Diagnosis, treatment, and surveillance of Diamond-Blackfan anaemia syndrome: international consensus statement

. 2024 May ; 11 (5) : e368-e382.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, konsensus - konference

Perzistentní odkaz   https://www.medvik.cz/link/pmid38697731

Grantová podpora
R01 HL079571 NHLBI NIH HHS - United States
R01 HL150194 NHLBI NIH HHS - United States

Odkazy

PubMed 38697731
PubMed Central PMC12424227
DOI 10.1016/s2352-3026(24)00063-2
PII: S2352-3026(24)00063-2
Knihovny.cz E-zdroje

Diamond-Blackfan anaemia (DBA), first described over 80 years ago, is a congenital disorder of erythropoiesis with a predilection for birth defects and cancer. Despite scientific advances, this chronic, debilitating, and life-limiting disorder continues to cause a substantial physical, psychological, and financial toll on patients and their families. The highly complex medical needs of affected patients require specialised expertise and multidisciplinary care. However, gaps remain in effectively bridging scientific discoveries to clinical practice and disseminating the latest knowledge and best practices to providers. Following the publication of the first international consensus in 2008, advances in our understanding of the genetics, natural history, and clinical management of DBA have strongly supported the need for new consensus recommendations. In 2014 in Freiburg, Germany, a panel of 53 experts including clinicians, diagnosticians, and researchers from 27 countries convened. With support from patient advocates, the panel met repeatedly over subsequent years, engaging in ongoing discussions. These meetings led to the development of new consensus recommendations in 2024, replacing the previous guidelines. To account for the diverse phenotypes including presentation without anaemia, the panel agreed to adopt the term DBA syndrome. We propose new simplified diagnostic criteria, describe the genetics of DBA syndrome and its phenocopies, and introduce major changes in therapeutic standards. These changes include lowering the prednisone maintenance dose to maximum 0·3 mg/kg per day, raising the pre-transfusion haemoglobin to 9-10 g/dL independent of age, recommending early aggressive chelation, broadening indications for haematopoietic stem-cell transplantation, and recommending systematic clinical surveillance including early colorectal cancer screening. In summary, the current practice guidelines standardise the diagnostics, treatment, and long-term surveillance of patients with DBA syndrome of all ages worldwide.

1st Department of Pediatrics National and Kapodistrian University of Athens Athens Greece

Arkansas Children's Research Institute and Department of Pediatrics University of Arkansas for Medical Sciences Little Rock AR USA

Chonnam National University Hwasun Hospital Gwangju South Korea

Cohen Children's Medical Center Hematology Oncology and Stem Cell Transplantation Hew Hyde Park NY USA; Feinstein Institutes for Medical Research Manhasset NY USA; Zucker School of Medicine at Hofstra Northwell Hempstead NY USA

Cohen Children's Medical Center Hematology Oncology and Stem Cell Transplantation Hew Hyde Park NY USA; Zucker School of Medicine at Hofstra Northwell Hempstead NY USA

Dana Farber Boston Children's Cancer and Blood Disorders Center Harvard Medical School Boston MA USA

Department of Health Sciences Università del Piemonte Orientale Novara Italy

Department of Hematology St Jude Children's Research Hospital Memphis TN USA; Division of Pediatric Hematology and Oncology Department of Pediatrics and Adolescent Medicine Medical Center Faculty of Medicine University of Freiburg Freiburg Germany

Department of Oncology Paediatric Haematology Clinical Transplantology and Paediatrics Medical University of Warsaw Warsaw Poland

Department of Paediatrics St Mary's Hospital Imperial College Healthcare NHS Trust London UK; Department of Immunology and Inflammation Imperial College London London UK

Department of Pediatric and Public Health Sciences University of Turin Turin Italy

Department of Pediatric Hematology and Oncology Oslo University Hospital Oslo Norway

Department of Pediatric Hematology and Oncology Skåne University Hospital Lund Sweden

Department of Pediatrics and Adolescent Medicine Rigshospitalet University of Copenhagen Copenhagen Denmark

Department of Pediatrics Faculty Hospital of Palacky University Olomouc Czech Republic

Department of Pediatrics Hirosaki University Graduate School of Medicine Hirosaki Japan

Department of Pediatrics LAU Medical Center Rizk Hospital Beirut Lebanon

Division of Hematology and Medical Oncology Icahn School of Medicine at Mount Sinai The Tisch Cancer Institute New York NY USA

Division of Pediatric Hematology and Oncology Department of Pediatrics and Adolescent Medicine Medical Center Faculty of Medicine University of Freiburg Freiburg Germany

Division of Pediatric Hematology and Oncology Department of Pediatrics and Adolescent Medicine Medical Center Faculty of Medicine University of Freiburg Freiburg Germany; German Cancer Consortium Freiburg Germany; German Cancer Research Center Heidelberg Germany

Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology Moscow Russia

Hacettepe University Department of Pediatric Hematology and Research Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes Ankara Turkey

Hôpital R DEBRE Groupe Hospitalier Universitaire Assistance Publique Hôpitaux de Paris Nord Université de Paris Cité Paris France; HEMATIM EA4666 UPJV Amiens France; Le LabEx Gr Ex Biogénèse et Pathologies du Globule Rouge Paris France

King Faisal Hospital and Research Center Riyadh Riyadh Saudi Arabia

MCD Centre de Biologie Intégrative Université de Toulouse CNRS UT3 Toulouse France

Pediatric Cell and Gene Therapy Research Center Gene Cell and Tissue Research Institute Tehran University of Medical Sciences Tehran Iran

Pediatric Hematology and Oncology Department Hospital Universitario Gregorio Marañón Madrid Spain; Facultad de Medicina Universidad Complutense de Madrid Madrid Spain; Instituto Investigación Sanitaria Gregorio Marañón Madrid Spain; Instituto Nacional de Investigación Biomédica en Enfermedades Raras Instituto de Salud Carlos 3 Madrid Spain

Pediatric Hematology Department University Medical Center Utrecht Utrecht Netherlands

Pediatric Hospital of Eastern Switzerland St Gallen St Gallen Switzerland

Pediatric Immunology and Hematology Department and CRMR aplasies médullaires Robert Debré Hospital Groupe Hospitalier Universitaire Assistance Publique Hôpitaux de Paris Nord Université de Paris Cité Paris France

St Anna Children's Hospital Department of Pediatrics Medical University Vienna Vienna Austria; Children's Cancer Research Institute Vienna Austria

State Key Laboratory of Experimental Hematology National Clinical Research Center for Blood Diseases Haihe Laboratory of Cell Ecosystem Institute of Hematology and Blood Diseases Hospital Chinese Academy of Medical Sciences Peking Union Medical College Beijing China

The Rina Zaizov Hematology Oncology Division Schneider Children's Medical Center of Israel Peta Tikvah Israel; Felsenstein Medical Research Center Sackler School of Medicine Tel Aviv University Tel Aviv Israel

Vilnius University Hospital Santaros Klinikos Vilnius Lithuania

Zobrazit více v PubMed

Diamond L, Blackfan K. Hypoplastic anemia. Am J Dis Child 1938; 56: 464–7.

Josephs HW. Anaemia of Infancy and Early Childhood. Medicine 1936; 15(3): 307–451.

Vlachos A, Ball S, Dahl N, et al. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br J Haematol 2008; 142(6): 859–76. PubMed PMC

Willig TN, Niemeyer CM, Leblanc T, et al. Identification of new prognosis factors from the clinical and epidemiologic analysis of a registry of 229 Diamond-Blackfan anemia patients. DBA group of Societe d’Hematologie et d’Immunologie Pediatrique (SHIP), Gesellshaft fur Padiatrische Onkologie und Hamatologie (GPOH), and the European Society for Pediatric Hematology and Immunology (ESPHI). Pediatr Res 1999; 46(5): 553–61. PubMed

Orfali KA, Ohene-Abuakwa Y, Ball SE. Diamond Blackfan anaemia in the UK: clinical and genetic heterogeneity. Br J Haematol 2004; 125(2): 243–52. PubMed

Chen S, Warszawski J, Bader-Meunier B, et al. Diamond-blackfan anemia and growth status: the French registry. J Pediatr 2005; 147(5): 669–73. PubMed

Lipton JM, Atsidaftos E, Zyskind I, Vlachos A. Improving clinical care and elucidating the pathophysiology of Diamond Blackfan anemia: an update from the Diamond Blackfan Anemia Registry. Pediatr Blood Cancer 2006; 46(5): 558–64. PubMed

Tamary H, Nishri D, Yacobovich J, et al. Frequency and natural history of inherited bone marrow failure syndromes: the Israeli Inherited Bone Marrow Failure Registry. Haematologica 2010; 95(8): 1300–7. PubMed PMC

Kim SK, Ahn HS, Back HJ, et al. Clinical and hematologic manifestations in patients with Diamond Blackfan anemia in Korea. Korean J Hematol 2012; 47(2): 131–5. PubMed PMC

Delaporta P, Sofocleous C, Stiakaki E, et al. Clinical phenotype and genetic analysis of RPS19, RPL5, and RPL11 genes in Greek patients with Diamond Blackfan Anemia. Pediatr Blood Cancer 2014; 61(12): 2249–55. PubMed

Smetanina NS, Mersiyanova IV, Kurnikova MA, et al. Clinical and genomic heterogeneity of Diamond Blackfan anemia in the Russian Federation. Pediatr Blood Cancer 2015; 62(9): 1597–600. PubMed PMC

Wan Y, Chen X, An W, et al. Clinical features, mutations and treatment of 104 patients of Diamond-Blackfan anemia in China: a single-center retrospective study. Int J Hematol 2016; 104(4): 430–9. PubMed

van Dooijeweert B, van Ommen CH, Smiers FJ, et al. Pediatric Diamond-Blackfan anemia in the Netherlands: An overview of clinical characteristics and underlying molecular defects. Eur J Haematol 2018; 100(2): 163–70. PubMed

Volejnikova J, Vojta P, Urbankova H, et al. Czech and Slovak Diamond-Blackfan Anemia (DBA) Registry update: Clinical data and novel causative genetic lesions. Blood Cells Mol Dis 2020; 81: 102380. PubMed

Vogel N, Schmugge M, Renella R, Waespe N, Hengartner H, Swiss Paediatric Oncology Group Hematology Working G. The landscape of pediatric Diamond-Blackfan anemia in Switzerland: genotype and phenotype characteristics. Eur J Pediatr 2021; 180(12): 3581–5. PubMed

Quarello P, Garelli E, Carando A, et al. A 20-year long term experience of the Italian Diamond-Blackfan Anaemia Registry: RPS and RPL genes, different faces of the same disease? Br J Haematol 2020; 190(1): 93–104. PubMed

Iskander D, Wang G, Heuston EF, et al. Single-cell profiling of human bone marrow progenitors reveals mechanisms of failing erythropoiesis in Diamond-Blackfan anemia. Sci Transl Med 2021; 13(610): eabf0113. PubMed

Jackson DJ, Butler C, Chaudhuri R, et al. Recommendations following a modified UK-Delphi consensus study on best practice for referral and management of severe asthma. BMJ Open Respir Res 2021; 8(1). PubMed PMC

Diamond LK, Wang WC, Alter BP. Congenital hypoplastic anemia. Adv Pediatr 1976; 22: 349–78. PubMed

Carlston CM, Afify ZA, Palumbos JC, et al. Variable expressivity and incomplete penetrance in a large family with non-classical Diamond-Blackfan anemia associated with ribosomal protein L11 splicing variant. Am J Med Genet A 2017; 173(10): 2622–7. PubMed

Vlachos A, Osorio DS, Atsidaftos E, et al. Increased Prevalence of Congenital Heart Disease in Children With Diamond Blackfan Anemia Suggests Unrecognized Diamond Blackfan Anemia as a Cause of Congenital Heart Disease in the General Population: A Report of the Diamond Blackfan Anemia Registry. Circ Genom Precis Med 2018; 11(5): e002044. PubMed PMC

Simkins A, Bannon SA, Khoury JD, et al. Diamond-Blackfan Anemia Predisposing to Myelodysplastic Syndrome in Early Adulthood. JCO Precis Oncol 2017; 1(1): 1–5. PubMed

Sankaran VG, Ghazvinian R, Do R, et al. Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia. J Clin Invest 2012; 122(7): 2439–43. PubMed PMC

Toki T, Yoshida K, Wang R, et al. De Novo Mutations Activating Germline TP53 in an Inherited Bone-Marrow-Failure Syndrome. Am J Hum Genet 2018; 103(3): 440–7. PubMed PMC

Fedorova D, Ovsyannikova G, Kurnikova M, et al. De novo TP53 germline activating mutations in two patients with the phenotype mimicking Diamond-Blackfan anemia. Pediatr Blood Cancer 2022; 69(4): e29558. PubMed

Kim AR, Ulirsch JC, Wilmes S, et al. Functional Selectivity in Cytokine Signaling Revealed Through a Pathogenic EPO Mutation. Cell 2017; 168(6): 1053–64 e15. PubMed PMC

Hashem H, Egler R, Dalal J. Refractory Pure Red Cell Aplasia Manifesting as Deficiency of Adenosine Deaminase 2. J Pediatr Hematol Oncol 2017; 39(5): e293–e6. PubMed

Gagne KE, Ghazvinian R, Yuan D, et al. Pearson marrow pancreas syndrome in patients suspected to have Diamond-Blackfan anemia. Blood 2014; 124(3): 437–40. PubMed PMC

Szvetnik EA, Klemann C, Hainmann I, et al. Diamond-Blackfan Anemia Phenotype Caused By Deficiency of Adenosine Deaminase 2. Blood 2017; 130(Suppl 1): 874-.

Shimamura A, Alter BP. Pathophysiology and management of inherited bone marrow failure syndromes. Blood Rev 2010; 24(3): 101–22. PubMed PMC

Da Costa L, Chanoz-Poulard G, Simansour M, et al. First de novo mutation in RPS19 gene as the cause of hydrops fetalis in Diamond-Blackfan anemia. Am J Hematol 2013; 88(2): 160. PubMed

Wlodarski MW, Da Costa L, O’Donohue MF, et al. Recurring mutations in RPL15 are linked to hydrops fetalis and treatment independence in Diamond-Blackfan anemia. Haematologica 2018; 103(6): 949–58. PubMed PMC

Buchanan GR, Alter BP, Holtkamp CA, Walsh EG. Platelet number and function in Diamond-Blackfan anemia. Pediatrics 1981; 68(2): 238–41. PubMed

Gianferante MD, Wlodarski MW, Atsidaftos E, et al. Genotype-phenotype association and variant characterization in Diamond-Blackfan anemia caused by pathogenic variants in RPL35A. Haematologica 2021; 106(5): 1303–10. PubMed PMC

Iskander D, Roberts I, Rees C, et al. Impaired cellular and humoral immunity is a feature of Diamond-Blackfan anaemia; experience of 107 unselected cases in the United Kingdom. Br J Haematol 2019; 186(2): 321–6. PubMed

van Dooijeweert B, Kia SK, Dahl N, et al. GATA-1 Defects in Diamond-Blackfan Anemia: Phenotypic Characterization Points to a Specific Subset of Disease. Genes (Basel) 2022; 13(3). PubMed PMC

Giri N, Kang E, Tisdale JF, et al. Clinical and laboratory evidence for a trilineage haematopoietic defect in patients with refractory Diamond-Blackfan anaemia. Br J Haematol 2000; 108(1): 167–75. PubMed

Kimura K, Shimazu K, Toki T, et al. Outcome of colorectal cancer in Diamond-Blackfan syndrome with a ribosomal protein S19 mutation. Clin J Gastroenterol 2020; 13(6): 1173–7. PubMed

Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17(5): 405–24. PubMed PMC

Willig TN, Perignon JL, Gustavsson P, et al. High adenosine deaminase level among healthy probands of Diamond Blackfan anemia (DBA) cosegregates with the DBA gene region on chromosome 19q13. The DBA Working Group of Societe d’Immunologie Pediatrique (SHIP). Blood 1998; 92(11): 4422–7. PubMed

Quarello P, Garelli E, Carando A, et al. Ribosomal RNA analysis in the diagnosis of Diamond-Blackfan Anaemia. Br J Haematol 2016; 172(5): 782–5. PubMed

Farrar JE, Quarello P, Fisher R, et al. Exploiting pre-rRNA processing in Diamond Blackfan anemia gene discovery and diagnosis. Am J Hematol 2014; 89(10): 985–91. PubMed PMC

Ben-Ami T, Revel-Vilk S, Brooks R, et al. Extending the Clinical Phenotype of Adenosine Deaminase 2 Deficiency. J Pediatr 2016; 177: 316–20. PubMed

Claassen D, Boals M, Bowling KM, et al. Complexities of genetic diagnosis illustrated by an atypical case of congenital hypoplastic anemia. Cold Spring Harb Mol Case Stud 2018; 4(6). PubMed PMC

Vlachos A, Klein GW, Lipton JM. The Diamond Blackfan Anemia Registry: tool for investigating the epidemiology and biology of Diamond-Blackfan anemia. J Pediatr Hematol Oncol 2001; 23(6): 377–82. PubMed

Moetter J, Kartal M, Meerpohl J, et al. Analysis of ribosomal protein genes associated with Diamond Blackfan anemia (DBA) in German DBA patients and their relatives. ASH Annual Meeting Abstracts 2011; 118(21): 729.

Ulirsch JC, Verboon JM, Kazerounian S, et al. The Genetic Landscape of Diamond-Blackfan Anemia. Am J Hum Genet 2018; 103(6): 930–47. PubMed PMC

Aspesi A, Monteleone V, Betti M, et al. Lymphoblastoid cell lines from Diamond Blackfan anaemia patients exhibit a full ribosomal stress phenotype that is rescued by gene therapy. Sci Rep 2017; 7(1): 12010. PubMed PMC

Clarke SR, Vlachos A, Lichtenberg J, et al. Whole Genome Sequencing of Diamond Blackfan Anemia Syndrome Patients Detects Mutations That Alter mRNA Splicing. Blood 2021; 138(Supplement 1): 863-.

Da Costa L, O’Donohue MF, van Dooijeweert B, et al. Molecular approaches to diagnose Diamond-Blackfan anemia: The EuroDBA experience. Eur J Med Genet 2018; 61(11): 664–73. PubMed

Pospisilova D, Cmejlova J, Ludikova B, et al. The Czech National Diamond-Blackfan Anemia Registry: clinical data and ribosomal protein mutations update. Blood Cells Mol Dis 2012; 48(4): 209–18. PubMed

Campagnoli MF, Garelli E, Quarello P, et al. Molecular basis of Diamond-Blackfan anemia: new findings from the Italian registry and a review of the literature. Haematologica 2004; 89(4): 480–9. PubMed

Pali M, Moetter J, Meerpohl J, et al. Identification of Novel Mutations In Ribosomal Genes In Patients with Diamond Blackfan Anemia (DBA) In Germany and Genotype-Phenotype Correlation Analysis. ASH Annual Meeting Abstracts 2010; 116(21): 2244.

Doherty L, Sheen MR, Vlachos A, et al. Ribosomal protein genes RPS10 and RPS26 are commonly mutated in Diamond-Blackfan anemia. Am J Hum Genet 2010; 86(2): 222–8. PubMed PMC

Gazda HT, Sheen MR, Vlachos A, et al. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am J Hum Genet 2008; 83(6): 769–80. PubMed PMC

Wan Y, Gong X, Cheng S, et al. Short Stature in Patients with Diamond-Blackfan Anemia: A Cross-Sectional Study. J Pediatr 2022; 240: 177–85. PubMed

Bhar S, Zhou F, Reineke LC, et al. Expansion of germline RPS20 mutation phenotype to include Diamond-Blackfan anemia. Hum Mutat 2020; 41(11): 1918–30. PubMed PMC

Lezzerini M, Penzo M, O’Donohue MF, et al. Ribosomal protein gene RPL9 variants can differentially impair ribosome function and cellular metabolism. Nucleic Acids Res 2020; 48(2): 770–87. PubMed PMC

O’Donohue MF, Da Costa LM, Lezzerini M, et al. HEATR3 variants impair nuclear import of uL18 (RPL5) and drive Diamond-Blackfan anemia. Blood 2022. PubMed PMC

Nissen KB, Masmas TN, Nielsen RG, Christiansen M, Wlodarski M, Hasle H. Congenital pure red cell anemia and idiopathic very early onset of severe colitis cured by allogeneic hematopoetic stem cell transplantation. Pediatr Blood Cancer 2023; 70(11): e30525. PubMed

van den Akker M, Dror Y, Odame I. Transient erythroblastopenia of childhood is an underdiagnosed and self-limiting disease. Acta Paediatr 2014; 103(7): e288–94. PubMed

Young NS, Brown KE. Parvovirus B19. N Engl J Med 2004; 350(6): 586–97. PubMed

Glader BE, Backer K, Diamond LK. Elevated erythrocyte adenosine deaminase activity in congenital hypoplastic anemia. N Engl J Med 1983; 309(24): 1486–90. PubMed

Fargo JH, Kratz CP, Giri N, et al. Erythrocyte adenosine deaminase: diagnostic value for Diamond-Blackfan anaemia. Br J Haematol 2013; 160(4): 547–54. PubMed PMC

Narla A, Davis NL, Lavasseur C, Wong C, Glader B. Erythrocyte adenosine deaminase levels are elevated in Diamond Blackfan anemia but not in the 5q- syndrome. Am J Hematol 2016; 91(12): E501–E2. PubMed PMC

Bluteau O, Sebert M, Leblanc T, et al. A landscape of germ line mutations in a cohort of inherited bone marrow failure patients. Blood 2018; 131(7): 717–32. PubMed

Vlachos A, Farrar JE, Atsidaftos E, et al. Diminutive somatic deletions in the 5q region lead to a phenotype atypical of classical 5q- syndrome. Blood 2013; 122(14): 2487–90. PubMed PMC

Liu D, Ahmet A, Ward L, et al. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin Immunol 2013; 9(1): 30. PubMed PMC

Chaia-Semerena GM, Vargas-Camano ME, Alonso-Bello CD, et al. The Effects of Alternate-Day Corticosteroids in Autoimmune Disease Patients. Autoimmune Dis 2020; 2020: 8719284. PubMed PMC

Vlachos A, Muir E. How I treat Diamond-Blackfan anemia. Blood 2010; 116(19): 3715–23. PubMed PMC

Vlachos A, Blanc L, Lipton JM. Diamond Blackfan anemia: a model for the translational approach to understanding human disease. Expert Rev Hematol 2014; 7(3): 359–72. PubMed

Vlachos A, Rosenberg PS, Atsidaftos E, et al. Increased risk of colon cancer and osteogenic sarcoma in Diamond-Blackfan anemia. Blood 2018; 132(20): 2205–8. PubMed PMC

Berdoukas V, Nord A, Carson S, et al. Tissue iron evaluation in chronically transfused children shows significant levels of iron loading at a very young age. Am J Hematol 2013; 88(11): E283–5. PubMed

Porter JB, Walter PB, Neumayr LD, et al. Mechanisms of plasma non-transferrin bound iron generation: insights from comparing transfused diamond blackfan anaemia with sickle cell and thalassaemia patients. Br J Haematol 2014; 167(5): 692–6. PubMed PMC

Roggero S, Quarello P, Vinciguerra T, Longo F, Piga A, Ramenghi U. Severe iron overload in Blackfan-Diamond anemia: a case-control study. Am J Hematol 2009; 84(11): 729–32. PubMed

Pfeifer CD, Schoennagel BP, Grosse R, et al. Pancreatic iron and fat assessment by MRI-R2* in patients with iron overload diseases. J Magn Reson Imaging 2015; 42(1): 196–203. PubMed

Puliyel M, Sposto R, Berdoukas VA, et al. Ferritin trends do not predict changes in total body iron in patients with transfusional iron overload. Am J Hematol 2014; 89(4): 391–4. PubMed

Wood JC, Enriquez C, Ghugre N, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005; 106(4): 1460–5. PubMed PMC

Coates TD. Iron overload in transfusion-dependent patients. Hematology Am Soc Hematol Educ Program 2019; 2019(1): 337–44. PubMed PMC

Carpenter JP, He T, Kirk P, et al. On T2* magnetic resonance and cardiac iron. Circulation 2011; 123(14): 1519–28. PubMed PMC

Lota AS, Gatehouse PD, Mohiaddin RH. T2 mapping and T2* imaging in heart failure. Heart Fail Rev 2017; 22(4): 431–40. PubMed PMC

Patton N, Brown G, Leung M, et al. Observational study of iron overload as assessed by magnetic resonance imaging in an adult population of transfusion-dependent patients with beta thalassaemia: significant association between low cardiac T2* < 10 ms and cardiac events. Intern Med J 2010; 40(6): 419–26. PubMed

Kamperidis V, Vlachou M, Pappa Z, et al. Prediction of long-term survival in patients with transfusion-dependent hemoglobinopathies: Insights from cardiac imaging and ferritin. Hellenic J Cardiol 2021; 62(6): 429–38. PubMed

Bonios MJ, Fountas E, Delaporta P, et al. Left ventricular deformation mechanics over time in patients with thalassemia major with and without iron overload. BMC Cardiovasc Disord 2021; 21(1): 81. PubMed PMC

Styles LA, Vichinsky EP. Ototoxicity in hemoglobinopathy patients chelated with desferrioxamine. J Pediatr Hematol Oncol 1996; 18(1): 42–5. PubMed

Cappellini MD, El-Beshlawy A, Kattamis A, et al. Efficacy and Safety of Deferasirox (Exjade

Dee CM, Cheuk DK, Ha SY, Chiang AK, Chan GC. Incidence of deferasirox-associated renal tubular dysfunction in children and young adults with beta-thalassaemia. Br J Haematol 2014; 167(3): 434–6. PubMed

Menaker N, Halligan K, Shur N, et al. Acute Liver Failure During Deferasirox Chelation: A Toxicity Worth Considering. J Pediatr Hematol Oncol 2017; 39(3): 217–22. PubMed

Cohen AR, Galanello R, Piga A, Dipalma A, Vullo C, Tricta F. Safety profile of the oral iron chelator deferiprone: a multicentre study. Br J Haematol 2000; 108(2): 305–12. PubMed

Tricta F, Uetrecht J, Galanello R, et al. Deferiprone-induced agranulocytosis: 20 years of clinical observations. Am J Hematol 2016; 91(10): 1026–31. PubMed PMC

Lecornec N, Castex MP, Reguerre Y, et al. Agranulocytosis in patients with Diamond-Blackfan anemia treated with deferiprone for post-transfusion iron overload: a retrospective study of the French DBA cohort. Br J Haematol 2022; In Press. PubMed

Porter JB, Wood J, Olivieri N, et al. Treatment of heart failure in adults with thalassemia major: response in patients randomised to deferoxamine with or without deferiprone. J Cardiovasc Magn Reson 2013; 15: 38. PubMed PMC

Fagioli F, Quarello P, Zecca M, et al. Haematopoietic stem cell transplantation for Diamond Blackfan anaemia: a report from the Italian Association of Paediatric Haematology and Oncology Registry. Br J Haematol 2014; 165(5): 673–81. PubMed

Strahm B, Loewecke F, Niemeyer CM, et al. Favorable outcomes of hematopoietic stem cell transplantation in children and adolescents with Diamond-Blackfan anemia. Blood Adv 2020; 4(8): 1760–9. PubMed PMC

Li Q, Luo C, Luo C, et al. Disease-specific hematopoietic stem cell transplantation in children with inherited bone marrow failure syndromes. Ann Hematol 2017; 96(8): 1389–97. PubMed

Crazzolara R, Kropshofer G, Haas OA, Matthes-Martin S, Kager L. Reduced-intensity conditioning and stem cell transplantation in infants with Diamond Blackfan anemia. Haematologica 2017; 102(3): e73–e5. PubMed PMC

Peffault de Latour R, Peters C, Gibson B, et al. Recommendations on hematopoietic stem cell transplantation for inherited bone marrow failure syndromes. Bone Marrow Transplant 2015; 50(9): 1168–72. PubMed

Angelucci E, Matthes-Martin S, Baronciani D, et al. Hematopoietic stem cell transplantation in thalassemia major and sickle cell disease: indications and management recommendations from an international expert panel. Haematologica 2014; 99(5): 811–20. PubMed PMC

Miano M, Eikema DJ, de la Fuente J, et al. Stem Cell Transplantation for Diamond-Blackfan Anemia. A Retrospective Study on Behalf of the Severe Aplastic Anemia Working Party of the European Blood and Marrow Transplantation Group (EBMT). Transplant Cell Ther 2021; 27(3): 274 e1- e5. PubMed

Vlachos A, Atsidaftos E, Lababidi ML, et al. L-leucine improves anemia and growth in patients with transfusion-dependent Diamond-Blackfan anemia: Results from a multicenter pilot phase I/II study from the Diamond-Blackfan Anemia Registry. Pediatr Blood Cancer 2020; 67(12): e28748. PubMed PMC

Wasser JS, Yolken R, Miller DR, Diamond L. Congenital hypoplastic anemia (Diamond-Blackfan syndrome) terminating in acute myelogenous leukemia. Blood 1978; 51(5): 991–5. PubMed

Lipton JM, Federman N, Khabbaze Y, et al. Osteogenic sarcoma associated with Diamond-Blackfan anemia: a report from the Diamond-Blackfan Anemia Registry. J Pediatr Hematol Oncol 2001; 23(1): 39–44. PubMed

Vlachos A, Rosenberg PS, Atsidaftos E, Alter BP, Lipton JM. Incidence of neoplasia in Diamond Blackfan anemia: a report from the Diamond Blackfan Anemia Registry. Blood 2012; 119(16): 3815–9. PubMed PMC

Lipton JM, Molmenti CLS, Desai P, Lipton A, Ellis SR, Vlachos A. Early Onset Colorectal Cancer: An Emerging Cancer Risk in Patients with Diamond Blackfan Anemia. Genes (Basel) 2021; 13(1). PubMed PMC

Lipton JM, Molmenti CLS, Hussain M, et al. Colorectal cancer screening and surveillance strategy for patients with Diamond Blackfan anemia: Preliminary recommendations from the Diamond Blackfan Anemia Registry. Pediatr Blood Cancer 2021; 68(8): e28984. PubMed

NCCN colorectal cancer screening practice guidelines. National Comprehensive Cancer Network. Oncology (Williston Park) 1999; 13(5A): 152–79. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...