Imaging and outcome correlates of ctDNA methylation markers in prostate cancer: a comparative, cross-sectional [⁶⁸Ga]Ga-PSMA-11 PET/CT study
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články, srovnávací studie
Grantová podpora
CD10277102
Christian Doppler Forschungsgesellschaft
CD10277102
Christian Doppler Forschungsgesellschaft
P32771
Austrian Science Fund
PubMed
40001235
PubMed Central
PMC11863674
DOI
10.1186/s13148-025-01811-5
PII: 10.1186/s13148-025-01811-5
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation, Epigenetics, PET/CT, PSMA, Prostate cancer, cfDNA,
- MeSH
- cirkulující nádorová DNA genetika krev MeSH
- EDTA analogy a deriváty MeSH
- izotopy gallia * MeSH
- lidé středního věku MeSH
- lidé MeSH
- metylace DNA * genetika MeSH
- nádorové biomarkery * genetika krev MeSH
- nádory prostaty rezistentní na kastraci genetika krev diagnostické zobrazování MeSH
- nádory prostaty * genetika krev diagnostické zobrazování MeSH
- PET/CT * metody MeSH
- prognóza MeSH
- prostatický specifický antigen * krev genetika MeSH
- průřezové studie MeSH
- radioizotopy galia * MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- cirkulující nádorová DNA MeSH
- EDTA MeSH
- gallium 68 PSMA-11 MeSH Prohlížeč
- izotopy gallia * MeSH
- nádorové biomarkery * MeSH
- prostatický specifický antigen * MeSH
- PSMA-11 MeSH Prohlížeč
- radioizotopy galia * MeSH
BACKGROUND: To validate the clinical utility of a previously identified circulating tumor DNA methylation marker (meth-ctDNA) panel for disease detection and survival outcomes, meth-ctDNA markers were compared to PSA levels and PSMA PET/CT findings in men with different stages of prostate cancer (PCa). METHODS: 122 PCa patients who underwent [⁶⁸Ga]Ga-PSMA-11 PET/CT and plasma sampling (03/2019-08/2021) were analyzed. cfDNA was extracted, and a panel of 8 individual meth-ctDNA markers was queried. PET scans were qualitatively and quantitatively assessed. PSA and meth-ctDNA markers were compared to PET findings, and their relative prognostic value was evaluated. RESULTS: PSA discriminated best between negative and tumor-indicative PET scans in all (AUC 0.77) and hormone-sensitive (hsPC) patients (0.737). In castration-resistant PCa (CRPC), the meth-ctDNA marker KLF8 performed best (AUC 0.824). CHST11 differentiated best between non- and metastatic scans (AUC 0.705) overall, KLF8 best in hsPC and CRPC (AUC 0.662, 0.85). Several meth-ctDNA markers correlated low to moderate with the tumor volume in all (5/8) and CRPC patients (6/8), while PSA levels correlated moderately to strongly with the tumor volume in all groups (all p < 0.001). CRPC overall survival was independently associated with LDAH and PSA (p = 0.0168, p < 0.001). CONCLUSION: The studied meth-ctDNA markers are promising for the minimally-invasive detection and prognostication of CRPC but do not allow for clinical characterization of hsPC. Prospective studies are warranted for their use in therapy response and outcome prediction in CRPC and potential incremental value for PCa monitoring in PSA-low settings.
Christian Doppler Laboratory for Applied Metabolomics Medical University of Vienna Vienna Austria
Comprehensive Cancer Center Medical University Vienna Vienna Austria
Department of Molecular Biology Umeå University Umeå Sweden
Department of Pathology Medical University of Vienna Vienna Austria
Department of Urology 2nd Faculty of Medicine Charles University Prague Czech Republic
Department of Urology and Andrology University Hospital Krems Krems Austria
Department of Urology Medical University of Vienna Vienna Austria
Department of Urology University of Texas Southwestern Medical Center Dallas TX USA
Department of Urology Weill Cornell Medical College New York NY USA
Division of Urology Department of Special Surgery The University of Jordan Amman Jordan
Karl Landsteiner Institute of Urology and Andrology Vienna Austria
Karl Landsteiner University of Health Sciences Krems Austria
Unit of Laboratory Animal Pathology University of Veterinary Medicine Vienna Vienna Austria
Zobrazit více v PubMed
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. PubMed
Howlader N, Noone AM, Krapcho M, Miller D, Brest A. SEER cancer statistics review (CSR), 1975–2016. National Cancer Institute. Update April
Parker C, Castro E, Fizazi K, Heidenreich A, Ost P, Procopio G, et al. Prostate cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020;31:1119–34. PubMed
Wang G, Zhao D, Spring DJ, Depinho RA. Genetics and biology of prostate cancer. Genes Dev. 2018;32:1105–40. PubMed PMC
Wang YA, Sfakianos J, Tewari AK, Cordon-Cardo C, Kyprianou N. Molecular tracing of prostate cancer lethality. Oncogene. 2020;39:7225–38. PubMed PMC
Miszczyk M, Rajwa P, Fazekas T, Briganti A, Karakiewicz PI, Rouprêt M, et al. The state of intermediate clinical endpoints as surrogates for overall survival in prostate cancer in 2024. Eur Urol Oncol. 2024. 10.1016/j.euo.2024.04.004. PubMed
Ilic D, Djulbegovic M, Jung JH, Hwang EC, Zhou Q, Cleves A, et al. Prostate cancer screening with prostate-specific antigen (PSA) test: a systematic review and meta-analysis. BMJ. 2018;362:k3519. PubMed PMC
Bryce AH, Alumkal JJ, Armstrong A, Higano CS, Iversen P, Sternberg CN, et al. Radiographic progression with nonrising PSA in metastatic castration-resistant prostate cancer: post hoc analysis of PREVAIL. Prostate Cancer Prostatic Dis. 2017;20:221–7. PubMed PMC
Casanova-Salas I, Athie A, Boutros PC, Del Re M, Miyamoto DT, Pienta KJ, et al. Quantitative and qualitative analysis of blood-based liquid biopsies to inform clinical decision-making in prostate cancer. Eur Urol. 2021;79:762–71. PubMed PMC
Shen SY, Singhania R, Fehringer G, Chakravarthy A, Roehrl MHA, Chadwick D, et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature. 2018;563:579–83. PubMed
Lam D, Clark S, Stirzaker C, Pidsley R. Advances in prognostic methylation biomarkers for prostate cancer. Cancers. 2020;12:2993. 10.3390/cancers12102993. PubMed PMC
Bjerre MT, Nørgaard M, Larsen OH, Jensen SØ, Strand SH, Østergren P, et al. Epigenetic analysis of circulating tumor DNA in localized and metastatic prostate cancer: evaluation of clinical biomarker potential. Cells. 2020;9:1362. PubMed PMC
Chen S, Petricca J, Ye W, Guan J, Zeng Y, Cheng N, et al. The cell-free DNA methylome captures distinctions between localized and metastatic prostate tumors. Nat Commun. 2022;13:6467. PubMed PMC
Klein EA, Richards D, Cohn A, Tummala M, Lapham R, Cosgrove D, et al. Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set. Ann Oncol. 2021;32:1167–77. PubMed
Büttner T, Dietrich D, Zarbl R, Klümper N, Ellinger J, Krausewitz P, et al. Feasibility of monitoring response to metastatic prostate cancer treatment with a methylation-based circulating tumor DNA approach. Cancers (Basel). 2024;16:482. 10.3390/cancers16030482. PubMed PMC
Dillinger T, Sheibani-Tezerji R, Pulverer W, Stelzer I, Hassler MR, Scheibelreiter J, et al. Identification of tumor tissue-derived DNA methylation biomarkers for the detection and therapy response evaluation of metastatic castration resistant prostate cancer in liquid biopsies. Mol Cancer. 2022;21:7. PubMed PMC
Perera M, Papa N, Roberts M, Williams M, Udovicich C, Vela I, et al. Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer-updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. Eur Urol. 2020;77:403–17. PubMed
Seifert R, Kessel K, Schlack K, Weber M, Herrmann K, Spanke M, et al. PSMA PET total tumor volume predicts outcome of patients with advanced prostate cancer receiving [177Lu]Lu-PSMA-617 radioligand therapy in a bicentric analysis. Eur J Nucl Med Mol Imaging. 2021;48:1200–10. PubMed PMC
Has Simsek D, Kuyumcu S, Karadogan S, Oflas M, Isik EG, Ozkan ZG, et al. Can PSMA-based tumor burden predict response to docetaxel treatment in metastatic castration-resistant prostate cancer? Ann Nucl Med. 2021;35:680–90. PubMed
Kluge K, Einspieler H, Haberl D, Spielvogel C, Amereller D, Egger G, et al. Comparison of discovery rates and prognostic utility of [68Ga]Ga-PSMA-11 PET/CT and circulating tumor DNA in prostate cancer-a cross-sectional study. Eur J Nucl Med Mol Imaging. 2024;51:2833–42. PubMed PMC
Beikircher G, Pulverer W, Hofner M, Noehammer C, Weinhaeusel A. Multiplexed and sensitive DNA methylation testing using methylation-sensitive restriction enzymes “MSRE-qPCR.” Methods Mol Biol. 2018;1708:407–24. PubMed
Seifert R, Emmett L, Rowe SP, Herrmann K, Hadaschik B, Calais J, et al. Second version of the prostate cancer molecular imaging standardized evaluation framework including response evaluation for clinical trials (PROMISE V2). Eur Urol. 2023;83:405–12. PubMed
Eggener SE, Rumble RB, Armstrong AJ, Morgan TM, Crispino T, Cornford P, et al. Molecular biomarkers in localized prostate cancer: ASCO guideline. J Clin Oncol. 2020;38:1474–94. PubMed
Trujillo B, Wu A, Wetterskog D, Attard G. Blood-based liquid biopsies for prostate cancer: clinical opportunities and challenges. Br J Cancer. 2022;127:1394–402. PubMed PMC
Hennigan ST, Trostel SY, Terrigino NT, Voznesensky OS, Schaefer RJ, Whitlock NC, et al. Low abundance of circulating tumor DNA in localized prostate cancer. JCO Precis Oncol. 2019;3:1–13. 10.1200/PO.19.00176. PubMed PMC
Budnik B, Amirkhani H, Forouzanfar MH, Afshin A. Novel proteomics-based plasma test for early detection of multiple cancers in the general population. BMJ Oncology. 2024;3:e000073. PubMed PMC
Aggarwal R, Ryan CJ. Castration-resistant prostate cancer: targeted therapies and individualized treatment. Oncologist. 2011;16:264–75. PubMed PMC
Parker C, Heinrich D, O’Sullivan JM, Fossa SD, Chodacki A, Demkow T, et al. Overall survival benefit and safety profile of radium-223 chloride, a first-in-class alpha-pharmaceutical: results from a phase III randomized trial (ALSYMPCA) in patients with castration-resistant prostate cancer (CRPC) with bone metastases. J Clin Orthod. 2012;30:8–8.
Kelly WK, Halabi S, Carducci M, George D, Mahoney JF, Stadler WM, et al. Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. J Clin Oncol. 2012;30:1534–40. PubMed PMC
Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22. PubMed
Wang X, Zheng M, Liu G, Xia W, McKeown-Longo PJ, Hung M-C, et al. Krüppel-like factor 8 induces epithelial to mesenchymal transition and epithelial cell invasion. Cancer Res. 2007;67:7184–93. PubMed
Tian S, Lei Z, Gong Z, Sun Z, Xu D, Piao M. Clinical implication of prognostic and predictive biomarkers for castration-resistant prostate cancer: a systematic review. Cancer Cell Int. 2020;20:409. PubMed PMC
Khayami R, Hashemi SR, Kerachian MA. Role of aldo-keto reductase family 1 member B1 (AKR1B1) in the cancer process and its therapeutic potential. J Cell Mol Med. 2020;24:8890–902. PubMed PMC
Mukherjee D, Hao J, Lu H, Lahiri SK, Yu L, Zhao J. KLF8 promotes invasive outgrowth of breast cancer by inducing filopodium-like protrusions via CXCR4. Am J Transl Res. 2022;14:1220–33. PubMed PMC
Lu H, Hu L, Li T, Lahiri S, Shen C, Wason MS, et al. A novel role of Krüppel-like factor 8 in DNA repair in breast cancer cells. J Biol Chem. 2012;287:43720–9. PubMed PMC
Currall BB, Chen M, Sallari RC, Cotter M, Wong KE, Robertson NG, et al. Loss of LDAH associated with prostate cancer and hearing loss. Hum Mol Genet. 2018;27:4194–203. PubMed PMC
Vega-Benedetti AF, Loi E, Moi L, Blois S, Fadda A, Antonelli M, et al. Clustered protocadherins methylation alterations in cancer. Clin Epigenetics. 2019;11:100. PubMed PMC
Chang W-M, Li L-J, Chiu I-A, Lai T-C, Chang Y-C, Tsai H-F, et al. The aberrant cancer metabolic gene carbohydrate sulfotransferase 11 promotes non-small cell lung cancer cell metastasis via dysregulation of ceruloplasmin and intracellular iron balance. Transl Oncol. 2022;25:101508. PubMed PMC
Xiong D-D, Li J-D, He R-Q, Li M-X, Pan Y-Q, He X-L, et al. Highly expressed carbohydrate sulfotransferase 11 correlates with unfavorable prognosis and immune evasion of hepatocellular carcinoma. Cancer Med. 2023;12:4938–50. PubMed PMC
Fu X, Zhang Q, Wang Z, Xu Y, Dong Q. CRABP2 affects chemotherapy resistance of ovarian cancer by regulating the expression of HIF1α. Cell Death Dis. 2024;15:21. PubMed PMC