Are there consistent effects of gut microbiota composition on performance, productivity and condition in poultry?
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38701628
PubMed Central
PMC11078699
DOI
10.1016/j.psj.2024.103752
PII: S0032-5791(24)00333-X
Knihovny.cz E-zdroje
- Klíčová slova
- condition, gut microbiome, performance, poultry, probiotic,
- MeSH
- chov zvířat metody MeSH
- kur domácí * mikrobiologie fyziologie MeSH
- probiotika farmakologie aplikace a dávkování MeSH
- střevní mikroflóra * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Microbiome of the gastrointestinal tract (GIT) has been identified as one of the crucial factors influencing the health and condition of domestic animals. The global poultry industry faces the challenge of understanding the complex relationship between gut microbiota composition and performance-related traits in birds. Considerable variation exists in the results of correlational studies using either 16S rRNA profiling or metagenomics to identify bacterial taxa associated with performance, productivity, or condition in poultry (e.g., body weight, growth rate, feeding efficiency, or egg yield). In this review, we survey the existing reports, discuss variation in research approaches, and identify bacterial taxa consistently linked to improved or deteriorated performance across individual poultry-focused studies. Our survey revealed high methodological heterogeneity, which was in contrast with vastly uniform focus of the research mainly on the domestic chicken (Gallus gallus) as a model. We also show that the bacterial taxa most frequently used in manipulative experiments and commercial probiotics intended for use in poultry (e.g., species of Lactobacillus, Bacillus, Enterococcus, or Bifidobacterium) do not overlap with the bacteria consistently correlated with their improved performance (Candidatus Arthromitus, Methanobrevibacter). Our conclusions urge for increased methodological standardization of the veterinary research in this field. We highlight the need to bridge the gap between correlational results and experimental applications in animal science. To better understand causality in the observed relationships, future research should involve a broader range of host species that includes both agricultural and wild models, as well as a broader range of age groups.
Zobrazit více v PubMed
Abd El-Hack M.E., El-Saadony M.T., Shafi M.E., Qattan S.Y.A., Batiha G.E., Khafaga A.F., Abdel-Moneim A.-M.E., Alagawany M. Probiotics in poultry feed: A comprehensive review. J. Anim. Physiol. Anim. Nutr. 2020;104:1835–1850. PubMed
Abdel-Kafy E.-S.M., Youssef S.F.F., Magdy M., Ghoneim S.S.S., Abdelatif H.A.A., Deif-Allah R.A.A., Abdel-Ghafar Y.Z.Z., Shabaan H.M.A., Liu H., Elokil A. Gut microbiota, intestinal morphometric characteristics, and gene expression in relation to the growth performance of chickens. Animals. 2022;12:3474. PubMed PMC
Angel C., Sell J., Fagerland J., Reynolds D., Trampel D. Long-segmented filamentous organisms observed in poults experimentally infected with stunting syndrome agent. Avian Dis. 1990;34:994–1001. PubMed
Applegate T.J., Klose V., Steiner T., Ganner A., Schatzmayr G. Probiotics and phytogenics for poultry: myth or reality? J. Appl. Poult. Res. 2010;19:194–210.
Bai H., Shi L., Guo Q., Jiang Y., Li X., Geng D., Wang C., Bi Y., Wang Z., Chen G., Xue F., Chang G. Metagenomic insights into the relationship between gut microbiota and residual feed intake of small-sized meat ducks. Front. Microbiol. 2023;13 PubMed PMC
Barreto M.O., Soust M., Moore R.J., Olchowy T.W.J., Alawneh J.I. Systematic review and meta-analysis of probiotic use on inflammatory biomarkers and disease prevention in cattle. Prev. Vet. Med. 2021;194 PubMed
Benskin C.M.H., Rhodes G., Pickup R.W., Mainwaring M.C., Wilson K., Hartley I.R. Life history correlates of fecal bacterial species richness in a wild population of the blue tit Cyanistes caeruleus. Ecol. Evol. 2015;5:821–835. PubMed PMC
Berg G., Rybakova D., Fischer D., Cernava T., Vergès M.-C.C., Charles T., Chen X., Cocolin L., Eversole K., Corral G.H., Kazou M., Kinkel L., Lange L., Lima N., Loy A., Macklin J.A., Maguin E., Mauchline T., McClure R., Mitter B., Ryan M., Sarand I., Smidt H., Schelkle B., Roume H., Kiran G.S., Selvin J., de Souza R.S.C., van Overbeek L., Singh B.K., Wagner M., Walsh A., Sessitsch A., Schloter M. Microbiome definition re-visited: old concepts and new challenges. Microbiome. 2020;8:103. PubMed PMC
Bindari Y.R., Moore R.J., Van T.T.H., Walkden-Brown S.W., Gerber P.F. Microbial taxa in dust and excreta associated with the productive performance of commercial meat chicken flocks. Anim. Microbiome. 2021;3:66. PubMed PMC
Camara A., Konate S., Tidjani Alou M., Kodio A., Togo A.H., Cortaredona S., Henrissat B., Thera M.A., Doumbo O.K., Raoult D., Million M. Clinical evidence of the role of Methanobrevibacter smithii in severe acute malnutrition. Sci. Rep. 2021;11:5426. PubMed PMC
Danzeisen J.L., Calvert A.J., Noll S.L., McComb B., Sherwood J.S., Logue C.M., Johnson T.J. Succession of the turkey gastrointestinal bacterial microbiome related to weight gain. Peer J. 2013;1:e237. PubMed PMC
Davidson G.L., Somers S.E., Wiley N., Johnson C.N., Reichert M.S., Ross R.P., Stanton C., Quinn J.L. A time-lagged association between the gut microbiome, nestling weight and nestling survival in wild great tits. J. Anim. Ecol. 2021;90:989–1003. PubMed
Dehau T., Ducatelle R., Van Immerseel F., Goossens E. Omics technologies in poultry health and productivity - part 1: current use in poultry research. Avian Pathol. 2022;51:407–417. PubMed
Díaz-Sánchez S., Perrotta A.R., Rockafellow I., Alm E.J., Okimoto R., Hawken R., Hanning I. Using fecal microbiota as biomarkers for predictions of performance in the selective breeding process of pedigree broiler breeders. PloS One. 2019;14 PubMed PMC
Du W., Deng J., Yang Z., Zeng L., Yang X. Metagenomic analysis reveals linkages between cecal microbiota and feed efficiency in Xiayan chickens. Poult. Sci. 2020;99:7066–7075. PubMed PMC
Duquenoy A., Ania M., Boucher N., Reynier F., Boucinha L., Andreoni C., Thomas V. Caecal microbiota compositions from 7-day-old chicks reared in high-performance and low-performance industrial farms and systematic culturomics to select strains with anti-Campylobacter activity. Plos One. 2020;15 PubMed PMC
Elokil A.A., Magdy M., Melak S., Ishfaq H., Bhuiyan A., Cui L., Jamil M., Zhao S., Li S. Faecal microbiome sequences in relation to the egg-laying performance of hens using amplicon-based metagenomic association analysis. Animal. 2020;14:706–715. PubMed
Fu Z., Yang H., Xiao Y., Wang X., Yang C., Lu L., Wang W., Lyu W. Ileal microbiota alters the immunity statues to affect body weight in Muscovy ducks. Front. Immunol. 2022;13 PubMed PMC
Ghavami S.B., Rostami E., Sephay A.A., Shahrokh S., Balaii H., Aghdaei H.A., Zali M.R. Alterations of the human gut Methanobrevibacter smithii as a biomarker for inflammatory bowel diseases. Microb. Pathog. 2018;117:285–289. PubMed
Goodwin M., Cooper G., Brown J., Bickford A., Waltman W., Dickson T. Clinical, pathological, and epizootiological features of long-segmented filamentous organisms (bacteria, Lsfos) in the small-intestines of chickens, turkeys, and quails. Avian Dis. 1991;35:872–876. PubMed
Gosler A.G., Harper D. Assessing the heritability of body condition in birds: a challenge exemplified by the great tit Parus major L. (Aves) Biol. J. Linn. Soc. 2000;71:103–117.
Grond K., Sandercock B.K., Jumpponen A., Zeglin L.H. The avian gut microbiota: community, physiology and function in wild birds. J. Avian Biol. 2018;49:e01788.
Han G.G., Kim E.B., Lee J., Lee J.-Y., Jin G., Park J., Huh C.-S., Kwon I.-K., Kil D.Y., Choi Y.-J., Kong C. Relationship between the microbiota in different sections of the gastrointestinal tract, and the body weight of broiler chickens. Springerplus. 2016;5:911. PubMed PMC
Han H., Sun Y., Fan Y., Zhang H., Yang J., Chi R., Gao Y., Liu J., Li K., Li W., Liu Y. Microbial diversity and community composition of duodenum Microbiota of high and low egg-yielding Taihang chickens identified using 16S rRNA amplicon sequencing. Life-Basel. 2022;12:1262. PubMed PMC
Hedblom G.A., Reiland H.A., Sylte M.J., Johnson T.J., Baumler D.J. Segmented filamentous bacteria - metabolism meets immunity. Front. Microbiol. 2018;9:1991. PubMed PMC
Hou Q., Kwok L.-Y., Zheng Y., Wang L., Guo Z., Zhang J., Huang W., Wang Y., Leng L., Li H., Zhang H. Differential fecal microbiota are retained in broiler chicken lines divergently selected for fatness traits. Sci. Rep. 2016;6:37376. PubMed PMC
Huang Y., Lv H., Song Y., Sun C., Zhang Z., Chen S. Community composition of cecal microbiota in commercial yellow broilers with high and low feed efficiencies. Poult. Sci. 2021;100 PubMed PMC
Jha R., Das R., Oak S., Mishra P. Probiotics (Direct-Fed Microbials) in poultry nutrition and their effects on nutrient utilization, growth and laying performance, and gut health: a systematic review. Animals. 2020;10:1863. PubMed PMC
Jing Y., Yuan Y., Monson M., Wang P., Mu F., Zhang Q., Na W., Zhang K., Wang Y., Leng L., Li Y., Luan P., Wang N., Guo R., Lamont S.J., Li H., Yuan H. Multi-omics association reveals the effects of intestinal microbiome-host interactions on fat deposition in broilers. Front. Microbiol. 2022;12 PubMed PMC
Kahraman R., Ozpinar H., Abas I., Eseceli H., Bilal T., Kutay H.C. Effects of probiotic and antibiotic on performance of broilers. Arch. Geflugelkunde. 2000;64:70–74.
Kohl K.D., Brun A., Bordenstein S.R., Caviedes-Vidal E., Karasov W.H. Gut microbes limit growth in house sparrow nestlings (Passer domesticus) but not through limitations in digestive capacity. Integr. Zool. 2018;13:139–151. PubMed PMC
Konsak B.M., Stanley D., Haring V.R., Geier M.S., Hughes R.J., Howarth G.S., Crowley T.M., Moore R.J. Identification of differential duodenal gene expression levels and microbiota abundance correlated with differences in energy utilisation in chickens. Anim. Prod. Sci. 2013;53:1269–1275.
Kraimi N., Dawkins M., Gebhardt-Henrich S.G., Velge P., Rychlik I., Volf J., Creach P., Smith A., Colles F., Leterrier C. Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: a review. Physiol. Behav. 2019;210 PubMed
Krysiak K., Konkol D., Korczynski M. Overview of the use of probiotics in poultry production. Animals. 2021;11:1620. PubMed PMC
Lee K.-C., Kil D.Y., Sul W.J. Cecal microbiome divergence of broiler chickens by sex and body weight. J. Microbiol. 2017;55:939–945. PubMed
Liu J., Stewart S.N., Robinson K., Yang Q., Lyu W., Whitmore M.A., Zhang G. Linkage between the intestinal microbiota and residual feed intake in broiler chickens. J. Anim. Sci. Biotechnol. 2021;12:22. PubMed PMC
Liu J., Wang J., Zhou Y., Han H., Liu W., Li D., Li F., Cao D., Lei Q. Integrated omics analysis reveals differences in gut microbiota and gut-host metabolite profiles between obese and lean chickens. Poult. Sci. 2022;101 PubMed PMC
Liu Y., Yan T., Ren Z., Yang X. Age-associated changes in caecal microbiome and their apparent correlations with growth performances of layer pullets. Anim. Nutr. 2021;7:841–848. PubMed PMC
Lv H., Huang Y., Wang T., Zhai S., Hou Z., Chen S. Microbial composition in the duodenum and ileum of yellow broilers with high and low feed efficiency. Front. Microbiol. 2021;12 PubMed PMC
Lyu W., Liu X., Lu L., Dai B., Wang W., Yang H., Xiao Y. Cecal microbiota modulates fat deposition in Muscovy ducks. Front. Vet. Sci. 2021;8 PubMed PMC
Mbakwa C.A., Penders J., Savelkoul P.H., Thijs C., Dagnelie P.C., Mommers M., Arts I.C.W. Gut colonization with Methanobrevibacter smithii is associated with childhood weight development. Obesity. 2015;23:2508–2516. PubMed
Meinen-Jochum J., Ott L.C., Mellata M. Segmented filamentous bacteria-based treatment to elicit protection against Enterobacteriaceae in layer chickens. Front. Microbiol. 2023;14 PubMed PMC
Naseem S., Rahman S.U., Shafee M., Sheikh A.A., Khan A. Immunomodulatory and growth-promoting effect of a probiotic supplemented in the feed of broiler chicks vaccinated against infectious bursal disease. Braz. J. Poult. Sci. 2012;14:109–113.
Proctor L., LoTempio J., Marquitz A., Daschner P., Xi D., Flores R., Brown L., Ranallo R., Maruvada P., Regan K., Lunsford R.D., Reddy M., Caler L. A review of 10 years of human microbiome research activities at the US National Institutes of Health, Fiscal Years 2007-2016. Microbiome. 2019;7:31. PubMed PMC
Redweik G.A.J., Kogut M.H., Arsenault R.J., Mellata M. Oral treatment with ileal spores triggers immunometabolic shifts in chicken gut. Front. Vet. Sci. 2020;7:629. PubMed PMC
Roche J.R., Friggens N.C., Kay J.K., Fisher M.W., Stafford K.J., Berry D.P. Invited review: body condition score and its association with dairy cow productivity, health, and welfare. J. Dairy Sci. 2009;92:5769–5801. PubMed
Roy K., Bisgaard M., Kyvsgaard N.C., Christensen J.P., Nielsen O.L., Biswas P.K., Pors S.E., Bojesen A.M. Pathogenicity of wild-type and small-colony variants of Streptococcus equi subsp zooepidemicus in layer chickens. AVIAN Pathol. 2013;42:316–322. PubMed
Royan M. The use of Enterococci as probiotics in poultry. Iran. J. Appl. Anim. Sci. 2018;8:559–565.
Schluter D., Gustafsson L. Maternal inheritance of condition and clutch size in the collared flycatcher. Evolution. 1993;47:658–667. PubMed
Schmiedová L., Černá K., Li T., Těšický M., Kreisinger J., Vinkler M. Bacterial communities along parrot digestive and respiratory tracts: the effects of sample type, species and time. Int. Microbiol. 2024;27:127–142. PubMed PMC
Schnupf P., Gaboriau-Routhiau V., Gros M., Friedman R., Moya-Nilges M., Nigro G., Cerf-Bensussan N., Sansonetti P.J. Growth and host interaction of mouse segmented filamentous bacteria in vitro. Nature. 2015;520:99–U231. PubMed PMC
Shini S., Bryden W.L. Probiotics and gut health: linking gut homeostasis and poultry productivity. Anim. Prod. Sci. 2022;62:1090–1112.
Siegerstetter S.-C., Schmitz-Esser S., Magowan E., Wetzels S.U., Zebeli Q., Lawlor P.G., O'Connell N.E., Metzler-Zebeli B.U. Intestinal microbiota profiles associated with low and high residual feed intake in chickens across two geographical locations. Plos One. 2017;12 PubMed PMC
Singh K.M., Shah T., Deshpande S., Jakhesara S.J., Koringa P.G., Rank D.N., Joshi C.G. High through put 16S rRNA gene-based pyrosequencing analysis of the fecal microbiota of high FCR and low FCR broiler growers. Mol. Biol. Rep. 2012;39:10595–10602. PubMed
Singh K.M., Shah T.M., Reddy B., Deshpande S., Rank D.N., Joshi C.G. Taxonomic and gene-centric metagenomics of the fecal microbiome of low and high feed conversion ratio (FCR) broilers. J. Appl. Genet. 2014;55:145–154. PubMed
Stanley D., Denman S.E., Hughes R.J., Geier M.S., Crowley T.M., Chen H., Haring V.R., Moore R.J. Intestinal microbiota associated with differential feed conversion efficiency in chickens. Appl. Microbiol. Biotechnol. 2012;96:1361–1369. PubMed
Stanley D., Hughes R.J., Geier M.S., Moore R.J. Bacteria within the gastrointestinal tract microbiota correlated with improved growth and feed conversion: challenges presented for the identification of performance enhancing probiotic bacteria. Front. Microbiol. 2016;7:187. PubMed PMC
Su Y., Ge Y., Xu Z., Zhang D., Li D. The digestive and reproductive tract microbiotas and their association with body weight in laying hens. Poult. Sci. 2021;100 PubMed PMC
Tett A., Pasolli E., Masetti G., Ercolini D., Segata N. Prevotella diversity, niches and interactions with the human host. Nat. Rev. Microbiol. 2021;19:585–599. PubMed PMC
Thomas C.M., Desmond-Le Quemener E., Gribaldo S., Borrel G. Factors shaping the abundance and diversity of the gut archaeome across the animal kingdom. Nat. Commun. 2022;13:3358. PubMed PMC
Thompson C.L., Vier R., Mikaelyan A., Wienemann T., Brune A. Candidatus Arthromitus’ revised: segmented filamentous bacteria in arthropod guts are members of Lachnospiraceae. Environ. Microbiol. 2012;14:1454–1465. PubMed
Torok V.A., Hughes R.J., Mikkelsen L.L., Perez-Maldonado R., Balding K., MacAlpine R., Percy N.J., Ophel-Keller K. Identification and characterization of potential performance-related gut microbiotas in broiler chickens across various feeding trials. Appl. Environ. Microbiol. 2011;77:5868–5878. PubMed PMC
Van der Most P.J., de Jong B., Parmentier H.K., Verhulst S. Trade-off between growth and immune function: a meta-analysis of selection experiments. Funct. Ecol. 2011;25:74–80.
Vollmar S., Wellmann R., Borda-Molina D., Rodehutscord M., Camarinha-Silva A., Bennewitz J. The gut microbial architecture of efficiency traits in the domestic poultry model species Japanese quail (Coturnix japonica) assessed by mixed linear models. G3 GenesGenomesGenetics. 2020;10:2553–2562. PubMed PMC
Wen C., Yan W., Sun C., Ji C., Zhou Q., Zhang D., Zheng J., Yang N. The gut microbiota is largely independent of host genetics in regulating fat deposition in chickens. ISME J. 2019;13:1422–1436. PubMed PMC
Worsley S.F., Davies C.S., Mannarelli M.-E., Hutchings M., Komdeur J., Burke T., Dugdale H.L., Richardson D.S. Gut microbiome composition, not alpha diversity, is associated with survival in a natural vertebrate population. Anim. Microbiome. 2021;3:84. PubMed PMC
Yan W., Sun C., Yuan J., Yang N. Gut metagenomic analysis reveals prominent roles of Lactobacillus and cecal microbiota in chicken feed efficiency. Sci. Rep. 2017;7:45308. PubMed PMC
Yousaf S., Nouman H.M., Ahmed I., Husain S., Waseem M., Nadeem S., Tariq M., Sizmaz O., Chudhry M.F.Z. A review of probiotic applications in poultry: improving immunity and having beneficial effects on production and health. Adv. Microbiol. 2022;61:115–123.
Zhang X., Akhtar M., Chen Y., Ma Z., Liang Y., Shi D., Cheng R., Cui L., Hu Y., Nafady A.A., Ansari A.R., Abdel-Kafy E.-S.M., Liu H. Chicken jejunal microbiota improves growth performance by mitigating intestinal inflammation. Microbiome. 2022;10:107. PubMed PMC
Zhang X., Hu Y., Ansari A.R., Akhtar M., Chen Y., Cheng R., Cui L., Nafady A.A., Elokil A.A., Abdel-Kafy E.-S.M., Liu H. Caecal microbiota could effectively increase chicken growth performance by regulating fat metabolism. Microb. Biotechnol. 2022;15:844–861. PubMed PMC
Zhang J., Zhang H., Wang L., Zhang K., Qiu Z., Zhang K., Yue C., Zhang Y., Li J., Zhao X. The safety and potential probiotic properties analysis of Streptococcus alactolyticus strain FGM isolated from the chicken cecum. Ann. Microbiol. 2021;71:19.
Zilber-Rosenberg I., Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. Fems Microbiol. Rev. 2008;32:723–735. PubMed