Harmonic and anharmonic vibrational computations for biomolecular building blocks: Benchmarking DFT and basis sets by theoretical and experimental IR spectrum of glycine conformers
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Czech Academy of Sciences
31870738
National Natural Science Foundation of China
CA21101
European Cooperation in Science and Technology
2017A4XRCA
Italian Ministry of University and Research (MIUR)
2020HTSXMA
Italian Ministry of University and Research (MIUR)
PubMed
38682874
DOI
10.1002/jcc.27377
Knihovny.cz E-zdroje
- Klíčová slova
- DFT, VPT2, benchmark, biomolecules, database, vibrational spectroscopy,
- Publikační typ
- časopisecké články MeSH
Advanced vibrational spectroscopic experiments have reached a level of sophistication that can only be matched by numerical simulations in order to provide an unequivocal analysis, a crucial step to understand the structure-function relationship of biomolecules. While density functional theory (DFT) has become the standard method when targeting medium-size or larger systems, the problem of its reliability and accuracy are well-known and have been abundantly documented. To establish a reliable computational protocol, especially when accuracy is critical, a tailored benchmark is usually required. This is generally done over a short list of known candidates, with the basis set often fixed a priori. In this work, we present a systematic study of the performance of DFT-based hybrid and double-hybrid functionals in the prediction of vibrational energies and infrared intensities at the harmonic level and beyond, considering anharmonic effects through vibrational perturbation theory at the second order. The study is performed for the six-lowest energy glycine conformers, utilizing available "state-of-the-art" accurate theoretical and experimental data as reference. Focusing on the most intense fundamental vibrations in the mid-infrared range of glycine conformers, the role of the basis sets is also investigated considering the balance between computational cost and accuracy. Targeting larger systems, a broad range of hybrid schemes with different computational costs is also tested.
Classe di Scienze Scuola Normale Superiore Pisa Italy
Department of Physics College of Sciences Shanghai University Shanghai China
Institute of Organic Chemistry and Biochemistry Czech Academy of Science Prague Czechia
Zobrazit více v PubMed
A. M. Rijs, J. Oomens, Gas‐phase IR Spectroscopy and Structure of Biological Molecules, Vol. 364, Springer, Cham 2015.
K. B. Beć, J. Grabska, C. W. Huck, Anal. Chim. Acta 2020, 1133, 150.
D. W. Shipp, F. Sinjab, I. Notingher, Adv. Opt. Photonics 2017, 9, 315.
P. Bouř, Chirality 2012, 24, 1096.
D. Kurouski, Anal. Chim. Acta 2017, 990, 54.
L. D. Barron, Spectrochim. Acta, Part A 2023, 300, 122959.
S. Ostovar pour, L. D. Barron, S. T. Mutter, E. W. Blanch, in Chiral Analysis, 2nd ed. (Ed: P. L. Polavarapu), Elsevier, Amsterdam 2018, p. 249.
J. P. Simons, Mol. Phys. 2009, 107, 2435.
K. B. Beć, C. W. Huck, Front. Chem. 2019, 7, 48.
D. W. Pratt, Nat. Sci. 2023, 3, e20220063.
P. Panwaria, in Aloke Das in Modern Techniques of Spectroscopy: Basics, Instrumentation, and Applications (Eds: D. K. Singh, M. Pradhan, A. Materny), Springer, Singapore 2021, p. 57.
O. V. Boyarkin, Int. Rev. Phys. Chem. 2018, 37, 559.
Å. Andersson, V. Yatsyna, M. Linares, A. Rijs, V. Zhaunerchyk, J. Phys. Chem. A 2023, 127, 938.
V. Yatsyna, R. Mallat, T. Gorn, M. Schmitt, R. Feifel, A. M. Rijs, V. Zhaunerchyk, J. Phys. Chem. A 2019, 123, 862.
A. Shachar, I. Kallos, M. S. De Vries, I. Bar, J. Phys. Chem. Lett. 2021, 12, 11273.
J. L. Fischer, K. N. Blodgett, C. P. Harrilal, P. S. Walsh, Z. S. Davis, S. Choi, S. H. Choi, T. S. Zwier, J. Phys. Chem. A 2022, 126, 1837.
N. M. Kreienborg, Q. Yang, C. H. Pollok, J. Bloino, C. Merten, Phys. Chem. Chem. Phys. 2023, 25, 3343.
E. E. Najbauer, G. Bazsó, R. Apóstolo, R. Fausto, M. Biczysko, V. Barone, G. Tarczay, J. Phys. Chem. B 2015, 119, 10496.
B. Légrády, E. Vass, G. Tarczay, J. Mol. Spectrosc. 2018, 351, 29.
J. R. Gord, P. S. Walsh, B. F. Fisher, S. H. Gellman, T. S. Zwier, J. Phys. Chem. B 2014, 118, 8246.
J. Mahé, D. J. Bakker, S. Jaeqx, A. M. Rijs, M.‐P. Gaigeot, Phys. Chem. Chem. Phys. 2017, 19, 13778.
A. Y. Pereverzev, X. Cheng, N. S. Nagornova, D. L. Reese, R. P. Steele, O. V. Boyarkin, J. Phys. Chem. A 2016, 120, 5598.
S. Bakels, S. B. A. Porskamp, A. M. Rijs, Angew. Chem., Int. Ed. Engl. 2019, 58, 10537.
T. K. Roy, V. Kopysov, N. S. Nagornova, T. R. Rizzo, O. V. Boyarkin, R. B. Gerber, ChemPhysChem 2015, 16, 1374.
P. S. Walsh, J. C. Dean, C. McBurney, H. Kang, S. H. Gellman, T. S. Zwier, Phys. Chem. Chem. Phys. 2016, 18, 11306.
S. Heiles, G. Berden, J. Oomens, E. R. Williams, Phys. Chem. Chem. Phys. 2018, 20, 15641.
V. Yatsyna, R. Mallat, T. Gorn, M. Schmitt, R. Feifel, A. M. Rijs, V. Zhaunerchyk, Phys. Chem. Chem. Phys. 2019, 21, 14126.
Y. Shi, D. Mengying, J. Ren, K. Zhang, X. Yicheng, X. Kong, Molecules 2020, 25, 5152.
Y. Tan, N. Zhao, J. Liu, P. Li, C. N. Stedwell, Y. Long, N. C. Polfer, J. Am. Soc. Mass Spectrom. 2017, 28, 539.
I. Alata, A. Pérez‐Mellor, F. B. Nasr, D. Scuderi, V. Steinmetz, F. Gobert, N.‐E. Jaïdane, A. Zehnacker‐Rentien, J. Phys. Chem. A 2017, 121, 7130.
A. Masson, E. R. Williams, T. R. Rizzo, J. Chem. Phys. 2015, 143, 104313.
S. Spieler, C. H. Duong, A. Kaiser, F. Duensing, K. Geistlinger, M. Fischer, S. Nan Yang, S. Kumar, M. A. Johnson, R. Wester, J. Phys. Chem. A 2018, 122, 8037.
N. Khanal, C. Masellis, M. Z. Kamrath, D. E. Clemmer, T. R. Rizzo, Anal. Chem. 2017, 89, 7601.
C. Puzzarini, M. Biczysko, in Structure Elucidation in Organic Chemistry (Eds: M.‐M. Cid, J. Bravo), John Wiley & Sons, Ltd, Hoboken, NJ 2015, p. 27.
C. Puzzarini, J. Bloino, N. Tasinato, V. Barone, Chem. Rev. 2019, 119, 8131.
V. Barone, S. Alessandrini, M. Biczysko, J. R. Cheeseman, D. C. Clary, A. B. McCoy, R. J. DiRisio, F. Neese, M. Melosso, C. Puzzarini, Nat. Rev. Methods Primers 2021, 1, 38.
H. Zhang, J. Krupa, M. Wierzejewska, M. Biczysko, Phys. Chem. Chem. Phys. 2019, 21, 8352.
N. L. Burke, A. F. DeBlase, J. G. Redwine, J. R. Hopkins, S. A. McLuckey, T. S. Zwier, J. Am. Chem. Soc. 2016, 138, 2849.
M. K. Kesharwani, B. Brauer, J. M. L. Martin, J. Phys. Chem. A 2015, 119, 1701.
J. C. Z. Trujillo, L. K. McKemmish, WIREs Comput. Mol. Sci. 2022, 12, e1584.
C. Juan, Z. Trujillo, L. K. McKemmish, J. Phys. Chem. A 2023, 127, 1715.
J. Bloino, M. Biczysko, V. Barone, J. Phys. Chem. A 2015, 119, 11862.
L. Sun, W. L. Hase, in Reviews in Computational Chemistry (Eds: K. B. Lipkowitz, R. Larter, T. R. Cundari), John Wiley & Sons, Ltd, Hoboken, NJ 2003, p. 79.
R. Car, M. Parrinello, Phys. Rev. Lett. 1985, 55, 2471.
F. Gabas, R. Conte, M. Ceotto, J. Chem. Theory Comput. 2017, 13, 2378.
S. Bakels, M.‐P. Gaigeot, A. M. Rijs, Chem. Rev. 2020, 120, 3233.
J. M. Bowman, Acc. Chem. Res. 1986, 19, 202.
A. G. Császár, C. Fábri, T. Szidarovszky, E. Mátyus, T. Furtenbacher, G. Czakó, Phys. Chem. Chem. Phys. 2012, 14, 1085.
H. H. Nielsen, Rev. Mod. Phys. 1951, 23, 90.
V. Barone, J. Chem. Phys. 2004, 120, 3059.
V. Barone, J. Chem. Phys. 2005, 122, 014108.
J. Vázquez, J. F. Stanton, Mol. Phys. 2006, 104, 377.
V. Barone, J. Bloino, C. A. Guido, F. Lipparini, Chem. Phys. Lett. 2010, 496, 157.
J. Bloino, V. Barone, J. Chem. Phys. 2012, 136, 124108.
S. V. Krasnoshchekov, E. O. Dobrolyubov, X. Chang, J. Quant. Spectrosc. Radiat. Transfer 2021, 268, 107620.
P. R. Franke, J. F. Stanton, G. E. Douberly, J. Phys. Chem. A 2021, 125, 1301.
L. S. Norris, M. A. Ratner, A. E. Roitberg, R. Benny Gerber, J. Chem. Phys. 1996, 105, 11261.
S. Carter, A. R. Sharma, J. M. Bowman, P. Rosmus, R. Tarroni, J. Chem. Phys. 2009, 131, 224106.
O. Christiansen, J. Chem. Phys. 2003, 119, 5773.
L. Pele, B. Brauer, R. B. Gerber, Theor. Chem. Acc. 2007, 117, 69.
L. Pele, R. B. Gerber, J. Chem. Phys. 2008, 128, 165105.
J. M. Bowman, J. Chem. Phys. 1978, 68, 608.
A. Erba, J. Maul, M. Ferrabone, R. Dovesi, M. Rérat, P. Carbonnière, J. Chem. Theory Comput. 2019, 15, 3766.
O. Christiansen, J. Chem. Phys. 2004, 120, 2149.
P. J. Ollitrault, A. Baiardi, M. Reiher, I. Tavernelli, Chem. Sci. 2020, 11, 6842.
A. Baiardi, C. J. Stein, V. Barone, M. Reiher, J. Chem. Theory Comput. 2017, 13, 3764.
A. Baiardi, C. J. Stein, V. Barone, M. Reiher, J. Chem. Phys. 2019, 150, 094113.
N. Glaser, A. Baiardi, M. Reiher, J. Chem. Theory Comput. 2023, 19, 9329.
K. M. Kuhler, D. G. Truhlar, A. D. Isaacson, J. Chem. Phys. 1996, 104, 4664.
J. Bloino, M. Biczysko, V. Barone, J. Chem. Theory Comput. 2012, 8, 1015.
J. Bloino, A. Baiardi, M. Biczysko, Int. J. Quantum Chem. 2016, 116, 1543.
S. V. Krasnoshchekov, N. C. Craig, N. F. Stepanov, J. Phys. Chem. A 2013, 117, 3041.
Q. Yang, J. Bloino, J. Phys. Chem. A 2022, 126, 9276.
M. Fusè, G. Mazzeo, G. Longhi, S. Abbate, M. Masi, A. Evidente, C. Puzzarini, V. Barone, J. Phys. Chem. B 2019, 123, 9230.
Q. Yang, M. Mendolicchio, V. Barone, J. Bloino, Front. Astron. Space Sci. 2021, 8, 665232.
T. Fornaro, I. Carnimeo, M. Biczysko, J. Phys. Chem. A 2015, 119, 5313.
J. A. Green, R. Improta, Phys. Chem. Chem. Phys. 2020, 22, 5509.
M. Sheng, F. Silvestrini, M. Biczysko, C. Puzzarini, J. Phys. Chem. A 2021, 125, 9099.
Y. Cornaton, M. Ringholm, O. Louant, K. Ruud, Phys. Chem. Chem. Phys. 2016, 18, 4201.
M. Ringholm, D. Jonsson, R. Bast, B. Gao, A. J. Thorvaldsen, U. Ekström, T. Helgaker, K. Ruud, J. Chem. Phys. 2014, 140, 034103.
M. Ringholm, D. Jonsson, K. Ruud, J. Comput. Chem. 2014, 35, 622.
J. Noga, R. J. Bartlett, J. Chem. Phys. 1987, 86, 7041.
J. D. Watts, R. J. Bartlett, J. Chem. Phys. 1990, 93, 6104.
K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head‐Gordon, Chem. Phys. Lett. 1989, 157, 479.
M. Spiegel, E. Semidalas, J. M. L. Martin, M. R. Bentley, J. F. Stanton, Mol. Phys. 2023, e2252114.
M. Heckert, M. Kallay, D. P. Tew, W. Klopper, J. Gauss, J. Chem. Phys. 2006, 125, 44108.
M. Heckert, M. Kallay, J. Gauss, Mol. Phys. 2005, 103, 2109.
A. G. Watrous, B. R. Westbrook, R. C. Fortenberry, J. Phys. Chem. A 2021, 125, 10532.
D. Agbaglo, R. C. Fortenberry, Chem. Phys. Lett. 2019, 734, 136720.
S. Di Grande, M. Kállay, V. Barone, J. Comput. Chem. 2023, 44, 2149.
V. Barone, M. Biczysko, J. Bloino, Phys. Chem. Chem. Phys. 2014, 16, 1759.
R. A. Mata, M. A. Suhm, Angew. Chem., Int. Ed. Engl. 2017, 56, 11011.
P. Wang, C. Shu, H. Ye, M. Biczysko, J. Phys. Chem. A 2021, 125, 9826.
N. Mardirossian, M. Head‐Gordon, Mol. Phys. 2017, 115, 2315.
P. Morgante, R. Peverati, J. Comput. Chem. 2019, 40, 839.
A. Karton, N. Sylvetsky, J. M. L. Martin, J. Comput. Chem. 2017, 38, 2063.
X. Xin, W. A. Goddard 3rd, Proc. Natl. Acad. Sci. USA 2004, 101, 2673.
L. Goerigk, A. Hansen, C. Bauer, S. Ehrlich, A. Najibi, S. Grimme, Phys. Chem. Chem. Phys. 2017, 19, 32184.
H. Valdes, K. Pluháčková, M. Pitonák, J. Řezáč, P. Hobza, Phys. Chem. Chem. Phys. 2008, 10, 2747.
L. Goerigk, J. R. Reimers, J. Chem. Theory Comput. 2013, 9, 3240.
J. Řezáč, D. Bím, O. Gutten, L. Rulíšek, J. Chem. Theory Comput. 2018, 14, 1254.
V. K. Prasad, A. O.‐d.‐l. Roza, G. A. DiLabio, Sci. Data 2019, 6, 180310.
H. S. Yu, X. He, S. L. Li, D. G. Truhlar, Chem. Sci. 2016, 7, 5032.
H. S. Yu, X. He, D. G. Truhlar, J. Chem. Theory Comput. 2016, 12, 1280.
H. S. Yu, W. Zhang, P. Verma, X. He, D. G. Truhlar, Phys. Chem. Chem. Phys. 2015, 17, 12146.
D. Hait, M. Head‐Gordon, J. Chem. Theory Comput. 2018, 14, 1969.
D. Hait, M. Head‐Gordon, Phys. Chem. Chem. Phys. 2018, 20, 19800.
J. C. Zapata Trujillo, L. K. McKemmish, J. Phys. Chem. A 2022, 126, 4100.
P. Morgante, H. D. Ludowieg, J. Autschbach, J. Phys. Chem. A 2022, 126, 2909.
S. Oswald, M. A. Suhm, Phys. Chem. Chem. Phys. 2019, 21, 18799.
A. Johannes Hoja, D. Boese, arXiv preprint arXiv:2209.04392, 2022.
P. Carbonniere, T. Lucca, C. Pouchan, N. Rega, V. Barone, J. Comput. Chem. 2005, 26, 384.
A. Daniel Boese, W. Klopper, J. M. L. Martin, Mol. Phys. 2005, 103, 863.
A. Daniel Boese, W. Klopper, J. M. L. Martin, Int. J. Quantum Chem. 2005, 104, 830.
V. Barone, G. Festa, A. Grandi, N. Rega, N. Sanna, Chem. Phys. Lett. 2004, 388, 279.
M. Biczysko, P. Panek, G. Scalmani, J. Bloino, V. Barone, J. Chem. Theory Comput. 2010, 6, 2115.
C. Puzzarini, M. Biczysko, V. Barone, J. Chem. Theory Comput. 2010, 6, 828.
L. Ravichandran, S. Banik, Theor. Chem. Acc. 2017, 137, 1.
H. Mitra, T. K. Roy, J. Phys. Chem. A 2020, 124, 9203.
V. Barone, G. Ceselin, M. Fusè, N. Tasinato, Front. Chem. 2020, 8, 859.
R. Boussessi, G. Ceselin, N. Tasinato, V. Barone, J. Mol. Struct. 2020, 1208, 127886.
N. Mehta, G. Santra, J. M. L. Martin, Can. J. Chem. 2023, 101, 656.
V. Barone, M. Biczysko, J. Bloino, C. Puzzarini, Phys. Chem. Chem. Phys. 2013, 15, 10094.
C. Shu, Z. Jiang, M. Biczysko, J. Mol. Model. 2020, 26, 129.
A. Yu Ivanov, G. Sheina, Y. P. Blagoi, Spectrochim. Acta, Part A 1998, 55, 219.
S. G. Stepanian, I. D. Reva, E. D. Radchenko, M. T. S. Rosado, M. L. T. S. Duarte, R. Fausto, L. Adamowicz, J. Phys. Chem. A 1998, 102, 1041.
F. Huisken, O. Werhahn, A. Y. Ivanov, S. A. Krasnokutski, J. Chem. Phys. 1999, 111, 2978.
G. Bazsó, G. Magyarfalvi, G. Tarczay, J. Phys. Chem. A 2012, 116, 10539.
G. Bazsó, G. Magyarfalvi, G. Tarczay, J. Mol. Struct. 2012, 1025, 33.
A. Schneiker, S. Góbi, P. R. Joshi, G. Bazsó, Y.‐P. Lee, G. Tarczay, J. Phys. Chem. Lett. 2021, 12, 6744.
R. Linder, M. Nispel, T. Häber, K. Kleinermanns, Chem. Phys. Lett. 2005, 409, 260.
R. M. Balabin, J. Phys. Chem. Lett. 2010, 1, 20.
V. Kasalová, W. D. Allen, H. F. Schaefer, E. C. Iii, A. G. Császár, J. Comput. Chem. 2007, 28, 1373.
G. M. Chaban, J. O. Jung, R. Benny Gerber, J. Phys. Chem. A 2000, 104, 10035.
M. Shmilovits‐Ofir, Y. Miller, R. B. Gerber, Phys. Chem. Chem. Phys. 2011, 13, 8715.
M. Biczysko, J. Bloino, I. Carnimeo, P. Panek, V. Barone, J. Mol. Struct. 2012, 1009, 74.
V. Barone, M. Biczysko, J. Bloino, C. Puzzarini, J. Chem. Theory Comput. 2013, 9, 1533.
P. D. Godfrey, R. D. Brown, J. Am. Chem. Soc. 1995, 117, 2019.
C. Puzzarini, M. Biczysko, V. Barone, J. Chem. Theory Comput. 2011, 7, 3702.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, F. D. Williams, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Rev. C.01, Gaussian, Inc., Wallingford, CT 2016.
M. J. Frisch, G. W. Trucks, G. Scalmani, J. R. Cheeseman, X. Li, J. Bloino, B. G. Janesko, A. V. Marenich, J. Zheng, F. Lipparini, A. Jenkins, A. Liu, H. Liu, H. B. Schlegel, G. E. Scuseria, M. A. Robb, V. Barone, G. A. Petersson, H. Nakatsuji, B. Mennucci, C. Adamo, N. Rega, M. Caricato, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, H. Hu, C. Liao, J. L. Sonnenberg, D. Williams‐Young, F. Ding, R. Gomperts, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, M. Cossi, J. M. Millam, M. Klene, R. Cammi, R. L. Martin, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian Development Version, Revision J.25, Gaussian, Inc., Wallingford, CT 2023.
K. Raghavachari, Theor. Chem. Acc. 2000, 103, 361.
A. D. Becke, Phys. Rev. A 1988, 38, 3098.
A. D. Becke, J. Chem. Phys. 1997, 107, 8554.
H. L. Schmider, A. D. Becke, J. Chem. Phys. 1998, 108, 9624.
T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51.
R. Kobayashi, R. D. Amos, Chem. Phys. Lett. 2006, 420, 106.
C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.
Y. Zhao, N. E. Schultz, D. G. Truhlar, J. Chem. Theory Comput. 2006, 2, 364.
J.‐D. Chai, M. Head‐Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615.
O. A. Vydrov, G. E. Scuseria, J. Chem. Phys. 2006, 125, 234109.
S. Grimme, J. Comput. Chem. 2006, 27, 1787.
T. Schwabe, S. Grimme, Phys. Chem. Chem. Phys. 2007, 9, 3397.
S. Grimme, J. Chem. Phys. 2006, 124, 034108.
S. Kozuch, J. M. L. Martin, Phys. Chem. Chem. Phys. 2011, 13, 20104.
G. Santra, N. Sylvetsky, J. M. L. Martin, J. Phys. Chem. A 2019, 123, 5129.
E. Brémond, C. Adamo, J. Chem. Phys. 2011, 135, 024106.
É. Brémond, J. C. Sancho‐García, Á. J. Pérez‐Jiménez, C. Adamo, J. Chem. Phys. 2014, 141, 031101.
C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
M. Ernzerhof, G. E. Scuseria, J. Chem. Phys. 1999, 110, 5029.
S. Grimme, WIREs Comput. Mol. Sci. 2011, 1, 211.
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
A. Najibi, L. Goerigk, J. Chem. Theory Comput. 2018, 14, 5725.
I. Carnimeo, C. Puzzarini, N. Tasinato, P. Stoppa, A. P. Charmet, M. Biczysko, C. Cappelli, V. Barone, J. Chem. Phys. 2013, 139, 074310.
V. Barone, M. Biczysko, J. Bloino, C. Puzzarini, J. Chem. Phys. 2014, 141, 034107.
R. A. Kendall, T. H. Dunning, R. J. Harrison, J. Chem. Phys. 1992, 96, 6796.
E. Papajak, J. Zheng, X. Xuefei, H. R. Leverentz, D. G. Truhlar, J. Chem. Theory Comput. 2011, 7, 3027.
E. Papajak, H. R. Leverentz, J. Zheng, D. G. Truhlar, J. Chem. Theory Comput. 2009, 5, 1197.
K. B. Wiberg, J. Comput. Chem. 1986, 7, 379.
R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724.
M. M. Francl, W. J. Pietro, W. J. Hehre, J. Stephen Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654.
W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650.
D. E. Woon, T. H. Dunning Jr, J. Chem. Phys. 1995, 103, 4572.
K. A. Peterson, T. B. Adler, H.‐J. Werner, J. Chem. Phys. 2008, 128, 084102.
T. H. Dunning Jr, J. Chem. Phys. 1989, 90, 1007.
A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829.
F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
D. Rappoport, F. Furche, J. Chem. Phys. 2010, 133, 13.
F. Jensen, J. Chem. Phys. 2002, 117, 9234.
F. Jensen, J. Chem. Theory Comput. 2014, 10, 1074.
F. Jensen, J. Chem. Theory Comput. 2015, 11, 132.
B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, T. L. Windus, J. Chem. Inf. Model. 2019, 59, 4814.
J. Bloino, M. Biczysko, in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Ed: J. Reedijk), Elsevier, Waltham, MA 2015.
A. M. Rosnik, W. F. Polik, Mol. Phys. 2014, 112, 261.
A. Nejad, D. L. Crittenden, Phys. Chem. Chem. Phys. 2020, 22, 20588.
A. Baiardi, J. Bloino, V. Barone, J. Chem. Phys. 2016, 144, 084114.
R. Linder, K. Seefeld, A. Vavra, K. Kleinermanns, Chem. Phys. Lett. 2008, 453, 1.
S. Grimme, M. Steinmetz, Phys. Chem. Chem. Phys. 2013, 15, 16031.
T. Risthaus, M. Steinmetz, S. Grimme, J. Comput. Chem. 2014, 35, 1509.
Y. Zhao, D. G. Truhlar, J. Phys. Chem. A 2005, 109, 5656.
M. Biczysko, P. Panek, V. Barone, Chem. Phys. Lett. 2009, 475, 105.
N. Mehta, J. M. L. Martin, J. Chem. Theory Comput. 2022, 18, 5978.
J. R. Cheeseman, M. J. Frisch, J. Chem. Theory Comput. 2011, 7, 3323.
Y. Zhao, M. Hochlaf, M. Biczysko, Front. Astron. Space Sci. 2021, 8, 757007.
V. Barone, M. Biczysko, J. Bloino, P. Cimino, E. Penocchio, C. Puzzarini, J. Chem. Theory Comput. 2015, 11, 4342.
V. Barone, M. Biczysko, J. Bloino, M. Borkowska‐Panek, I. Carnimeo, P. Panek, Int. J. Quantum Chem. 2012, 112, 2185.
M. Fusè, G. Mazzeo, G. Longhi, S. Abbate, Q. Yang, J. Bloino, Spectrochim. Acta, Part A 2024, 311, 123969.
M.‐P. Gaigeot, Phys. Chem. Chem. Phys. 2010, 12, 3336.
A. Kaczmarek, M. Shiga, D. Marx, J. Phys. Chem. A 2009, 113, 1985.
T. Beke, C. Somlai, G. Magyarfalvi, A. Perczel, G. Tarczay, J. Phys. Chem. B 2009, 113, 7918.
G. Pohl, A. Perczel, E. Vass, G. Magyarfalvi, G. Tarczay, Phys. Chem. Chem. Phys. 2007, 9, 4698.
I. D. Reva, S. G. Stepanian, A. M. Plokhotnichenko, E. D. Radchenko, G. G. Sheina, Y. P. Blagoi, J. Mol. Struct. 1994, 318, 1.
M. Y. Choi, G. E. Douberly, T. M. Falconer, W. K. Lewis, C. Michael Lindsay, J. M. Merritt, P. L. Stiles, R. E. Miller, Int. Rev. Phys. Chem. 2006, 25, 15.
B. Kirchner, P. J. Di Dio, J. Hutter, in Multiscale Molecular Methods in Applied Chemistry. Topics in Current Chemistry‐Series, Vol. 307 (Eds: B. Kirchner, J. Vrabec), Springer, Berlin 2012, p. 109.
M.‐P. Gaigeot, R. Vuilleumier, M. Sprik, D. Borgis, J. Chem. Theory Comput. 2005, 1, 772.