Genotype-phenotype association and variant characterization in Diamond-Blackfan anemia caused by pathogenic variants in RPL35A
Jazyk angličtina Země Itálie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem
Grantová podpora
HHSN261201100018C
NCI NIH HHS - United States
R01 HL079571
NHLBI NIH HHS - United States
PubMed
32241839
PubMed Central
PMC8094096
DOI
10.3324/haematol.2020.246629
PII: haematol.2020.246629
Knihovny.cz E-zdroje
- MeSH
- Diamondova-Blackfanova anemie * genetika MeSH
- fenotyp MeSH
- genetické asociační studie MeSH
- lidé MeSH
- mutace MeSH
- ribozomální proteiny genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- ribozomální proteiny MeSH
- RPL35A protein, human MeSH Prohlížeč
Diamond Blackfan anemia (DBA) is predominantly an autosomal dominant inherited red cell aplasia primarily caused by pathogenic germline variants in ribosomal protein genes. DBA due to pathogenic RPL35A variants has been associated with large 3q29 deletions and phenotypes not common in DBA. We conducted a multi-institutional genotype-phenotype study of 45 patients with DBA associated with pathogenic RPL35A germline variants and curated the variant data on 21 additional cases from the literature. Genotype-phenotype analyses were conducted comparing patients with large deletions versus all other pathogenic variants in RPL35A. Twenty-two of the 45 cases had large deletions in RPL35A. After adjusting for multiple tests, a statistically significant association was observed between patients with a large deletion and steroid-resistant anemia, neutropenia, craniofacial abnormalities, chronic gastrointestinal problems, and intellectual disabilities (p<0.01) compared with all other pathogenic variants. Non-large deletion pathogenic variants were spread across RPL35A with no apparent hot spot and 56% of the individual family variants were observed more than once. In this, the largest known study of DBA patients with pathogenic RPL35A variants, we determined that patients with large deletions have a more severe phenotype that is clinically different from those with non-large deletion variants. Genes of interest also deleted in the 3q29 region that could be associated with some of these phenotypic features include LMLN and IQCG. Management of DBA due to large RPL35A deletions may be challenging due to complex problems and require comprehensive assessments by multiple specialists including immunologic, gastrointestinal, and developmental evaluations to provide optimal multidisciplinary care.
1st Department of Pediatrics National and Kapodistrian University of Athens Greece
Arkansas Children Research Institute University of Arkansas Little Rock USA
Division of Cancer Epidemiology and Genetics National Cancer Institute NIH Rockville MD USA
Division of Hematology Oncology Boston Children's Hospital Harvard Medical School Boston MA USA
Division of Pediatric Hematology and Oncology University of Freiburg Germany
Feinstein Institute of Medical Research Cohen Children's Medical Center NY USA
Palacky University and University Hospital Olomouc Czech Republic
Pediatric and Public Health Science University of Torino Torino Italy
Regina Margherita Children's Hospital Torino Italy
Service Hematologie Biologique Hopital Robert Debré Université de Paris France
Zobrazit více v PubMed
Vlachos A, Ball S, Dahl N, et al. . Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br J Haematol. 2008;142(6):859-876. PubMed PMC
Campagnoli MF, Garelli E, Quarello P, et al. . Molecular basis of Diamond-Blackfan anemia: new findings from the Italian registry and a review of the literature. Haematologica. 2004;89(4):480-489. PubMed
Ball SE, McGuckin CP, Jenkins G, et al. . Diamond-Blackfan anaemia in the U.K.: analysis of 80 cases from a 20-year birth cohort. Br J Haematol. 1996;94(4):645-653. PubMed
Willig TN, Niemeyer CM, Leblanc T, et al. . Identification of new prognosis factors from the clinical and epidemiologic analysis of a registry of 229 Diamond-Blackfan anemia patients. DBA group of Societe d'Hematologie et d'Immunologie Pediatrique (SHIP), Gesellshaft fur Padiatrische Onkologie und Hamatologie (GPOH), and the European Society for Pediatric Hematology and Immunology (ESPHI). Pediatr Res. 1999;46(5):553-561. PubMed
Willig TN, Ball SE, Tchernia G. Current concepts and issues in Diamond-Blackfan anemia. Curr Opin Hematol. 1998;5(2):109-115. PubMed
Diamond LK, Wang WC, Alter BP. Congenital hypoplastic anemia. Adv Pediatr. 1976;22:349-378. PubMed
Vlachos A, Rosenberg PS, Atsidaftos E, et al. . Incidence of neoplasia in Diamond Blackfan anemia: a report from the Diamond Blackfan Anemia Registry. Blood. 2012;119(16):3815-3819. PubMed PMC
Vlachos A, Rosenberg PS, Atsidaftos E, et al. . Increased risk of colon cancer and osteogenic sarcoma in Diamond-Blackfan anemia. Blood. 2018;132(20):2205-2208. PubMed PMC
Narla A, Vlachos A, Nathan DG. Diamond Blackfan anemia treatment: past, present, and future. Semin Hematol. 2011;48(2):117-123. PubMed PMC
Ulirsch JC, Verboon JM, Kazerounian S, et al. . The genetic landscape of Diamond- Blackfan anemia. Am J Hum Genet. 2018;103(6):930-947. PubMed PMC
Khajuria RK, Munschauer M, Ulirsch JC, et al. . Ribosome levels selectively regulate translation and lineage commitment in human hematopoiesis. Cell. 2018;173(1):90-103.e119. PubMed PMC
Arbiv OA, Cuvelier G, Klaassen RJ, et al. . Molecular analysis and genotype-phenotype correlation of Diamond-Blackfan anemia. Clin Genet. 2018;93(2):320-328. PubMed
Kuramitsu M, Sato-Otsubo A, Morio T, et al. . Extensive gene deletions in Japanese patients with Diamond-Blackfan anemia. Blood. 2012;119(10):2376-2384. PubMed
Farrar JE, Nater M, Caywood E, et al. . Abnormalities of the large ribosomal subunit protein, Rpl35a, in Diamond-Blackfan anemia. Blood. 2008;112(5):1582-1592. PubMed PMC
Alkhunaizi E, Schrewe B, Alizadehfar R, et al. . Novel 3q27.2-qter deletion in a patient with Diamond-Blackfan anemia and immunodeficiency: case report and review of literature. Am J Med Genet A. 2017; 173(6):1514-1520. PubMed
Smetanina NS, Mersiyanova IV, Kurnikova MA, et al. . Clinical and genomic heterogeneity of Diamond Blackfan anemia in the Russian Federation. Pediatr Blood Cancer. 2015;62(9):1597-1600. PubMed PMC
Waespe N, Dhanraj S, Wahala M, et al. . The clinical impact of copy number variants in inherited bone marrow failure syndromes. NPJ Genom Med. 2017;2:18. PubMed PMC
Quarello P, Garelli E, Brusco A, et al. . High frequency of ribosomal protein gene deletions in Italian Diamond-Blackfan anemia patients detected by multiplex ligationdependent probe amplification assay. Haematologica. 2012;97(12):1813-1817. PubMed PMC
Wang R, Yoshida K, Toki T, et al. . Loss of function mutations in RPL27 and RPS27 identified by whole-exome sequencing in Diamond-Blackfan anaemia. Br J Haematol. 2015;168(6):854-864. PubMed
Wan Y, Chen X, An W, et al. . Clinical features, mutations and treatment of 104 patients of Diamond-Blackfan anemia in China: a single-center retrospective study. Int J Hematol. 2016;104(4):430-439. PubMed
Glassford MR, Rosenfeld JA, Freedman AA, et al. . Novel features of 3q29 deletion syndrome: results from the 3q29 registry. Am J Med Genet A. 2016;170a(4):999-1006. PubMed PMC
Murphy MM, Lindsey Burrell T, Cubells JF, et al. . Study protocol for The Emory 3q29 Project: evaluation of neurodevelopmental, psychiatric, and medical symptoms in 3q29 deletion syndrome. BMC Psychiatry. 2018;18(1):183. PubMed PMC
Digilio MC, Bernardini L, Mingarelli R, et al. . 3q29 microdeletion: a mental retardation disorder unassociated with a recognizable phenotype in two mother-daughter pairs. Am J Med Genet A. 2009;149a(8):1777-1781. PubMed
Willatt L, Cox J, Barber J, et al. . 3q29 microdeletion syndrome: clinical and molecular characterization of a new syndrome. Am J Hum Genet. 2005;77(1):154-160. PubMed PMC
Alter BP, Giri N, Savage SA, et al. . Cancer in the National Cancer Institute inherited bone marrow failure syndrome cohort after fifteen years of follow-up. Haematologica. 2018;103(1):30-39. PubMed PMC
Lipton JM, Atsidaftos E, Zyskind I, et al. . Improving clinical care and elucidating the pathophysiology of Diamond Blackfan anemia: an update from the Diamond Blackfan Anemia Registry. Pediatr Blood Cancer. 2006;46(5):558-564. PubMed
Landrum MJ, Lee JM, Benson M, et al. . ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062-D1067. PubMed PMC
Stenson PD, Mort M, Ball EV, et al. . The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet. 2014;133(1):1-9. PubMed PMC
ClinGen. Clinical laboratories meeting minimum requirements for data sharing to support quality assurance. https://clinicalgenome.org/tools/clinical-lab-data-sharing-list/Last accessed 22 Feb 2019.
Da Costa L, Narla A, Mohandas N. An update on the pathogenesis and diagnosis of Diamond-Blackfan anemia. 2018;7:F1000 Faculty Rev-1350.. PubMed PMC
Bessler M, Mason P, Link D, et al. . Nathan and Oski's Hematology of Infancy and Childhood E-Book: Expert Consult: Online and Print. Orkin SH, ed. Inherited Bone Marrow Failure Syndromes. 7th ed: Elsevier Health Sciences; 2009:351-360.
Karczewski KJ, Francioli LC, Tiao G, et al. . Variation across 141,456 human exomes and genomes reveals the spectrum of loss-offunction intolerance across human proteincoding genes. bioRxiv. 2019:531210.
Rentzsch P, Witten D, Cooper GM, et al. . CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47(D1):D886-D894. PubMed PMC
Ioannidis NM, Rothstein JH, Pejaver V, et al. . REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet. 2016;99(4):877-885. PubMed PMC
Cingolani P, Platts A, Wang LL, et al. . A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6(2):80-92. PubMed PMC
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. PubMed PMC
Zhou X, Edmonson MN, Wilkinson MR, et al. . Exploring genomic alteration in pediatric cancer using ProteinPaint. Nat Genet. 2016;48(1):4-6. PubMed PMC
Karolchik D, Hinrichs AS, Furey TS, et al. . The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 2004;32(Database issue):D493-D496. PubMed PMC
StataCorp. Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC. 2017.
Mirabello L, Khincha PP, Ellis SR, et al. . Novel and known ribosomal causes of Diamond- Blackfan anaemia identified through comprehensive genomic characterisation. J Med Genet. 2017;54(6):417-425. PubMed
Delaporta P, Sofocleous C, Stiakaki E, et al. . Clinical phenotype and genetic analysis of RPS19, RPL5, and RPL11 genes in Greek patients with Diamond Blackfan Anemia. Pediatr Blood Cancer. 2014;61(12):2249-2255. PubMed
Quarello P, Garelli E, Carando A, et al. . Ribosomal RNA analysis in the diagnosis of Diamond-Blackfan anaemia. Br J Haematol. 2016;172(5):782-785. PubMed
Farrar JE, Dahl N. Untangling the phenotypic heterogeneity of Diamond Blackfan anemia. Semin Hematol. 2011;48(2):124-135. PubMed PMC
Li F, Lisi EC, Wohler ES, et al. . 3q29 interstitial microdeletion syndrome: an inherited case associated with cardiac defect and normal cognition. Eur J Med Genet. 2009; 52(5):349-352. PubMed
Pollazzon M, Grosso S, Papa FT, et al. . A 9.3 Mb microdeletion of 3q27.3q29 associated with psychomotor and growth delay, tricuspid valve dysplasia and bifid thumb. Eur J Med Genet. 2009;52(2-3):131-133. PubMed
Quintero-Rivera F, Sharifi-Hannauer P, Martinez-Agosto JA. Autistic and psychiatric findings associated with the 3q29 microdeletion syndrome: case report and review. Am J Med Genet A. 2010; 152a(10):2459-2467. PubMed
McHugh B, Krause SA, Yu B, et al. . Invadolysin: a novel, conserved metalloprotease links mitotic structural rearrangements with cell migration. J Cell Biol. 2004; 167(4):673-686. PubMed PMC
Cobbe N, Marshall KM, Gururaja Rao S, et al. . The conserved metalloprotease invadolysin localizes to the surface of lipid droplets. J Cell Sci. 2009;122(Pt 18):3414-3423. PubMed PMC
Chen LT, Liang WX, Chen S, et al. . Functional and molecular features of the calmodulin-interacting protein IQCG required for haematopoiesis in zebrafish. Nat Commun. 2014;5:3811. PubMed
Pan M, Zhang Q, Liu P, et al. . Inhibition of the nuclear export of p65 and IQCG in leukemogenesis by NUP98-IQCG. Front Med. 2016;10(4):410-419. PubMed
Pan Q, Zhu YJ, Gu BW, et al. . A new fusion gene NUP98-IQCG identified in an acute Tlymphoid/ myeloid leukemia with a t(3;11)(q29q13;p15)del(3)(q29) translocation. Oncogene. 2008;27(24):3414-3423. PubMed