Tuning Electron-Accepting Properties of Phthalocyanines for Charge Transfer Processes

. 2024 May 13 ; 63 (19) : 8799-8806. [epub] 20240428

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38679903

Phthalocyanines play fundamental roles as electron-acceptors in many different fields; thus, the study of structural features affecting electron-accepting properties of these macrocycles is highly desirable. A series of low-symmetry zinc(II) phthalocyanines, in which one, three, or four benzene rings were replaced for pyrazines, was prepared and decorated with electron-neutral (alkylsulfanyl) or strongly electron-withdrawing (alkylsulfonyl) groups to study the role of the macrocyclic core as well as the effect of peripheral substituents. Electrochemical studies revealed that the first reduction potential (Ered1) is directly proportional to the number of pyrazine units in the macrocycle. Introduction of alkylsulfonyl groups had a very strong effect and resulted in a strongly electron-deficient macrocycle with Ered1 = -0.48 V vs SCE (in THF). The efficiency of intramolecular-charge transfer (ICT) from the peripheral bis(2-methoxyethyl)amine group to the macrocycle was monitored as a decrease in the sum of ΦΔ + ΦF and correlated well with the determined Ered1 values. The strongest quenching by ICT was observed for the most electron-deficient macrocycle. Importantly, an obvious threshold at -1.0 V vs SCE was observed over which no ICT occurs. Disclosed results may substantially help to improve the design of electron-donor systems based on phthalocyanines.

Zobrazit více v PubMed

Tam L. K. B.; Yu L. G.; Wong R. C. H.; Fong W. P.; Ng D. K. P.; Lo P. C. Dual Cathepsin B and Glutathione-Activated Dimeric and Trimeric Phthalocyanine-Based Photodynamic Molecular Beacons for Targeted Photodynamic Therapy. J. Med. Chem. 2021, 64 (23), 17455–17467. 10.1021/acs.jmedchem.1c01634. PubMed DOI

Sun W.; Li M.; Fan J.; Peng X. Activity-Based Sensing and Theranostic Probes Based on Photoinduced Electron Transfer. Acc. Chem. Res. 2019, 52 (10), 2818–2831. 10.1021/acs.accounts.9b00340. PubMed DOI

Chen S.-Y.; Li Z.; Li K.; Yu X.-Q. Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions. Coord. Chem. Rev. 2021, 429, 21369110.1016/j.ccr.2020.213691. DOI

Bojesomo R. S.; Saleh N. Photoinduced Electron Transfer in Encapsulated Heterocycles by Cavitands. Photochem. Photobiol. 2022, 98 (4), 754–762. 10.1111/php.13571. PubMed DOI

Urbani M.; Ragoussi M. E.; Nazeeruddin M. K.; Torres T. Phthalocyanines for dye-sensitized solar cells. Coord. Chem. Rev. 2019, 381, 1–64. 10.1016/j.ccr.2018.10.007. DOI

Zampetti A.; Minotto A.; Cacialli F. Near-Infrared (NIR) Organic Light-Emitting Diodes (OLEDs): Challenges and Opportunities. Adv. Funct. Mater. 2019, 29 (21), 1807623.10.1002/adfm.201807623. DOI

Gounden D.; Nombona N.; van Zyl W. E. Recent advances in phthalocyanines for chemical sensor, non-linear optics (NLO) and energy storage applications. Coord. Chem. Rev. 2020, 420, 213359.10.1016/j.ccr.2020.213359. DOI

Boens N.; Leen V.; Dehaen W. Fluorescent indicators based on BODIPY. Chem. Soc. Rev. 2012, 41 (3), 1130–1172. 10.1039/C1CS15132K. PubMed DOI

El-Khouly M. E.; Ito O.; Smith P. M.; D’Souza F. Intermolecular and supramolecular photoinduced electron transfer processes of fullerene-porphyrin/phthalocyanine systems. J. Photochem. Photobiol., C 2004, 5 (1), 79–104. 10.1016/j.jphotochemrev.2004.01.003. DOI

González-Rodríguez D.; Bottari G. Phthalocyanines, subphthalocyanines and porphyrins for energy and electron transfer applications. J. Porphyrins Phthalocyanines 2009, 13 (04n05), 624–636. 10.1142/S1088424609000802. DOI

Wong R. C. H.; Lo P. C.; Ng D. K. P. Stimuli responsive phthalocyanine-based fluorescent probes and photosensitizers. Coord. Chem. Rev. 2019, 379, 30–46. 10.1016/j.ccr.2017.10.006. DOI

Ohkubo K.; Fukuzumi S. Long-lived charge-separated states of simple electron donor-acceptor dyads using porphyrins and phthalocyanines. J. Porphyrins Phthalocyanines 2008, 12 (09), 993–1004. 10.1142/S1088424608000376. DOI

Bettini S.; Valli L.; Giancane G. Applications of Photoinduced Phenomena in Supramolecularly Arranged Phthalocyanine Derivatives: A Perspective. Molecules 2020, 25 (16), 3742.10.3390/molecules25163742. PubMed DOI PMC

Novakova V.; Donzello M. P.; Ercolani C.; Zimcik P.; Stuzhin P. A. Tetrapyrazinoporphyrazines and their metal derivatives. Part II: Electronic structure, electrochemical, spectral, photophysical and other application related properties. Coord. Chem. Rev. 2018, 361, 1–73. 10.1016/j.ccr.2018.01.015. DOI

Novakova V. Consequences of isosteric replacement of benzene for pyrazine in phthalocyanines. J. Porphyrins Phthalocyanines 2022, 26 (12), 765–782. 10.1142/S1088424622300038. DOI

Cidlina A.; Novakova V.; Miletin M.; Zimcik P. Peripheral substitution as a tool for tuning electron-accepting properties of phthalocyanine analogs in intramolecular charge transfer. Dalton Trans. 2015, 44 (15), 6961–6971. 10.1039/C5DT00400D. PubMed DOI

Novakova V.; Reimerova P.; Svec J.; Suchan D.; Miletin M.; Rhoda H. M.; Nemykin V. N.; Zimcik P. Systematic investigation of phthalocyanines, naphthalocyanines, and their aza-analogues. Effect of the isosteric aza-replacement in the core. Dalton Trans. 2015, 44 (29), 13220–13233. 10.1039/C5DT01863C. PubMed DOI

Pia Donzello M.; Viola E.; Tomachinskaya L. A.; Ercolani C.; Corsini M.; Zanello P.; Stuzhin P. A. Synthesis and properties of styryl-substituted tetrapyrazino-porphyrazines [St8PyzPzM], M = 2NaI, MgII(H2O) and ZnII. J. Porphyrins Phthalocyanines 2010, 14 (9), 793–803. 10.1142/S1088424610002677. DOI

Finogenov D. N.; Lazovskiy D. A.; Kopylova A. S.; Zhabanov Y. A.; Stuzhin P. A. Spectral-luminescence, redox and photochemical properties of AlIII, GaIII and InIII complexes formed by peripherally chlorinated phthalocyanines and tetrapyrazinoporphyrazines. J. Porphyrins Phthalocyanines 2023, 27, 1618.10.1142/S1088424623501134. DOI

Hansch C.; Leo A.; Taft R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91 (2), 165–195. 10.1021/cr00002a004. DOI

Nemykin V. N.; Dudkin S. V.; Dumoulin F.; Hirel C.; Gurek A. G.; Ahsen V. Synthetic approaches to asymmetric phthalocyanines and their analogues. Arkivoc 2014, 2014 (i), 142–204. 10.3998/ark.5550190.p008.412. DOI

Donzello M. P.; Ercolani C.; Novakova V.; Zimcik P.; Stuzhin P. A. Tetrapyrazinoporphyrazines and Their Metal Derivatives. Part I: Synthesis and Basic Structural Information. Coord. Chem. Rev. 2016, 309, 107–179. 10.1016/j.ccr.2015.09.006. DOI

Novakova V.; Zimcik P.; Miletin M.; Vachova L.; Kopecky K.; Lang K.; Chábera P.; Polívka T. Ultrafast Intramolecular charge transfer in tetrapyrazinoporphyrazines controls the quantum yields of fluorescence and singlet oxygen. Phys. Chem. Chem. Phys. 2010, 12, 2555–2563. 10.1039/b918546a. PubMed DOI

Novakova V.; Roh J.; Gela P.; Kuneš J.; Zimcik P. Azaphthalocyanines with fused triazolo rings: formation of sterically stressed constitutional isomers. Chem. Commun. 2012, 48 (36), 4326–4328. 10.1039/c2cc30942d. PubMed DOI

Sommerauer M.; Rager C.; Hanack M. Separation of 2(3),9(10),16(17),23(24)-tetrasubstituted phthalocyanines with newly developed HPLC phases. J. Am. Chem. Soc. 1996, 118 (42), 10085–10093. 10.1021/ja961009x. DOI

Bai M.; Zhang Y.; Song R.; Han S.; Wan P.; Zhang C. Synthesis and separation of the constitutional isomers of 1(4),8(11),15(18),22(25)-tetrakis[(pentyloxycarbonyl)phenoxy]-phthalocyaninato zinc(II) complexes. Dyes Pigm. 2013, 97 (3), 469–474. 10.1016/j.dyepig.2013.01.016. DOI

Durmus M.; Yesilot S.; Ahsen V. Separation and mesogenic properties of tetraalkoxy-substituted phthalocyanine isomers. New J. Chem. 2006, 30 (5), 675–678. 10.1039/B600196C. DOI

Liu W.; Lee C. H.; Chan H. S.; Mak T. C. W.; Ng D. K. P. Synthesis, spectroscopic properties, and structure of [tetrakis(2,4-dimethyl-3-pentyloxy)phthalocyaninato]metal complexes. Eur. J. Inorg. Chem. 2004, 2004 (2), 286–292. 10.1002/ejic.200300470. DOI

Anderson D. R.; Solntsev P. V.; Rhoda H. M.; Nemykin V. N. How big is big? Separation by conventional methods, X-ray and electronic structures of positional isomers of bis-tert-butylisocyano adduct of 2(3),9(10),16(17),23(24)-tetrachloro-3(2),10(9),17(16),24(23)-tetra(2,6-di-iso-propylphenoxy)-phthalocyaninato iron(II) complex. J. Porphyrins Phthalocyanines 2016, 20 (01n04), 337–351. 10.1142/S1088424616500164. DOI

Cidlina A.; Miletin M.; Fathi-Rasekh M.; Nemykin V. N.; Zimcik P.; Novakova V. OFF-ON-OFF Red-Emitting Fluorescent Indicators for a Narrow pH Window. Chem. - Eur. J. 2017, 23 (8), 1795–1804. 10.1002/chem.201604978. PubMed DOI

Connelly N. G.; Geiger W. E. Chemical redox agents for organometallic chemistry. Chem. Rev. 1996, 96 (2), 877–910. 10.1021/cr940053x. PubMed DOI

Kaestner L.; Cesson M.; Kassab K.; Christensen T.; Edminson P. D.; Cook M. J.; Chambrier I.; Jori G. Zinc octa-n-alkyl phthalocyanines in photodynamic therapy: photophysical properties, accumulation and apoptosis in cell cultures, studies in erythrocytes and topical application to Balb/c mice skin. Photochem. Photobiol. Sci. 2003, 2 (6), 660–667. 10.1039/b211348a. PubMed DOI

Michelsen U.; Kliesch H.; Schnurpfeil G.; Sobbi A. K.; Wohrle D. Unsymmetrically substituted benzonaphthoporphyrazines: A new class of cationic photosensitizers for the photodynamic therapy of cancer. Photochem. Photobiol. 1996, 64 (4), 694–701. 10.1111/j.1751-1097.1996.tb03126.x. PubMed DOI

Zimcik P.; Novakova V.; Kopecky K.; Miletin M.; Uslu Kobak R. Z.; Svandrlikova E.; Váchová L.; Lang K. Magnesium Azaphthalocyanines: An Emerging Family of Excellent Red-Emitting Fluorophores. Inorg. Chem. 2012, 51 (7), 4215–4223. 10.1021/ic2027016. PubMed DOI

Demuth J.; Miletin M.; Kucera R.; Ruzicka A.; Havlinova Z.; Libra A.; Novakova V.; Zimcik P. Self-assembly of azaphthalocyanine-oligodeoxynucleotide conjugates into J-dimers: towards biomolecular logic gates. Org. Chem. Front. 2020, 7 (3), 445–456. 10.1039/C9QO01364D. DOI

Lakowicz J. R.Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, 2006.

Novakova V.; Hladik P.; Filandrova T.; Zajicova I.; Krepsova V.; Miletin M.; Lenco J.; Zimcik P. Structural factors influencing the intramolecular charge transfer and photoinduced electron transfer in tetrapyrazinoporphyrazines. Phys. Chem. Chem. Phys. 2014, 16 (11), 5440–5446. 10.1039/c3cp54731k. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...