Comparison of discovery rates and prognostic utility of [68Ga]Ga-PSMA-11 PET/CT and circulating tumor DNA in prostate cancer-a cross-sectional study
Language English Country Germany Media print-electronic
Document type Journal Article, Comparative Study
Grant support
CD10277102
Christian Doppler Forschungsgesellschaft
PubMed
38693454
PubMed Central
PMC11224100
DOI
10.1007/s00259-024-06698-7
PII: 10.1007/s00259-024-06698-7
Knihovny.cz E-resources
- Keywords
- Liquid biopsy, PET/CT, PSMA, Prostate cancer, ctDNA,
- MeSH
- Circulating Tumor DNA * blood genetics MeSH
- Edetic Acid * analogs & derivatives MeSH
- Gallium Isotopes * MeSH
- Middle Aged MeSH
- Humans MeSH
- Prostatic Neoplasms * diagnostic imaging genetics blood MeSH
- Oligopeptides MeSH
- Positron Emission Tomography Computed Tomography * MeSH
- Prognosis MeSH
- Cross-Sectional Studies MeSH
- Gallium Radioisotopes * MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
- Names of Substances
- Circulating Tumor DNA * MeSH
- Edetic Acid * MeSH
- gallium 68 PSMA-11 MeSH Browser
- Gallium Isotopes * MeSH
- Oligopeptides MeSH
- PSMA-11 MeSH Browser
- Gallium Radioisotopes * MeSH
BACKGROUND: Circulating-tumor DNA (ctDNA) and prostate-specific membrane antigen (PSMA) ligand positron-emission tomography (PET) enable minimal-invasive prostate cancer (PCa) detection and survival prognostication. The present study aims to compare their tumor discovery abilities and prognostic values. METHODS: One hundred thirty men with confirmed PCa (70.5 ± 8.0 years) who underwent [68Ga]Ga-PSMA-11 PET/CT (184.8 ± 19.7 MBq) imaging and plasma sample collection (March 2019-August 2021) were included. Plasma-extracted cell-free DNA was subjected to whole-genome-based ctDNA analysis. PSMA-positive tumor lesions were delineated and their quantitative parameters extracted. ctDNA and PSMA PET/CT discovery rates were compared, and the prognostic value for overall survival (OS) was evaluated. RESULTS: PSMA PET discovery rates according to castration status and PSA ranges did differ significantly (P = 0.013, P < 0.001), while ctDNA discovery rates did not (P = 0.311, P = 0.123). ctDNA discovery rates differed between localized and metastatic disease (P = 0.013). Correlations between ctDNA concentrations and PSMA-positive tumor volume (PSMA-TV) were significant in all (r = 0.42, P < 0.001) and castration-resistant (r = 0.65, P < 0.001), however not in hormone-sensitive patients (r = 0.15, P = 0.249). PSMA-TV and ctDNA levels were associated with survival outcomes in the Logrank (P < 0.0001, P < 0.0001) and multivariate Cox regression analysis (P = 0.0023, P < 0.0001). CONCLUSION: These findings suggest that PSMA PET imaging outperforms ctDNA analysis in detecting prostate cancer across the whole spectrum of disease, while both modalities are independently highly prognostic for survival outcomes.
Christian Doppler Laboratory for Applied Metabolomics Medical University of Vienna Vienna Austria
Department of Pathology Medical University of Vienna Vienna Austria
Department of Special Surgery Division of Urology The University of Jordan Amman Jordan
Department of Urology 2nd Faculty of Medicine Charles University Prague Czech Republic
Department of Urology and Andrology University Hospital Krems Krems Austria
Department of Urology Medical University of Vienna Vienna Austria
Department of Urology University of Texas Southwestern Medical Center Dallas TX USA
Department of Urology Weill Cornell Medical College New York NY USA
Karl Landsteiner Institute of Urology and Andrology Vienna Austria
Karl Landsteiner University of Health Sciences Krems Austria
See more in PubMed
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
Varaprasad GL, Gupta VK, Prasad K, Kim E, Tej MB, Mohanty P, et al. Recent advances and future perspectives in the therapeutics of prostate cancer. Exp Hematol Oncol. 2023;12:80. doi: 10.1186/s40164-023-00444-9. PubMed DOI PMC
Howlader N, Noone AM, Krapcho M, Miller D, Brest A. SEER cancer statistics review (CSR), 1975–2016. National Cancer Institute. Update April.
Wang YA, Sfakianos J, Tewari AK, Cordon-Cardo C, Kyprianou N. Molecular tracing of prostate cancer lethality. Oncogene. 2020;39:7225–7238. doi: 10.1038/s41388-020-01496-5. PubMed DOI PMC
Parker C, Castro E, Fizazi K, Heidenreich A, Ost P, Procopio G, et al. Prostate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020;31:1119–1134. doi: 10.1016/j.annonc.2020.06.011. PubMed DOI
Wright GL, Jr, Haley C, Beckett ML, Schellhammer PF. Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol Oncol. 1995;1:18–28. doi: 10.1016/1078-1439(95)00002-Y. PubMed DOI
Briganti A, Abdollah F, Nini A, Suardi N, Gallina A, Capitanio U, et al. Performance characteristics of computed tomography in detecting lymph node metastases in contemporary patients with prostate cancer treated with extended pelvic lymph node dissection. Eur Urol. 2012;61:1132–1138. doi: 10.1016/j.eururo.2011.11.008. PubMed DOI
Renard-Penna R, Zhang-Yin J, Montagne S, Aupin L, Bruguière E, Labidi M, et al. Targeting local recurrence after surgery with MRI imaging for prostate cancer in the setting of salvage radiation therapy. Front Oncol. 2022;12:775387. doi: 10.3389/fonc.2022.775387. PubMed DOI PMC
Perera M, Papa N, Roberts M, Williams M, Udovicich C, Vela I, et al. Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer-updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. Eur Urol. 2020;77:403–417. doi: 10.1016/j.eururo.2019.01.049. PubMed DOI
Seifert R, Herrmann K, Kleesiek J, Schäfers M, Shah V, Xu Z, et al. Semiautomatically quantified tumor volume using 68Ga-PSMA-11 PET as a biomarker for survival in patients with advanced prostate cancer. J Nucl Med. 2020;61:1786–1792. doi: 10.2967/jnumed.120.242057. PubMed DOI
Seifert R, Kessel K, Schlack K, Weber M, Herrmann K, Spanke M, et al. PSMA PET total tumor volume predicts outcome of patients with advanced prostate cancer receiving [177Lu]Lu-PSMA-617 radioligand therapy in a bicentric analysis. Eur J Nucl Med Mol Imaging. 2021;48:1200–1210. doi: 10.1007/s00259-020-05040-1. PubMed DOI PMC
Has Simsek D, Kuyumcu S, Karadogan S, Oflas M, Isik EG, Ozkan ZG, et al. Can PSMA-based tumor burden predict response to docetaxel treatment in metastatic castration-resistant prostate cancer? Ann Nucl Med. 2021;35:680–690. doi: 10.1007/s12149-021-01610-x. PubMed DOI
Mehra N, Dolling D, Sumanasuriya S, Christova R, Pope L, Carreira S, et al. Plasma cell-free DNA concentration and outcomes from taxane therapy in metastatic castration-resistant prostate cancer from two phase III trials (FIRSTANA and PROSELICA) Eur Urol. 2018;74:283–291. doi: 10.1016/j.eururo.2018.02.013. PubMed DOI PMC
Nørgaard M, Bjerre MT, Fredsøe J, Vang S, Jensen JB, De Laere B, et al. Prognostic value of low-pass whole genome sequencing of circulating tumor DNA in metastatic castration-resistant prostate cancer. Clin Chem. 2023;69:386–398. doi: 10.1093/clinchem/hvac224. PubMed DOI
Sumanasuriya S, Seed G, Parr H, Christova R, Pope L, Bertan C, et al. Elucidating prostate cancer behaviour during treatment via low-pass whole-genome sequencing of circulating tumour DNA. Eur Urol. 2021;80:243–253. doi: 10.1016/j.eururo.2021.05.030. PubMed DOI PMC
Annala M, Vandekerkhove G, Khalaf D, Taavitsainen S, Beja K, Warner EW, et al. Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer. Cancer Discov. 2018;8:444–457. doi: 10.1158/2159-8290.CD-17-0937. PubMed DOI
Wyatt AW, Azad AA, Volik SV, Annala M, Beja K, McConeghy B, et al. Genomic alterations in cell-free DNA and enzalutamide resistance in castration-resistant prostate cancer. JAMA Oncol. 2016;2:1598–1606. doi: 10.1001/jamaoncol.2016.0494. PubMed DOI PMC
Casanova-Salas I, Athie A, Boutros PC, Del Re M, Miyamoto DT, Pienta KJ, et al. Quantitative and qualitative analysis of blood-based liquid biopsies to inform clinical decision-making in prostate cancer. Eur Urol. 2021;79:762–771. doi: 10.1016/j.eururo.2020.12.037. PubMed DOI PMC
Kwan EM, Wyatt AW, Chi KN. Towards clinical implementation of circulating tumor DNA in metastatic prostate cancer: opportunities for integration and pitfalls to interpretation. Front Oncol. 2022;12:1054497. doi: 10.3389/fonc.2022.1054497. PubMed DOI PMC
Adalsteinsson VA, Ha G, Freeman SS, Choudhury AD, Stover DG, Parsons HA, et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat Commun. 2017;8:1324. doi: 10.1038/s41467-017-00965-y. PubMed DOI PMC
Ulz P, Belic J, Graf R, Auer M, Lafer I, Fischereder K, et al. Whole-genome plasma sequencing reveals focal amplifications as a driving force in metastatic prostate cancer. Nat Commun. 2016;7. 10.1038/ncomms12008. PubMed PMC
Hennigan ST, Trostel SY, Terrigino NT, Voznesensky OS, Schaefer RJ, Whitlock NC, et al. Low abundance of circulating tumor DNA in localized prostate cancer. JCO Precis Oncol. 2019;3. 10.1200/PO.19.00176. PubMed PMC
Schweizer MT, Gulati R, Beightol M, Konnick EQ, Cheng HH, Klemfuss N, et al. Clinical determinants for successful circulating tumor DNA analysis in prostate cancer. Prostate. 2019;79:701–708. doi: 10.1002/pros.23778. PubMed DOI PMC
Lazzeri M, Fasulo V, Lughezzani G, Benetti A, Soldà G, Asselta R, et al. Prospective evaluation of the role of imaging techniques and TMPRSS2:ERG mutation for the diagnosis of clinically significant prostate cancer. Front Oncol. 2022;12:968384. doi: 10.3389/fonc.2022.968384. PubMed DOI PMC
Pan J, Zhao J, Ni X, Zhu B, Hu X, Wang Q, et al. Heterogeneity of [68Ga]Ga-PSMA-11 PET/CT in metastatic castration-resistant prostate cancer: genomic characteristics and association with abiraterone response. Eur J Nucl Med Mol Imaging. 2023. 10.1007/s00259-023-06123-5. PubMed
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3:32–35. doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3. PubMed DOI
Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61:1659–1665. PubMed
Lawal IO, Ndlovu H, Kgatle M, Mokoala KMG, Sathekge MM. Prognostic value of PSMA PET/CT in prostate cancer. Semin Nucl Med. 2023. 10.1053/j.semnuclmed.2023.07.003. PubMed