(91)90125-I. PubMed DOI
Bakker C, et al. Fmr1 knockout mice: A model to study fragile X mental retardation. Cell. 1994;78:23–33. PubMed
Darnell JC, et al. FMRP Stalls Ribosomal Translocation on mRNAs Linked to Synaptic Function and Autism. Cell. 2011;146:247–261. doi: 10.1016/j.cell.2011.06.013. PubMed DOI PMC
Santoro MR, Bray SM, Warren ST. Molecular Mechanisms of Fragile X Syndrome: A Twenty-Year Perspective. Ann. Rev. Pathol. Mechan. Dis. 2012;7:219–245. doi: 10.1146/annurev-pathol-011811-132457. PubMed DOI
Strumbos JG, Brown MR, Kronengold J, Polley DB, Kaczmarek LK. Fragile X Mental Retardation Protein Is Required for Rapid Experience-Dependent Regulation of the Potassium Channel Kv3.1b. J. Neurosci. 2010;30:10263–10271. doi: 10.1523/JNEUROSCI.1125-10.2010. PubMed DOI PMC
Lee HY, et al. Bidirectional Regulation of Dendritic Voltage-Gated Potassium Channels by the Fragile X Mental Retardation Protein. Neuron. 2011;72:630–642. doi: 10.1016/j.neuron.2011.09.033. PubMed DOI PMC
Gross C, Yao X, Pong DL, Jeromin A, Bassell GJ. Fragile X Mental Retardation Protein Regulates Protein Expression and mRNA Translation of the Potassium Channel Kv4.2. J. Neurosci. 2011;31:5693–5698. doi: 10.1523/JNEUROSCI.6661-10.2011. PubMed DOI PMC
Deng P-Y, et al. FMRP Regulates Neurotransmitter Release and Synaptic Information Transmission by Modulating Action Potential Duration via BK Channels. Neuron. 2013;77:696–711. doi: 10.1016/j.neuron.2012.12.018. PubMed DOI PMC
Ferron L, Nieto-Rostro M, Cassidy JS, Dolphin AC. Fragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density. Nat. Commun. 2014;5:3628. doi: 10.1038/ncomms4628. PubMed DOI PMC
Brown MR, et al. Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack. Nat. Neurosci. 2010;13:819–821. doi: 10.1038/nn.2563. PubMed DOI PMC
El-Hassar L, et al. Modulators of Kv3 Potassium Channels Rescue the Auditory Function of Fragile X Mice. J. Neurosci. 2019;39:4797–4813. doi: 10.1523/JNEUROSCI.0839-18.2019. PubMed DOI PMC
Ferron L. Fragile X mental retardation protein controls ion channel expression and activity. J. Physiol. 2016;594:5861–5867. doi: 10.1113/JP270675. PubMed DOI PMC
Zhang Y, et al. Dendritic channelopathies contribute to neocortical and sensory hyperexcitability in Fmr1−/y mice. Nat. Neurosci. 2014;17:1701–1709. doi: 10.1038/nn.3864. PubMed DOI
Contractor A, Klyachko VA, Portera-Cailliau C. Altered Neuronal and Circuit Excitability in Fragile X Syndrome. Neuron. 2015;87:699–715. doi: 10.1016/j.neuron.2015.06.017. PubMed DOI PMC
Dallérac G, Zapata J, Rouach N. Versatile control of synaptic circuits by astrocytes: where, when and how? Nat. Rev. Neurosci. 2018;19:729–743. doi: 10.1038/s41583-018-0080-6. PubMed DOI
Halassa MM, Haydon PG. Integrated Brain Circuits: Astrocytic Networks Modulate Neuronal Activity and Behavior. Annu. Rev. Physiol. 2010;72:335–355. doi: 10.1146/annurev-physiol-021909-135843. PubMed DOI PMC
Allen NJ, Eroglu C. Cell Biology of Astrocyte-Synapse Interactions. Neuron. 2017;96:697–708. doi: 10.1016/j.neuron.2017.09.056. PubMed DOI PMC
Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119:7–35. doi: 10.1007/s00401-009-0619-8. PubMed DOI PMC
Molofsky AV, et al. Astrocytes and disease: a neurodevelopmental perspective. Genes Dev. 2012;26:891–907. doi: 10.1101/gad.188326.112. PubMed DOI PMC
Blanco-Suárez E, Caldwell ALM, Allen NJ. Role of astrocyte-synapse interactions in CNS disorders. J. Physiol. 2017;595:1903–1916. doi: 10.1113/JP270988. PubMed DOI PMC
Higashimori H, et al. Astroglial FMRP-dependent translational down-regulation of mGluR5 underlies glutamate transporter GLT1 dysregulation in the fragile X mouse. Hum. Mol. Genet. 2013;22:2041–2054. doi: 10.1093/hmg/ddt055. PubMed DOI PMC
Pacey LKK, Doering LC. Developmental expression of FMRP in the astrocyte lineage: Implications for fragile X syndrome. Glia. 2007;55:1601–1609. doi: 10.1002/glia.20573. PubMed DOI
Higashimori H, et al. Selective Deletion of Astroglial FMRP Dysregulates Glutamate Transporter GLT1 and Contributes to Fragile X Syndrome Phenotypes In Vivo. J. Neurosci. 2016;36:7079–7094. doi: 10.1523/JNEUROSCI.1069-16.2016. PubMed DOI PMC
Hodges JL, et al. Astrocytic Contributions to Synaptic and Learning Abnormalities in a Mouse Model of Fragile X Syndrome. Biol. Psychiatry. 2017;82:139–149. doi: 10.1016/j.biopsych.2016.08.036. PubMed DOI PMC
Jin S, et al. Astroglial FMRP modulates synaptic signaling and behavior phenotypes in FXS mouse model. Glia. 2021;69:594–608. doi: 10.1002/glia.23915. PubMed DOI
Bellot-Saez A, Kékesi O, Morley JW, Buskila Y. Astrocytic modulation of neuronal excitability through K + spatial buffering. Neurosci. Biobehav. Rev. 2017;77:87–97. doi: 10.1016/j.neubiorev.2017.03.002. PubMed DOI
Cheung G, Sibille J, Zapata J, Rouach N. Activity-Dependent Plasticity of Astroglial Potassium and Glutamate Clearance. Neural Plast. 2015;2015:1–16. doi: 10.1155/2015/109106. PubMed DOI PMC
Aitken PG, Somjen GG. The sources of extracellular potassium accumulation in the CA1 region of hippocampal slices. Brain Res. 1986;369:163–167. doi: 10.1016/0006-8993(86)90524-X. PubMed DOI
Haj-Yasein NN, et al. Deletion of aquaporin-4 increases extracellular K+ concentration during synaptic stimulation in mouse hippocampus. Brain Struct. Funct. 2015;220:2469–2474. doi: 10.1007/s00429-014-0767-z. PubMed DOI PMC
Poolos NP, Mauk MD, Kocsis JD. Activity-evoked increases in extracellular potassium modulate presynaptic excitability in the CA1 region of the hippocampus. J. Neurophysiol. 1987;58:404–416. doi: 10.1152/jn.1987.58.2.404. PubMed DOI
Kofuji P, Newman EA. Potassium buffering in the central nervous system. Neuroscience. 2004;129:1043–1054. doi: 10.1016/j.neuroscience.2004.06.008. PubMed DOI PMC
Djukic B, Casper KB, Philpot BD, Chin L-S, McCarthy KD. Conditional Knock-Out of Kir4.1 Leads to Glial Membrane Depolarization, Inhibition of Potassium and Glutamate Uptake, and Enhanced Short-Term Synaptic Potentiation. J. Neurosci. 2007;27:11354–11365. doi: 10.1523/JNEUROSCI.0723-07.2007. PubMed DOI PMC
Olsen ML, Higashimori H, Campbell SL, Hablitz JJ, Sontheimer H. Functional expression of Kir4.1 channels in spinal cord astrocytes. Glia. 2006;53:516–528. doi: 10.1002/glia.20312. PubMed DOI PMC
Sibille J, Pannasch U, Rouach N. Astroglial potassium clearance contributes to short-term plasticity of synaptically evoked currents at the tripartite synapse. J. Physiol. 2014;592:87–102. doi: 10.1113/jphysiol.2013.261735. PubMed DOI PMC
Higashi K, et al. An inwardly rectifying K + channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am. J. Physiol. Cell Physiol. 2001;281:C922–C931. doi: 10.1152/ajpcell.2001.281.3.C922. PubMed DOI
Zalfa F, et al. A new function for the fragile X mental retardation protein in regulation of PSD-95 mRNA stability. Nat. Neurosci. 2007;10:578–587. doi: 10.1038/nn1893. PubMed DOI PMC
Asiminas A, et al. Sustained correction of associative learning deficits after brief, early treatment in a rat model of Fragile X Syndrome. Sci. Transl. Med. 2019;11:eaao0498. doi: 10.1126/scitranslmed.aao0498. PubMed DOI PMC
Aloisi E, et al. Altered surface mGluR5 dynamics provoke synaptic NMDAR dysfunction and cognitive defects in Fmr1 knockout mice. Nat. Commun. 2017;8:1103. doi: 10.1038/s41467-017-01191-2. PubMed DOI PMC
Ventura R, Pascucci T, Catania MV, Musumeci SA, Puglisi-Allegra S. Object recognition impairment in Fmr1 knockout mice is reversed by amphetamine: involvement of dopamine in the medial prefrontal cortex. Behav. Pharmacol. 2004;15:433–442. doi: 10.1097/00008877-200409000-00018. PubMed DOI
Bhattacharya A, et al. Genetic Removal of p70 S6 Kinase 1 Corrects Molecular, Synaptic, and Behavioral Phenotypes in Fragile X Syndrome Mice. Neuron. 2012;76:325–337. doi: 10.1016/j.neuron.2012.07.022. PubMed DOI PMC
Chever O, Djukic B, McCarthy KD, Amzica F. Implication of Kir4.1 Channel in Excess Potassium Clearance: An In Vivo Study on Anesthetized Glial-Conditional Kir4.1 Knock-Out Mice. J. Neurosci. 2010;30:15769–15777. doi: 10.1523/JNEUROSCI.2078-10.2010. PubMed DOI PMC
Larsen BR, et al. Contributions of the Na+/K+-ATPase, NKCC1, and Kir4.1 to hippocampal K+ clearance and volume responses. Glia. 2014;62:608–622. doi: 10.1002/glia.22629. PubMed DOI PMC
Ballas N, Lioy DT, Grunseich C, Mandel G. Non–cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat. Neurosci. 2009;12:311–317. doi: 10.1038/nn.2275. PubMed DOI PMC
Cuddapah VA, et al. Methyl-CpG-binding protein 2 (MECP2) mutation type is associated with disease severity in Rett syndrome. J. Med. Genet. 2014;51:152–158. doi: 10.1136/jmedgenet-2013-102113. PubMed DOI PMC
Kahanovitch, U. et al. MeCP2 Deficiency Leads to Loss of Glial Kir4.1. eNeuro5, ENEURO.0194-17.2018 (2018). PubMed PMC
Seifert G, Henneberger C, Steinhäuser C. Diversity of astrocyte potassium channels: An update. Brain Res. Bull. 2018;136:26–36. doi: 10.1016/j.brainresbull.2016.12.002. PubMed DOI
Cui Y, et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature. 2018;554:323–327. doi: 10.1038/nature25752. PubMed DOI
Kelley KW, et al. Kir4.1-Dependent Astrocyte-Fast Motor Neuron Interactions Are Required for Peak Strength. Neuron. 2018;98:306–319.e7. doi: 10.1016/j.neuron.2018.03.010. PubMed DOI PMC
Neusch C, et al. Lack of the Kir4.1 Channel Subunit Abolishes K + Buffering Properties of Astrocytes in the Ventral Respiratory Group: Impact on Extracellular K + Regulation. J. Neurophysiol. 2006;95:1843–1852. doi: 10.1152/jn.00996.2005. PubMed DOI
Seifert G, et al. Analysis of Astroglial K+ Channel Expression in the Developing Hippocampus Reveals a Predominant Role of the Kir4.1 Subunit. J. Neurosci. 2009;29:7474–7488. doi: 10.1523/JNEUROSCI.3790-08.2009. PubMed DOI PMC
Ventura R, Harris KM. Three-dimensional relationships between hippocampal synapses and astrocytes. J. Neurosci. 1999;19:6897–6906. doi: 10.1523/JNEUROSCI.19-16-06897.1999. PubMed DOI PMC
Steinhäuser C, Grunnet M, Carmignoto G. Crucial role of astrocytes in temporal lobe epilepsy. Neuroscience. 2016;323:157–169. doi: 10.1016/j.neuroscience.2014.12.047. PubMed DOI
Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and epilepsy: excitability and inflammation. Trends Neurosci. 2013;36:174–184. doi: 10.1016/j.tins.2012.11.008. PubMed DOI
Catterall WA. Structure and Regulation of Voltage-Gated Ca 2+ Channels. Annu. Rev. Cell Dev. Biol. 2000;16:521–555. doi: 10.1146/annurev.cellbio.16.1.521. PubMed DOI
Guéguinou M, et al. KCa and Ca2+ channels: The complex thought. Bioch. Biophys. Acta Mol. Cell Res. 2014;1843:2322–2333. doi: 10.1016/j.bbamcr.2014.02.019. PubMed DOI
Sibille J, Dao Duc K, Holcman D, Rouach N. The Neuroglial Potassium Cycle during Neurotransmission: Role of Kir4.1 Channels. PLoS Comput. Biol. 2015;11:e1004137. doi: 10.1371/journal.pcbi.1004137. PubMed DOI PMC
Tang S, et al. Loss of CDKL5 in Glutamatergic Neurons Disrupts Hippocampal Microcircuitry and Leads to Memory Impairment in Mice. J. Neurosci. 2017;37:7420–7437. doi: 10.1523/JNEUROSCI.0539-17.2017. PubMed DOI PMC
Schiavi S, et al. Reward-Related Behavioral, Neurochemical and Electrophysiological Changes in a Rat Model of Autism Based on Prenatal Exposure to Valproic Acid. Front. Cell Neurosci. 2019;13:1–14. doi: 10.3389/fncel.2019.00479. PubMed DOI PMC
Baranek GT, et al. Hyporesponsiveness to social and nonsocial sensory stimuli in children with autism, children with developmental delays, and typically developing children. Dev. Psychopathol. 2013;25:307–320. doi: 10.1017/S0954579412001071. PubMed DOI PMC
Robertson CE, Baron-Cohen S. Sensory perception in autism. Nat. Rev. Neurosci. 2017;18:671–684. doi: 10.1038/nrn.2017.112. PubMed DOI
Tong X, et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat. Neurosci. 2014;17:694–703. doi: 10.1038/nn.3691. PubMed DOI PMC
Bataveljić D, Nikolić L, Milosević M, Todorović N, Andjus PR. Changes in the astrocytic aquaporin-4 and inwardly rectifying potassium channel expression in the brain of the amyotrophic lateral sclerosis SOD1 G93A rat model. Glia. 2012;60:1991–2003. doi: 10.1002/glia.22414. PubMed DOI
Tang X, Hang D, Sand A, Kofuji P. Variable loss of Kir4.1 channel function in SeSAME syndrome mutations. Biochem. Biophys. Res. Commun. 2010;399:537–541. doi: 10.1016/j.bbrc.2010.07.105. PubMed DOI PMC
Sicca F, et al. Gain-of-function defects of astrocytic Kir4.1 channels in children with autism spectrum disorders and epilepsy. Sci. Rep. 2016;6:34325. doi: 10.1038/srep34325. PubMed DOI PMC
Sun C, et al. Association study between inwardly rectifying potassium channels 2.1 and 4.1 and autism spectrum disorders. Life Sci. 2018;213:183–189. doi: 10.1016/j.lfs.2018.10.012. PubMed DOI
Mientjes EJ, et al. The generation of a conditional Fmr1 knock out mouse model to study Fmrp function in vivo. Neurobiol. Dis. 2006;21:549–555. doi: 10.1016/j.nbd.2005.08.019. PubMed DOI
Hébert B, et al. Rescue of fragile X syndrome phenotypes in Fmr1KO mice by a BKCa channel opener molecule. Orphanet. J. Rare Dis. 2014;9:124. doi: 10.1186/s13023-014-0124-6. PubMed DOI PMC
Pannasch, U., Sibille, J. & Rouach, N. Dual Electrophysiological Recordings of Synaptically-evoked Astroglial and Neuronal Responses in Acute Hippocampal Slices. J. Vis. Exper. e4418 10.3791/4418 (2012). PubMed PMC
Mazaré N, Oudart M, Cheung G, Boulay A-C, Cohen-Salmon M. Immunoprecipitation of Ribosome-Bound mRNAs from Astrocytic Perisynaptic Processes of the Mouse Hippocampus. STAR Protoc. 2020;1:100198. doi: 10.1016/j.xpro.2020.100198. PubMed DOI PMC
Oudart M, et al. AstroDot: a new method for studying the spatial distribution of mRNA in astrocytes. J. Cell Sci. 2020;133:jcs239756. doi: 10.1242/jcs.239756. PubMed DOI
Gabriel, L. R., Wu, S. & Melikian, H. E. Brain Slice Biotinylation: An Ex Vivo Approach to Measure Region-specific Plasma Membrane Protein Trafficking in Adult Neurons. J. Visual. Exper.10.3791/51240 (2014). PubMed PMC
Berger A, et al. Repair of Rhodopsin mRNA by Spliceosome-Mediated RNA Trans -Splicing: A New Approach for Autosomal Dominant Retinitis Pigmentosa. Mol. Therapy. 2015;23:918–930. doi: 10.1038/mt.2015.11. PubMed DOI PMC
Zeidler S, et al. Paradoxical effect of baclofen on social behavior in the fragile X syndrome mouse model. Brain Behav. 2018;8:e00991. doi: 10.1002/brb3.991. PubMed DOI PMC