Black-Box Simulations of Anharmonic Vibrational Chiroptical Spectra: Problems with Property Third Derivatives and the Solvent
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
41081621
PubMed Central
PMC12573746
DOI
10.1021/acs.jctc.5c01132
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Chiroptical methods, including vibrational circular dichroism (VCD) and Raman optical activity (ROA), reveal details about molecular structure. For three model molecules, α-pinene, camphor, and fenchone, we show that increased sensitivity of modern spectrometers makes it possible to record even fine spectral features, such as overtone and combination bands. However, understanding, interpretation, and simulation of them require relatively expensive computations, going beyond the harmonic approximation. For this purpose, vibrational perturbation theory at the second order (VPT2) has proven to provide an excellent price-performance balance. As it becomes more common, inconsistencies in electronic structure calculations, hidden by error compensation at the harmonic level, emerge. In particular, while trying to interpret the spectra, we found that the commonly used polarizable continuum models (PCM) of solvent may introduce erroneous perturbations to the higher derivatives of dipole moments and polarizabilities needed to simulate spectral intensities. We therefore analyze the experimental spectra on the basis of the simulations and explore parameters allowing for a "black-box" VPT2 application. In particular, explicit cavities used for the hydrogen atoms resulted in excessively large third derivatives of molecular polarizabilities and sometimes led to incorrect signs of ROA and VCD bands, even for fundamental transitions. This could be partially rectified by a combination of different approximation levels used for the calculation of different properties, or by using PCM cavities not explicitly adapted for hydrogen atoms. Under these conditions, VPT2 combined with a proper treatment of resonances appears as an excellent tool to simulate and understand the spectra, including the assignment of weak anharmonic bands.
Department of Optics Palacký University Olomouc 17 listopadu 12 Olomouc 77900 Czech Republic
Scuola Normale Superiore di Pisa Piazza dei Cavalieri 7 Pisa 56126 Italy
See more in PubMed
Keiderling T. A.. Structure of Condensed Phase Peptides: Insights from Vibrational Circular Dichroism and Raman Optical Activity Techniques. Chem. Rev. 2020;120:3381–3419. doi: 10.1021/acs.chemrev.9b00636. PubMed DOI
Polavarapu P. L., Santoro E.. Vibrational optical activity for structural characterization of natural products. Nat. Prod. Rep. 2020;37:1661–1699. doi: 10.1039/D0NP00025F. PubMed DOI
Wu T., Bouř P., Fujisawa T., Unno M.. Molecular Vibrations in Chiral Europium Complexes Revealed by Near-Infrared Raman Optical Activity. Adv. Sci. 2024;11:2305521. doi: 10.1002/advs.202305521. PubMed DOI PMC
Nafie, L. Vibrational optical activity: Principles and applications. Wiley: Chichester, 2011.
Lightner C. R., Kaczor A., Johannessen C.. Navigating the future of ROA: Can it surprise us? Vib. Spectrosc. 2024;132:103683. doi: 10.1016/j.vibspec.2024.103683. DOI
Bloino J., Jähnigen S., Merten C.. After 50 Years of Vibrational Circular Dichroism Spectroscopy: Challenges and Opportunities of Increasingly Accurate and Complex Experiments and Computations. J. Phys. Chem. Lett. 2024;15:8813–8828. doi: 10.1021/acs.jpclett.4c01700. PubMed DOI
Yang Q., Kapitán J., Bouř P., Bloino J.. Anharmonic Vibrational Raman Optical Activity of Methyloxirane: Theory and Experiment Pushed to the Limits. J. Phys. Chem. Lett. 2022;13:8888–8892. doi: 10.1021/acs.jpclett.2c02320. PubMed DOI PMC
Michal P., Čelechovský R., Dudka M., Kapitán J., Vůjtek M., Berešová M., Šebestík J., Thangavel K., Bouř P.. Vibrational Optical Activity of Intermolecular, Overtone, and Combination Bands: 2-Chloropropionitrile and α-Pinene. J. Phys. Chem. B. 2019;123:2147–2156. doi: 10.1021/acs.jpcb.9b00403. PubMed DOI
Kreienborg N. M., Yang Q., Pollok C. H., Bloino J., Merten C.. Matrix-isolation and cryosolution-VCD spectra of α-pinene as benchmark for anharmonic vibrational spectra calculations. Phys. Chem. Chem. Phys. 2023;25:3343–3353. doi: 10.1039/D2CP04782A. PubMed DOI
Fiolhais, C. ; Nogueira, F. ; Marques, M. A. L. . A Primer in Density Functional Theory. Springer-Verlag: Heidelberg, 2003.
Tomasi J., Mennucci B., Cammi R.. Quantum mechanical continuum solvation models. Chem. Rev. 2005;105:2999–3093. doi: 10.1021/cr9904009. PubMed DOI
Mennucci B., Cappelli C., Cammi R., Tomasi J.. Modeling solvent effects on chiroptical properties. Chirality. 2011;23:717–729. doi: 10.1002/chir.20984. PubMed DOI
Bouř P., Michalík D., Kapitán J.. Empirical Solvent Correction for Multiple Amide Group Vibrational Modes. J. Chem. Phys. 2005;122:144501. doi: 10.1063/1.1877272. PubMed DOI
Cappelli C., Bloino J., Lipparini F., Barone V.. Toward Ab Initio Anharmonic Vibrational Circular Dichroism Spectra in the Condensed Phase. J. Phys. Chem. Lett. 2012;3:1766–1773. doi: 10.1021/jz3006139. PubMed DOI
Mathea T., Rauhut G.. Advances in vibrational configuration interaction theory - part 1: Efficient calculation of vibrational angular momentum terms. J. Comput. Chem. 2021;42:2321–2333. doi: 10.1002/jcc.26762. PubMed DOI
Daněček P., Bouř P.. Comparison of the Numerical Stability of Methods for Anharmonic Calculations of Vibrational Molecular Energies. J. Comput. Chem. 2007;28:1617–1624. doi: 10.1002/jcc.20654. PubMed DOI
Christiansen O.. Vibrational coupled cluster theory. J. Chem. Phys. 2004;120:2149–2159. doi: 10.1063/1.1637579. PubMed DOI
Nielsen H. H.. The Vibration-Rotation Energies of Molecules. Rev. Mod. Phys. 1951;23:90–136. doi: 10.1103/RevModPhys.23.90. DOI
Bloino J., Barone V.. A second-order perturbation theory route to vibrational averages and transition properties of molecules: General formulation and application to infrared and vibrational circular dichroism spectroscopies. J. Chem. Phys. 2012;136:124108. doi: 10.1063/1.3695210. PubMed DOI
Bloino J., Biczysko M., Barone V.. Anharmonic Effects on Vibrational Spectra Intensities: Infrared, Raman, Vibrational Circular Dichroism and Raman Optical Activity. J. Phys. Chem. A. 2015;119:11862–11874. doi: 10.1021/acs.jpca.5b10067. PubMed DOI PMC
Puzzarini C., Bloino J., Tasinato N., Barone V.. Accuracy and interpretability: The devil and the holy grail. New routes across old boundaries in computational spectroscopy. Chem. Rev. 2019;119:8131–8191. doi: 10.1021/acs.chemrev.9b00007. PubMed DOI
Yang Q., Mendolicchio M., Barone V., Bloino J.. Accuracy and Reliability in the Simulation of Vibrational Spectra: A Comprehensive Benchmark of Energies and Intensities issuing from Generalized Vibrational Perturbation Theory to Second Order (GVPT2) Front. Astron. Space Sci. 2021;8:665232. doi: 10.3389/fspas.2021.665232. DOI
Xu R., Jiang Z., Yang Q., Bloino J., Biczysko M.. Harmonic and anharmonic vibrational computations for biomolecular building blocks: Benchmarking DFT and basis sets by theoretical and experimental IR spectrum of glycine conformers. J. Comput. Chem. 2024;45:1846–1869. doi: 10.1002/jcc.27377. PubMed DOI
Egidi F., Bloino J., Cappelli C., Barone V.. A Robust and Effective Time-Independent Route to the Calculation of Resonance Raman Spectra of Large Molecules in Condensed Phases with the Inclusion of Duschinsky, Herzberg-Teller, Anharmonic, and Environmental Effects. J. Chem. Theory Comput. 2014;10:346–363. doi: 10.1021/ct400932e. PubMed DOI PMC
Hudecová J., Profant V., Novotná P., Baumruk V., Urbanová M., Bouř P.. CH Stretching Region: Computational Modeling of Vibrational Optical Activity. J. Chem. Theory Comput. 2013;9:3096–3108. doi: 10.1021/ct400285n. PubMed DOI
Franke P. R., Stanton J. F., Douberly G. E.. How to VPT2: Accurate and Intuitive Simulations of CH Stretching Infrared Spectra Using VPT2+K with Large Effective Hamiltonian Resonance Treatments. J. Phys. Chem. A. 2021;125:1301–1324. doi: 10.1021/acs.jpca.0c09526. PubMed DOI
Krasnoshchekov S. V., Dobrolyubov E. O., Syzgantseva M. A., Palvelev R. V.. Rigorous vibrational Fermi resonance criterion revealed: two different approaches yield the same result. Mol. Phys. 2020;118:e1743887. doi: 10.1080/00268976.2020.1743887. DOI
Yang Q., Bloino J.. An Effective and Automated Processing of Resonances in Vibrational Perturbation Theory Applied to Spectroscopy. J. Phys. Chem. A. 2022;126:9276–9302. doi: 10.1021/acs.jpca.2c06460. PubMed DOI PMC
Fusè M., Longhi G., Mazzeo G., Stranges S., Leonelli F., Aquila G., Bodo E., Brunetti B., Bicchi C., Cagliero C., Bloino J., Abbate S.. Anharmonic Aspects in Vibrational Circular Dichroism Spectra from 900 to 9000 cm–1 for Methyloxirane and Methylthiirane. J. Phys. Chem. A. 2022;126:6719–6733. doi: 10.1021/acs.jpca.2c05332. PubMed DOI PMC
Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; Scuseria, G. E. ; Robb, M. A. ; Cheeseman, J. R. ; Scalmani, G. ; Barone, V. ; Petersson, G. A. ; Nakatsuji, H. ; Li, X. ; Caricato, M. ; Marenich, A. V. ; Bloino, J. ; Janesko, B. G. ; Gomperts, R. ; Mennucci, B. ; Hratchian, H. P. ; Ortiz, J. V. ; Izmaylov, A. F. ; Sonnenberg, J. L. ; Williams-Young, D. ; Ding, F. ; Lipparini, F. ; Egidi, F. ; Goings, J. ; Peng, B. ; Petrone, A. ; Henderson, T. ; Ranasinghe, D. ; Zakrzewski, V. G. ; Gao, J. ; Rega, N. ; Zheng, G. ; Liang, W. ; Hada, M. ; Ehara, M. ; Toyota, K. ; Fukuda, R. ; Hasegawa, J. ; Ishida, M. ; Nakajima, T. ; Honda, Y. ; Kitao, O. ; Nakai, H. ; Vreven, T. ; Throssell, K. ; Montgomery, J. A., Jr ; Peralta, J. E. ; Ogliaro, F. ; Bearpark, M. J. ; Heyd, J. J. ; Brothers, E. N. ; Kudin, K. N. ; Staroverov, V. N. ; Keith, T. A. ; Kobayashi, R. ; Normand, J. ; Raghavachari, K. ; Rendell, A. P. ; Burant, J. C. ; Iyengar, S. S. ; Tomasi, J. ; Cossi, M. ; Millam, J. M. ; Klene, M. ; Adamo, C. ; Cammi, R. ; Ochterski, J. W. ; Martin, R. L. ; Morokuma, K. ; Farkas, O. ; Foresman, J. B. ; Fox, D. J. . Gaussian 16 Rev. A.03, Gaussian, Inc.: Wallingford, CT, 2016.
Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; Scuseria, G. E. ; Robb, M. A. ; Cheeseman, J. R. ; Scalmani, G. ; Barone, V. ; Mennucci, B. ; Petersson, G. A. . et al. Gaussian Development Version, Revision J13. Wallingford Ct: 2022.
Perdew J. P., Burke K., Wang Y.. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B. 1996;54:16533–16539. doi: 10.1103/PhysRevB.54.16533. PubMed DOI
Goerigk L., Grimme S.. Efficient and Accurate Double-Hybrid-Meta-GGA Density Functionals-Evaluation with the Extended GMTKN30 Database for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput. 2011;7:291–309. doi: 10.1021/ct100466k. PubMed DOI
Yanai T., Tew D., Handy N. C.. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP) Chem. Phys. Lett. 2004;393:51–57. doi: 10.1016/j.cplett.2004.06.011. DOI
Becke A. D.. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI
Grimme S., Antony J., Ehrlich S., Krieg H.. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Mennucci B., Tomasi J., Cammi R., Cheeseman J. R., Frisch M. J., Devlin F. J., Gabriel S., Stephens P. J.. Polarizable Continuum Model (PCM) Calculations of Solvent Effects on Optical Rotations of Chiral Molecules. J. Phys. Chem. A. 2002;106:6102–6113. doi: 10.1021/jp020124t. DOI
Giovannini T., Olszówka M., Egidi F., Cheeseman J. R., Scalmani G., Cappelli C.. Polarizable Embedding Approach for the Analytical Calculation of Raman and Raman Optical Activity Spectra of Solvated Systems. J. Chem. Theory Comput. 2017;13:4421–4435. doi: 10.1021/acs.jctc.7b00628. PubMed DOI
Barron, L. D. Molecular Light Scattering and Optical Activity. Cambridge University Press: Cambridge, UK, 2004.
Covington C. L., Polavarapu P. L.. Similarity in Dissymmetry Factor Spectra: A Quantitative Measure of Comparison between Experimental and Predicted Vibrational Circular Dichroism. J. Phys. Chem. A. 2013;117:3377–3386. doi: 10.1021/jp401079s. PubMed DOI
Bouř P., Baumruk V., Hanzlíková J.. Measurement and Calculation of the Raman Optical Activity of Alpha-pinene and Trans-pinane. Collect. Czech. Chem. Commun. 1997;62:1384–1395. doi: 10.1135/cccc19971384. DOI
Longhi G., Abbate S., Gangemi R., Giorgio E., Rosini C.. Fenchone, Camphor, 2-Methylenefenchone and 2-Methylenecamphor: A Vibrational Circular Dichroism Study. J. Phys. Chem. A. 2006;110:4958–4968. doi: 10.1021/jp057178y. PubMed DOI
Bouř P., McCann J., Wieser H.. Measurement and calculation of absolute rotational strengths for camphor, alpha-pinene, and borneol. J. Phys. Chem. A. 1998;102:102–110. doi: 10.1021/jp971665z. DOI
Hug W., Kint S., Bailey G. F., Schere J. R.. Raman Circular Intensity Differential Spectroscopy. The Spectra of (−)-a-Pinene and (+)-a-Phenylethylamine. J. Am. Chem. Soc. 1975;97:5589. doi: 10.1021/ja00852a049. DOI
Fusè M., Longhi G., Mazzeo G., Bloino J., Abbate S.. The Role of Anharmonicity in the HC*D Chromophore in Vibrational Circular Dichroism Spectra and Optical Rotation Data. J. Phys. Chem. A. 2025;129:6615–6622. doi: 10.1021/acs.jpca.5c03064. PubMed DOI PMC
Guo C., Shah R. D., Dukor R. K., Freedman T. B., Cao X., Nafie L. A.. Fourier transform vibrational circular dichroism from 800 to 10,000cm–1: Near-IR-VCD spectral standards for terpenes and related molecules. Vib. Spectrosc. 2006;42:254–272. doi: 10.1016/j.vibspec.2006.05.013. DOI
Broda M. A., Buczek A., Kupka T., Kaminský J.. Anharmonic vibrational frequency calculations for solvated molecules in the B3LYP Kohn-Sham basis set limit. Vib. Spectrosc. 2012;63:432–439. doi: 10.1016/j.vibspec.2012.09.005. DOI
Cammi R., Corni S., Mennucci B., Tomasi J.. Electronic Excitation Energies of Molecules in Solution: State Specific and Linear Response Methods for Nonequilibrium Continuum Solvation Models. J. Chem. Phys. 2005;122:104513. doi: 10.1063/1.1867373. PubMed DOI
Šebestík J., Bouř P.. Quantum chemical computations of Raman intensities: An ambiguity of the Placzek approximation. Phys. Rev. A. 2025;111:062804. doi: 10.1103/PhysRevA.111.062804. DOI
Cheeseman J. R., Bouř P.. Adaptive Excitation Frequencies in Simulations of Resonance Raman Spectra. J. Chem. Phys. 2025;163:034118. doi: 10.1063/5.0274585. PubMed DOI