Tuning Electron-Accepting Properties of Phthalocyanines for Charge Transfer Processes
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38679903
PubMed Central
PMC11094797
DOI
10.1021/acs.inorgchem.4c00527
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Phthalocyanines play fundamental roles as electron-acceptors in many different fields; thus, the study of structural features affecting electron-accepting properties of these macrocycles is highly desirable. A series of low-symmetry zinc(II) phthalocyanines, in which one, three, or four benzene rings were replaced for pyrazines, was prepared and decorated with electron-neutral (alkylsulfanyl) or strongly electron-withdrawing (alkylsulfonyl) groups to study the role of the macrocyclic core as well as the effect of peripheral substituents. Electrochemical studies revealed that the first reduction potential (Ered1) is directly proportional to the number of pyrazine units in the macrocycle. Introduction of alkylsulfonyl groups had a very strong effect and resulted in a strongly electron-deficient macrocycle with Ered1 = -0.48 V vs SCE (in THF). The efficiency of intramolecular-charge transfer (ICT) from the peripheral bis(2-methoxyethyl)amine group to the macrocycle was monitored as a decrease in the sum of ΦΔ + ΦF and correlated well with the determined Ered1 values. The strongest quenching by ICT was observed for the most electron-deficient macrocycle. Importantly, an obvious threshold at -1.0 V vs SCE was observed over which no ICT occurs. Disclosed results may substantially help to improve the design of electron-donor systems based on phthalocyanines.
Zobrazit více v PubMed
Tam L. K. B.; Yu L. G.; Wong R. C. H.; Fong W. P.; Ng D. K. P.; Lo P. C. Dual Cathepsin B and Glutathione-Activated Dimeric and Trimeric Phthalocyanine-Based Photodynamic Molecular Beacons for Targeted Photodynamic Therapy. J. Med. Chem. 2021, 64 (23), 17455–17467. 10.1021/acs.jmedchem.1c01634. PubMed DOI
Sun W.; Li M.; Fan J.; Peng X. Activity-Based Sensing and Theranostic Probes Based on Photoinduced Electron Transfer. Acc. Chem. Res. 2019, 52 (10), 2818–2831. 10.1021/acs.accounts.9b00340. PubMed DOI
Chen S.-Y.; Li Z.; Li K.; Yu X.-Q. Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions. Coord. Chem. Rev. 2021, 429, 21369110.1016/j.ccr.2020.213691. DOI
Bojesomo R. S.; Saleh N. Photoinduced Electron Transfer in Encapsulated Heterocycles by Cavitands. Photochem. Photobiol. 2022, 98 (4), 754–762. 10.1111/php.13571. PubMed DOI
Urbani M.; Ragoussi M. E.; Nazeeruddin M. K.; Torres T. Phthalocyanines for dye-sensitized solar cells. Coord. Chem. Rev. 2019, 381, 1–64. 10.1016/j.ccr.2018.10.007. DOI
Zampetti A.; Minotto A.; Cacialli F. Near-Infrared (NIR) Organic Light-Emitting Diodes (OLEDs): Challenges and Opportunities. Adv. Funct. Mater. 2019, 29 (21), 1807623.10.1002/adfm.201807623. DOI
Gounden D.; Nombona N.; van Zyl W. E. Recent advances in phthalocyanines for chemical sensor, non-linear optics (NLO) and energy storage applications. Coord. Chem. Rev. 2020, 420, 213359.10.1016/j.ccr.2020.213359. DOI
Boens N.; Leen V.; Dehaen W. Fluorescent indicators based on BODIPY. Chem. Soc. Rev. 2012, 41 (3), 1130–1172. 10.1039/C1CS15132K. PubMed DOI
El-Khouly M. E.; Ito O.; Smith P. M.; D’Souza F. Intermolecular and supramolecular photoinduced electron transfer processes of fullerene-porphyrin/phthalocyanine systems. J. Photochem. Photobiol., C 2004, 5 (1), 79–104. 10.1016/j.jphotochemrev.2004.01.003. DOI
González-Rodríguez D.; Bottari G. Phthalocyanines, subphthalocyanines and porphyrins for energy and electron transfer applications. J. Porphyrins Phthalocyanines 2009, 13 (04n05), 624–636. 10.1142/S1088424609000802. DOI
Wong R. C. H.; Lo P. C.; Ng D. K. P. Stimuli responsive phthalocyanine-based fluorescent probes and photosensitizers. Coord. Chem. Rev. 2019, 379, 30–46. 10.1016/j.ccr.2017.10.006. DOI
Ohkubo K.; Fukuzumi S. Long-lived charge-separated states of simple electron donor-acceptor dyads using porphyrins and phthalocyanines. J. Porphyrins Phthalocyanines 2008, 12 (09), 993–1004. 10.1142/S1088424608000376. DOI
Bettini S.; Valli L.; Giancane G. Applications of Photoinduced Phenomena in Supramolecularly Arranged Phthalocyanine Derivatives: A Perspective. Molecules 2020, 25 (16), 3742.10.3390/molecules25163742. PubMed DOI PMC
Novakova V.; Donzello M. P.; Ercolani C.; Zimcik P.; Stuzhin P. A. Tetrapyrazinoporphyrazines and their metal derivatives. Part II: Electronic structure, electrochemical, spectral, photophysical and other application related properties. Coord. Chem. Rev. 2018, 361, 1–73. 10.1016/j.ccr.2018.01.015. DOI
Novakova V. Consequences of isosteric replacement of benzene for pyrazine in phthalocyanines. J. Porphyrins Phthalocyanines 2022, 26 (12), 765–782. 10.1142/S1088424622300038. DOI
Cidlina A.; Novakova V.; Miletin M.; Zimcik P. Peripheral substitution as a tool for tuning electron-accepting properties of phthalocyanine analogs in intramolecular charge transfer. Dalton Trans. 2015, 44 (15), 6961–6971. 10.1039/C5DT00400D. PubMed DOI
Novakova V.; Reimerova P.; Svec J.; Suchan D.; Miletin M.; Rhoda H. M.; Nemykin V. N.; Zimcik P. Systematic investigation of phthalocyanines, naphthalocyanines, and their aza-analogues. Effect of the isosteric aza-replacement in the core. Dalton Trans. 2015, 44 (29), 13220–13233. 10.1039/C5DT01863C. PubMed DOI
Pia Donzello M.; Viola E.; Tomachinskaya L. A.; Ercolani C.; Corsini M.; Zanello P.; Stuzhin P. A. Synthesis and properties of styryl-substituted tetrapyrazino-porphyrazines [St8PyzPzM], M = 2NaI, MgII(H2O) and ZnII. J. Porphyrins Phthalocyanines 2010, 14 (9), 793–803. 10.1142/S1088424610002677. DOI
Finogenov D. N.; Lazovskiy D. A.; Kopylova A. S.; Zhabanov Y. A.; Stuzhin P. A. Spectral-luminescence, redox and photochemical properties of AlIII, GaIII and InIII complexes formed by peripherally chlorinated phthalocyanines and tetrapyrazinoporphyrazines. J. Porphyrins Phthalocyanines 2023, 27, 1618.10.1142/S1088424623501134. DOI
Hansch C.; Leo A.; Taft R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91 (2), 165–195. 10.1021/cr00002a004. DOI
Nemykin V. N.; Dudkin S. V.; Dumoulin F.; Hirel C.; Gurek A. G.; Ahsen V. Synthetic approaches to asymmetric phthalocyanines and their analogues. Arkivoc 2014, 2014 (i), 142–204. 10.3998/ark.5550190.p008.412. DOI
Donzello M. P.; Ercolani C.; Novakova V.; Zimcik P.; Stuzhin P. A. Tetrapyrazinoporphyrazines and Their Metal Derivatives. Part I: Synthesis and Basic Structural Information. Coord. Chem. Rev. 2016, 309, 107–179. 10.1016/j.ccr.2015.09.006. DOI
Novakova V.; Zimcik P.; Miletin M.; Vachova L.; Kopecky K.; Lang K.; Chábera P.; Polívka T. Ultrafast Intramolecular charge transfer in tetrapyrazinoporphyrazines controls the quantum yields of fluorescence and singlet oxygen. Phys. Chem. Chem. Phys. 2010, 12, 2555–2563. 10.1039/b918546a. PubMed DOI
Novakova V.; Roh J.; Gela P.; Kuneš J.; Zimcik P. Azaphthalocyanines with fused triazolo rings: formation of sterically stressed constitutional isomers. Chem. Commun. 2012, 48 (36), 4326–4328. 10.1039/c2cc30942d. PubMed DOI
Sommerauer M.; Rager C.; Hanack M. Separation of 2(3),9(10),16(17),23(24)-tetrasubstituted phthalocyanines with newly developed HPLC phases. J. Am. Chem. Soc. 1996, 118 (42), 10085–10093. 10.1021/ja961009x. DOI
Bai M.; Zhang Y.; Song R.; Han S.; Wan P.; Zhang C. Synthesis and separation of the constitutional isomers of 1(4),8(11),15(18),22(25)-tetrakis[(pentyloxycarbonyl)phenoxy]-phthalocyaninato zinc(II) complexes. Dyes Pigm. 2013, 97 (3), 469–474. 10.1016/j.dyepig.2013.01.016. DOI
Durmus M.; Yesilot S.; Ahsen V. Separation and mesogenic properties of tetraalkoxy-substituted phthalocyanine isomers. New J. Chem. 2006, 30 (5), 675–678. 10.1039/B600196C. DOI
Liu W.; Lee C. H.; Chan H. S.; Mak T. C. W.; Ng D. K. P. Synthesis, spectroscopic properties, and structure of [tetrakis(2,4-dimethyl-3-pentyloxy)phthalocyaninato]metal complexes. Eur. J. Inorg. Chem. 2004, 2004 (2), 286–292. 10.1002/ejic.200300470. DOI
Anderson D. R.; Solntsev P. V.; Rhoda H. M.; Nemykin V. N. How big is big? Separation by conventional methods, X-ray and electronic structures of positional isomers of bis-tert-butylisocyano adduct of 2(3),9(10),16(17),23(24)-tetrachloro-3(2),10(9),17(16),24(23)-tetra(2,6-di-iso-propylphenoxy)-phthalocyaninato iron(II) complex. J. Porphyrins Phthalocyanines 2016, 20 (01n04), 337–351. 10.1142/S1088424616500164. DOI
Cidlina A.; Miletin M.; Fathi-Rasekh M.; Nemykin V. N.; Zimcik P.; Novakova V. OFF-ON-OFF Red-Emitting Fluorescent Indicators for a Narrow pH Window. Chem. - Eur. J. 2017, 23 (8), 1795–1804. 10.1002/chem.201604978. PubMed DOI
Connelly N. G.; Geiger W. E. Chemical redox agents for organometallic chemistry. Chem. Rev. 1996, 96 (2), 877–910. 10.1021/cr940053x. PubMed DOI
Kaestner L.; Cesson M.; Kassab K.; Christensen T.; Edminson P. D.; Cook M. J.; Chambrier I.; Jori G. Zinc octa-n-alkyl phthalocyanines in photodynamic therapy: photophysical properties, accumulation and apoptosis in cell cultures, studies in erythrocytes and topical application to Balb/c mice skin. Photochem. Photobiol. Sci. 2003, 2 (6), 660–667. 10.1039/b211348a. PubMed DOI
Michelsen U.; Kliesch H.; Schnurpfeil G.; Sobbi A. K.; Wohrle D. Unsymmetrically substituted benzonaphthoporphyrazines: A new class of cationic photosensitizers for the photodynamic therapy of cancer. Photochem. Photobiol. 1996, 64 (4), 694–701. 10.1111/j.1751-1097.1996.tb03126.x. PubMed DOI
Zimcik P.; Novakova V.; Kopecky K.; Miletin M.; Uslu Kobak R. Z.; Svandrlikova E.; Váchová L.; Lang K. Magnesium Azaphthalocyanines: An Emerging Family of Excellent Red-Emitting Fluorophores. Inorg. Chem. 2012, 51 (7), 4215–4223. 10.1021/ic2027016. PubMed DOI
Demuth J.; Miletin M.; Kucera R.; Ruzicka A.; Havlinova Z.; Libra A.; Novakova V.; Zimcik P. Self-assembly of azaphthalocyanine-oligodeoxynucleotide conjugates into J-dimers: towards biomolecular logic gates. Org. Chem. Front. 2020, 7 (3), 445–456. 10.1039/C9QO01364D. DOI
Lakowicz J. R.Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, 2006.
Novakova V.; Hladik P.; Filandrova T.; Zajicova I.; Krepsova V.; Miletin M.; Lenco J.; Zimcik P. Structural factors influencing the intramolecular charge transfer and photoinduced electron transfer in tetrapyrazinoporphyrazines. Phys. Chem. Chem. Phys. 2014, 16 (11), 5440–5446. 10.1039/c3cp54731k. PubMed DOI