Emerging technologies in citizen science and potential for insect monitoring

. 2024 Jun 24 ; 379 (1904) : 20230106. [epub] 20240506

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38705194

Emerging technologies are increasingly employed in environmental citizen science projects. This integration offers benefits and opportunities for scientists and participants alike. Citizen science can support large-scale, long-term monitoring of species occurrences, behaviour and interactions. At the same time, technologies can foster participant engagement, regardless of pre-existing taxonomic expertise or experience, and permit new types of data to be collected. Yet, technologies may also create challenges by potentially increasing financial costs, necessitating technological expertise or demanding training of participants. Technology could also reduce people's direct involvement and engagement with nature. In this perspective, we discuss how current technologies have spurred an increase in citizen science projects and how the implementation of emerging technologies in citizen science may enhance scientific impact and public engagement. We show how technology can act as (i) a facilitator of current citizen science and monitoring efforts, (ii) an enabler of new research opportunities, and (iii) a transformer of science, policy and public participation, but could also become (iv) an inhibitor of participation, equity and scientific rigour. Technology is developing fast and promises to provide many exciting opportunities for citizen science and insect monitoring, but while we seize these opportunities, we must remain vigilant against potential risks. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.

Zobrazit více v PubMed

Bonney R, Ballard HL, Jordan RC, McCallie E, Phillips T, Shirk J, Wildermann CC. 2009. Public participation in scientific research: defining the field and assessing its potential for informal science education. Washington, D.C.: Center for Advancement of Informal Science Education.

Irwin A. 1995. Citizen science: A study of people, expertise and sustainable development. London, UK: Routledge.

Bonney R, Shirk JL, Phillips TB, Wiggins A, Ballard HL, Miller-Rushing AJ, Parrish JK. 2014. Next Steps for Citizen Science. Science 343, 1436-1437. (10.1126/science.1251554) PubMed DOI

Pocock MJO, Tweddle JC, Savage J, Robinson LD, Roy HE. 2017. The diversity and evolution of ecological and environmental citizen science. PLoS ONE 12, e0172579. (10.1371/journal.pone.0172579) PubMed DOI PMC

Roger E, Kellie D, Slatyer C, Brenton P, Torresan O, Wallis E, Zerger A. 2023. Open Access Research Infrastructures are Critical for Improving the Accessibility and Utility of Citizen Science: A Case Study of Australia's National Biodiversity Infrastructure, the Atlas of Living Australia (ALA). Citizen Sci.: Theory Practice 8, 56. (10.5334/cstp.564) DOI

Silvertown J. 2009. A new dawn for citizen science. Trends Ecol. Evol. 24, 467-471. (10.1016/j.tree.2009.03.017) PubMed DOI

Stork NE. 2018. How Many Species of Insects and Other Terrestrial Arthropods Are There on Earth? Annu. Rev. Entomol. 63, 31-45. (10.1146/annurev-ento-020117-043348) PubMed DOI

Wagner DL. 2020. Insect Declines in the Anthropocene. Annu. Rev. Entomol. 65, 457-480. (10.1146/annurev-ento-011019-025151) PubMed DOI

Van Klink R, Bowler DE, Gongalsky KB, Swengel AB, Gentile A, Chase JM. 2020. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417-420. (10.1126/science.aax9931) PubMed DOI

Eisenhauer N, Bonn A, Guerra AC. 2019. Recognizing the quiet extinction of invertebrates. Nat. Commun. 10, 50. (10.1038/s41467-018-07916-1) PubMed DOI PMC

Montgomery GA, Dunn RR, Fox R, Jongejans E, Leather SR, Saunders ME, Shortall CR, Tingley MW, Wagner DL. 2020. Is the insect apocalypse upon us? How to find out. Biol. Conserv. 241, 108327. (10.1016/j.biocon.2019.108327) DOI

August T, Harvey M, Lightfoot P, Kilbey D, Papadopoulos T, Jepson P. 2015. Emerging technologies for biological recording. Biol. J. Linnean Soc. 115, 731-749. (10.1111/bij.12534) DOI

Heberling JM, Miller JT, Noesgaard D, Weingart SB, Schigel D. 2021. Data integration enables global biodiversity synthesis. Proc. Natl Acad. Sci. USA 118, e2018093118. (10.1073/pnas.2018093118) PubMed DOI PMC

Gbif.org. 2023. GBIF Insecta metrics [dataset]. https://www.gbif.org

Von Gönner J, Bowler DE, Gröning J, Klauer A-K, Liess M, Neuer L, Bonn A. 2023. Citizen science for assessing pesticide impacts in agricultural streams. Sci.Total Environ. 857, 159607. (10.1016/j.scitotenv.2022.159607) PubMed DOI

Ward. 2014. Understanding sampling and taxonomic biases recorded by citizen scientists. J. Insect Conserv. 18, 753-756. (10.1007/s10841-014-9676-y) DOI

Troudet J, Grandcolas P, Blin A, Vignes-Lebbe R, Legendre F. 2017. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7, 9132. (10.1038/s41598-017-09084-6) PubMed DOI PMC

McKie R. 2019. How an army of ‘citizen scientists’ is helping save our most elusive animals. The Guardian. See https://www.theguardian.com/environment/2019/jul/28/britain-elusive-animals-fall-into-camera-trapcitizen-scientist.

Chowdhury S, et al. 2023a. Increasing biodiversity knowledge through social media: A case study from tropical Bangladesh. BioScience 73, 453-459. (10.1093/biosci/biad042) PubMed DOI PMC

Chowdhury S, et al. . 2023b. Using social media records to inform conservation planning. Conserv. Biol. 38, e14161. (10.1111/cobi.14161) PubMed DOI

Toivonen T, Heikinheimo V, Fink C, Hausmann A, Hiippala T, Järv O, Tenkanen H, Di Minin E. 2019. Social media data for conservation science: A methodological overview. Biol. Conserv. 233, 298-315. (10.1016/j.biocon.2019.01.023) DOI

Van Klink R, et al. 2022. Emerging technologies revolutionise insect ecology and monitoring. Trends Ecol. Evol. 37, 872-885. (10.1016/j.tree.2022.06.001) PubMed DOI

LimeSurvey GmbH. 2023. LimeSurvey online survey tool [Computer software]. https://www.limesurvey.org/

Sheard JK, Büermann A, Chowdhury S, Engel T, Finch EA, Oh RYR, Peters B, Bonn A. 2024. Survey: CITIZEN SCIENCE TECHNOLOGIES - How can we harness and improve the use of technologies in citizen science? (1.0.0) [dataset]. Zenodo. (10.5281/zenodo.10051199) DOI

Adriaens T, et al. . 2023. An annotated list of horizon scanned technologies with potential for application in alien species citizen science projects [dataset]. Zenodo. (10.5281/zenodo.7961855) DOI

Adriaens T, et al. 2015. Trying to engage the crowd in recording invasive alien species in Europe: Experiences from two smartphone applications in northwest Europe. Manage. Biol. Invasions 6, 215-225. (10.3391/mbi.2015.6.2.12) DOI

Howard L, Van Rees CB, Dahlquist Z, Luikart G, Hand BK. 2022. A review of invasive species reporting apps for citizen science and opportunities for innovation. NeoBiota 71, 165-188. (10.3897/neobiota.71.79597) DOI

Kelling S, et al. 2019. Using Semistructured Surveys to Improve Citizen Science Data for Monitoring Biodiversity. BioScience 69, 170-179. (10.1093/biosci/biz010) PubMed DOI PMC

Deguines N, Julliard R, De Flores M, Fontaine C. 2012. The Whereabouts of Flower Visitors: Contrasting Land-Use Preferences Revealed by a Country-Wide Survey Based on Citizen Science. PLoS ONE 7, e45822. (10.1371/journal.pone.0045822) PubMed DOI PMC

UK Pollinator Monitoring Scheme. 2023. The UK PoMS annual report 2022. Wallingford, UK: UK Centre for Ecology & Hydrology and Joint Nature Conservation Committee.

Klein A-M, Boreux V, Fornoff F, Mupepele A-C, Pufal G. 2018. Relevance of wild and managed bees for human well-being. Curr. Opin. Insect Sci. 26, 82-88. (10.1016/j.cois.2018.02.011) PubMed DOI

Bjerge K, Mann HM. R., Høye TT. 2022. Real-time insect tracking and monitoring with computer vision and deep learning. Remote Sens. Ecol. Conserv. 8, 315-327. (10.1002/rse2.245) DOI

Høye TT, et al. 2021. Deep learning and computer vision will transform entomology. Proc. Natl Acad. Sci. USA 118, e2002545117. (10.1073/pnas.2002545117) PubMed DOI PMC

Sittinger M. 2022. Insect Detect—Software for automated insect monitoring with a DIY camera trap system (1.6) [Computer software]. (10.5281/zenodo.7472238) DOI

Wührl L, Rettenberger L, Meier R, Hartop E, Graf J, Pylatiuk C. 2024. Entomoscope: An Open-Source Photomicroscope for Biodiversity Discovery. IEEE Access 12, 11 785-11 794. (10.1109/ACCESS.2024.3355272) DOI

Mazumdar S, Ceccaroni L, Piera J, Hölker F, Berre AJ, Arlinghaus R, Bowser A. 2018. Citizen science technologies and new opportunities for participation. In Citizen science: innovation in open science, society and policy (eds Hecker S, Haklay M, Bowser A, Makuch Z, Vogel J, Bonn A), pp. 303-320. London, UK: UCL Press.

Chapman L, Bell C, Bell S. 2017. Can the crowdsourcing data paradigm take atmospheric science to a new level? A case study of the urban heat island of London quantified using Netatmo weather stations. Int. J. Climatol. 37, 3597-3605. (10.1002/joc.4940) DOI

Meier F, Fenner D, Grassmann T, Otto M, Scherer D. 2017. Crowdsourcing air temperature from citizen weather stations for urban climate research. Urban Climate 19, 170-191. (10.1016/j.uclim.2017.01.006) DOI

Lembrechts JJ, et al. 2020. SoilTemp: A global database of near-surface temperature. Glob. Change Biol. 26, 6616-6629. (10.1111/gcb.15123) PubMed DOI

Finch EA, Li H, Cornelius A, Styles J, Beeken J, Cheng Y, Wang G, Qiu G, Luke B. 2023. An updated and validated model for predicting the performance of a biological control agent for the oriental migratory locust. Pest Manag. Sci. 80, 442-451. (10.1002/ps.7775) PubMed DOI

Leach B, Parkinson S, Lichten C, Marjanovic S. 2020. Emerging developments in citizen science: reflecting on areas of innovation. Santa Monica, CA: RAND Corporation.

Van Horn G, Mac Aodha O, Song Y, Cui Y, Sun C, Shepard A, Adam H, Perona P, Belongie S. 2018. The iNaturalist Species Classification and Detection Dataset. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8769-8778. Salt Lake City, UT: IEEE.

Wäldchen J, Mäder P. 2018. Plant Species Identification Using Computer Vision Techniques: A Systematic Literature Review. Arch. Comput. Methods Eng. 25, 507-543. (10.1007/s11831-016-9206-z) PubMed DOI PMC

Pernat N, et al. 2024. Overcoming biodiversity blindness: Secondary data in primary citizen science observations. Ecol. Solut. Evid. 5, e12295. (10.1002/2688-8319.12295) DOI

Boho D, Rzanny M, Wäldchen J, Nitsche F, Deggelmann A, Wittich HC, Seeland M, Mäder P. 2020. Flora Capture: A citizen science application for collecting structured plant observations. BMC Bioinf. 21, 576. (10.1186/s12859-020-03920-9) PubMed DOI PMC

Bowser A, Wiggins A, Shanley L, Preece J, Henderson S. 2014. Sharing data while protecting privacy in citizen science. Interactions 21, 70-73. (10.1145/2540032) DOI

Koch W, Hogeweg L, Nilsen EB, Finstad AG. 2022. Maximizing citizen scientists' contribution to automated species recognition. Sci. Rep. 12, 7648. (10.1038/s41598-022-11257-x) PubMed DOI PMC

Wäldchen J, Rzanny M, Seeland M, Mäder P. 2018. Automated plant species identification—Trends and future directions. PLoS Comput. Biol. 14, e1005993. (10.1371/journal.pcbi.1005993) PubMed DOI PMC

Pataki BA, Garriga J, Eritja R, Palmer JRB, Bartumeus F, Csabai I. 2021. Deep learning identification for citizen science surveillance of tiger mosquitoes. Sci. Rep. 11, 4718. (10.1038/s41598-021-83657-4) PubMed DOI PMC

Chiranjeevi S, et al. . 2023. Deep learning powered real-time identification of insects using citizen science data (arXiv:2306.02507). arXiv. (10.48550/arXiv.2306.02507) DOI

Dekramanjian B, Bartumeus F, Kampen H, Palmer JRB, Werner D, Pernat N. 2023. Demographic and motivational differences between participants in analog and digital citizen science projects for monitoring mosquitoes. Sci. Rep. 13, 12384. (10.1038/s41598-023-38656-y) PubMed DOI PMC

Wood CM, Kahl S, Rahaman A, Klinck H. 2022. The machine learning-powered BirdNET App reduces barriers to global bird research by enabling citizen science participation. PLoS Biol. 20, e3001670. (10.1371/journal.pbio.3001670) PubMed DOI PMC

Bas Y, Bas D, Julien J-F. 2017. Tadarida: A Toolbox for Animal Detection on Acoustic Recordings. J. Open Res. Softw. 5, 6. (10.5334/jors.154) DOI

Jeliazkov A, Bas Y, Kerbiriou C, Julien J-F, Penone C, Le Viol I. 2016. Large-scale semi-automated acoustic monitoring allows to detect temporal decline of bush-crickets. Glob. Ecol. Conserv. 6, 208-218. (10.1016/j.gecco.2016.02.008) DOI

Kawakita S, Ichikawa K. 2019. Automated classification of bees and hornet using acoustic analysis of their flight sounds. Apidologie 50, 71-79. (10.1007/s13592-018-0619-6) DOI

Rodriguez A, Desjonquères C, Hevia V, Llorente M, Ulloa J, Llusia D. 2024. Towards acoustic monitoring of bees: wingbeat sounds are related to species and individual traits. Phil. Trans. R. Soc. B 379, 20230111. (10.1098/rstb.2023.0111) PubMed DOI PMC

Parsons L, Ross R, Robert K. 2020. A survey on wireless sensor network technologies in pest management applications. SN Appl. Sci. 2, 28. (10.1007/s42452-019-1834-0) DOI

Schellhorn NA, Jones LK. 2021. Real-time insect detection and monitoring: Breaking barriers to area-wide integrated management of insect pests. In Area-Wide integrated pest management (eds Hendrichs J, Pereira R, Vreysen MJB), pp. 889-902. Boca Raton, FL and Abingdon, UK: CRC Press. (10.1201/9781003169239-51) DOI

Mesaglio T, Callaghan CT, Samonte F, Gorta SB, Cornwell WK. 2023. Recognition and completeness: Two key metrics for judging the utility of citizen science data. Front. Ecol. Environ. 21, 167-174. (10.1002/fee.2604) DOI

Schuttler SG, Sorensen AE, Jordan RC, Cooper C, Shwartz A. 2018. Bridging the nature gap: Can citizen science reverse the extinction of experience? Front. Ecol. Environ. 16, 405-411. (10.1002/fee.1826) DOI

Zorović M, Čokl A. 2015. Laser vibrometry as a diagnostic tool for detecting wood-boring beetle larvae. J. Pest Sci. 88, 107-112. (10.1007/s10340-014-0567-5) DOI

Lima MCF, Damascena De Almeida Leandro ME, Valero C, Pereira Coronel LC, Gonçalves Bazzo CO. 2020. Automatic Detection and Monitoring of Insect Pests—A Review. Agriculture 10, 161. (10.3390/agriculture10050161) DOI

Bodhe TS, Mukherji P. 2013. Selection of color space for image segmentation in pest detection. In 2013 International Conference on Advances in Technology and Engineering (ICATE), Mumbai, India, 23–25 Jan. 2013, pp. 1-7. (10.1109/ICAdTE.2013.6524753) DOI

Xia C, Chon T-S, Ren Z, Lee J.-M. 2015. Automatic identification and counting of small size pests in greenhouse conditions with low computational cost. Ecol. Inform. 29, 139-146. (10.1016/j.ecoinf.2014.09.006) DOI

Xuesong S, Zi L, Lei S, Jiao W, Yang Z. 2017. Aphid Identification and Counting Based on Smartphone and Machine Vision. J. Sensors 2017, 1-7. (10.1155/2017/3964376) DOI

Dosunmu OG, Herrick NJ, Haseeb M, Hix RL, Mankin RW. 2014. Acoustic Detectability of Rhynchophorus cruentatus (Coleoptera: Dryophthoridae). Florida Entomol. 97, 431-438. (10.1653/024.097.0213) DOI

Martin B, Shaby SM, Premi MSG. 2015. Studies on Acoustic Activity of Red Palm Weevil the Deadly Pest on Coconut Crops. Procedia Mater. Sci. 10, 455-466. (10.1016/j.mspro.2015.06.081) DOI

Martin B, Juliet V. 2013. A Novel Approach to Identify Red Palm Weevil on Palms. Adv. Mater. Res. 634–638, 3853-3857. (10.4028/www.scientific.net/AMR.634-638.3853) DOI

Heath J. 2019. Nocmig: A beginner’s guide. See https://www.bto.org/community/blog/nocmig-beginners-guide.

Wägele JW, et al. 2022. Towards a multisensor station for automated biodiversity monitoring. Basic Appl. Ecol. 59, 105-138. (10.1016/j.baae.2022.01.003) DOI

Roy D, et al. 2024. Towards a standardized framework for AI-assisted, image-based monitoring of nocturnal insects. Phil. Trans. R. Soc. B 379, 20230108. (10.1098/rstb.2023.0108) PubMed DOI PMC

Biggs J, et al. 2015. Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biol. Conserv. 183, 19-28. (10.1016/j.biocon.2014.11.029) DOI

Broadhurst HA, et al. 2021. Mapping differences in mammalian distributions and diversity using environmental DNA from rivers. Sci. Total Environ. 801, 149724. (10.1016/j.scitotenv.2021.149724) PubMed DOI

Lynggaard C, et al. 2023. Vertebrate environmental DNA from leaf swabs. Curr. Biol. 33, R853-R854. (10.1016/j.cub.2023.06.031) PubMed DOI

Svenningsen CS, et al. 2021. Detecting flying insects using car nets and DNA metabarcoding. Biol. Lett. 17, 20200833. (10.1098/rsbl.2020.0833) PubMed DOI PMC

Svenningsen CS, Peters B, Bowler DE, Dunn RR, Bonn A, Tøttrup AP. 2024. Insect biomass shows a stronger decrease than species richness along urban gradients. Insect Conserv. Div. 17, 182-188. (10.1111/icad.12694) DOI

Wührl L, Pylatiuk C, Giersch M, Lapp F, von Rintelen T, Balke M, Schmidt S, Cerretti P, Meier R. 2022. DiversityScanner: Robotic handling of small invertebrates with machine learning methods. Mol. Ecol. Resour. 22, 1626-1638. (10.1111/1755-0998.13567) PubMed DOI

Pawlowski J, Apothéloz-Perret-Gentil L, Altermatt F. 2020. Environmental DNA: What's behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. Mol. Ecol. 29, 4258-4264. (10.1111/mec.15643) PubMed DOI

Sales NG, et al. 2020. Fishing for mammals: Landscape-level monitoring of terrestrial and semi-aquatic communities using eDNA from riverine systems. J. Appl. Ecol. 57, 707-716. (10.1111/1365-2664.13592) DOI

Drinkwater E, Robinson EJH, Hart AG. 2019. Keeping invertebrate research ethical in a landscape of shifting public opinion. Methods Ecol. Evol. 10, 1265-1273. (10.1111/2041-210X.13208) DOI

Berg TB, Achiam M, Poulsen KM, Sanderhoff LB, Tøttrup AP. 2021. The Role and Value of Out-of-School Environments in Science Education for 21st Century Skills. Front. Educ. 6, 674541. (10.3389/feduc.2021.674541) DOI

Knudsen SW, et al. 2023. Detection of environmental DNA from amphibians in Northern Europe applied in citizen science. Environ. DNA 5, edn3.462. (10.1002/edn3.462) DOI

Suzuki-Ohno Y, Tanabe AS, Kasai A, Masuda R, Seino S, Dazai A, Suzuki S, Abe T, Kondoh M. 2023. Evaluation of community science monitoring with environmental DNA for marine fish species: ‘Fish survey project using environmental DNA’. Environ. DNA 5, 613-623. (10.1002/edn3.425) DOI

Capron A, Stewart D, Hrywkiw K, Allen K, Feau N, Bilodeau G, Tanguay P, Cusson M, Hamelin RC. 2020. In Situ Processing and Efficient Environmental Detection (iSPEED) of tree pests and pathogens using point-of-use real-time PCR. PLoS ONE 15, e0226863. (10.1371/journal.pone.0226863) PubMed DOI PMC

Jansson S, Malmqvist E, Brydegaard M, Åkesson S, Rydell J. 2020. A Scheimpflug lidar used to observe insect swarming at a wind turbine. Ecol. Indic. 117, 106578. (10.1016/j.ecolind.2020.106578) DOI

Bauer S, et al. 2019. The grand challenges of migration ecology that radar aeroecology can help answer. Ecography 42, 861-875. (10.1111/ecog.04083) DOI

Jeffries DL, Chapman J, Roy HE, Humphries S, Harrington R, Brown PMJ, Handley L-JL. 2013. Characteristics and Drivers of High-Altitude Ladybird Flight: Insights from Vertical-Looking Entomological Radar. PLoS ONE 8, e82278. (10.1371/journal.pone.0082278) PubMed DOI PMC

Shamoun-Baranes J, et al. 2014. Continental-scale radar monitoring of the aerial movements of animals. Mov. Ecol. 2, 9. (10.1186/2051-3933-2-9) DOI

Li M, Runemark A, Hernandez J, Rota J, Bygebjerg R, Brydegaard M. 2023. Discrimination of Hover Fly Species and Sexes by Wing Interference Signals. Adv. Sci. 10, 2304657. (10.1002/advs.202304657) PubMed DOI PMC

Kays R, Wikelski M. 2023. The Internet of Animals: What it is, what it could be. Trends Ecol. Evol. 38, 859-869. (10.1016/j.tree.2023.04.007) PubMed DOI

Rousselet J, et al. 2013. Assessing Species Distribution Using Google Street View: A Pilot Study with the Pine Processionary Moth. PLoS ONE 8, e74918. (10.1371/journal.pone.0074918) PubMed DOI PMC

Rey N, Volpi M, Joost S, Tuia D. 2017. Detecting animals in African Savanna with UAVs and the crowds. Remote Sens. Environ. 200, 341-351. (10.1016/j.rse.2017.08.026) DOI

Tavani S, Billi A, Corradetti A, Mercuri M, Bosman A, Cuffaro M, Seers T, Carminati E. 2022. Smartphone assisted fieldwork: Towards the digital transition of geoscience fieldwork using LiDAR-equipped iPhones. Earth Sci. Rev. 227, 103969. (10.1016/j.earscirev.2022.103969) DOI

Zizka A, Joerger-Hickfang T, Imhof S, Méndez L. 2023. LiDAR sensors in smartphones can enrich herbarium specimens with 3D models of habitat at high precision and little cost. TAXON 72, 233-236. (10.1002/tax.12861) DOI

Johnston A, Matechou E, Dennis EB. 2023. Outstanding challenges and future directions for biodiversity monitoring using citizen science data. Methods Ecol. Evol. 14, 103-116. (10.1111/2041-210X.13834) DOI

Probert AF, et al. 2022. Identifying, reducing, and communicating uncertainty in community science: A focus on alien species. Biol. Invasions 24, 3395-3421. (10.1007/s10530-022-02858-8) PubMed DOI PMC

Pocock MJO, et al. 2024. Citizen science is a vital partnership for invasive alien species management and research. iScience 27, 108623. (10.1016/j.isci.2023.108623) PubMed DOI PMC

Adriaens T, et al. . 2021. Data-validation solutions for citizen science data on invasive alien species (JRC126140). Luxembourg city, Luxembourg: Publications Office of the European Union.

Balázs B, Mooney P, Nováková E, Bastin L, Arsanjani JJ. 2021. Chapter 8: Data Quality in Citizen Science. In The science of citizen science (eds Vohland K, Wagenknecht K, Land-Zandstra A, Ceccaroni L, Lemmens R, Perelló J, Ponti M, Samson R). Cham, Switzerland: Springer Link. (10.1007/978-3-030-58278-4) DOI

Cruickshank SS, Bühler C, Schmidt BR. 2019. Quantifying data quality in a citizen science monitoring program: False negatives, false positives and occupancy trends. Conserv. Sci. Pract. 1, e54. (10.1111/csp2.54) DOI

Schade S, Tsinaraki C, Manzoni M, Berti Suman A, Spinelli FA, Mitton I, Kotsev A, Delipetrev B, Fullerton KT. 2020. Activity report on citizen science: discoveries from a five year journey. Luxembourg city, Luxembourg: Publications Office of the European Union.

Van Der Wal R, Sharma N, Mellish C, Robinson A, Siddharthan A. 2016. The role of automated feedback in training and retaining biological recorders for citizen science. Conserv. Biol. 30, 550-561. (10.1111/cobi.12705) PubMed DOI

Callaghan CT, et al. . 2023. Experimental evidence that behavioral nudges in citizen science projects can improve biodiversity data. BioScience 73, 302-313. (10.1093/biosci/biad012) DOI

Center for Ecology and Hydrology. n.d.. Decide tool, version 1.1.1. Retrieved 14 April 2024 from https://decide.ceh.ac.uk.

Novak J, Becker M, Grey F, Mondardini R. 2018. Citizen engagement and collective intelligence for participatory digital social innovation. In Citizen science—innovation in open science, society and policy (eds Hecker S, Haklay M, Bowser A, Makuch Z, Vogel J, Bonn A), pp. 124-145. UCL Press. (See http://www.jstor.org/stable/j.ctv550cf2.16.)

Kühl HS, et al. 2020. Effective Biodiversity Monitoring Needs a Culture of Integration. One Earth 3, 462-474. (10.1016/j.oneear.2020.09.010) DOI

Meeus S, et al. 2023. More than a Bit of Fun: The Multiple Outcomes of a Bioblitz. BioScience 73, 168-181. (10.1093/biosci/biac100) PubMed DOI PMC

Pocock MJO, et al. 2019. Developing the global potential of citizen science: Assessing opportunities that benefit people, society and the environment in East Africa. J. Appl. Ecol. 56, 274-281. (10.1111/1365-2664.13279) DOI

Casaer J, Milotic T, Liefting Y, Desmet P, Jansen P. 2019. Agouti: A platform for processing and archiving of camera trap images. Biodivers.Inf. Sci. Stand. 3, e45590. (10.3897/biss.3.46690) DOI

Silk M, Correia R, Veríssimo D, Verma A, Crowley SL. 2021. The implications of digital visual media for human–nature relationships. People Nature 3, 1130-1137. (10.1002/pan3.10284) DOI

Tschaikner M, et al. 2023. Multisensor data fusion for automatized insect monitoring (KInsecta). Remote Sensing Agricult. Ecosyst. Hydrol. 12727, 1272702-1-1272702-7. (10.1117/12.2679927) DOI

Baumgartner MF, et al. 2019. Persistent near real-time passive acoustic monitoring for baleen whales from a moored buoy: System description and evaluation. Methods Ecol. Evol. 10, 1476-1489. (10.1111/2041-210X.13244) DOI

Sokol J. 2022. Bright lights, big pity. Science 376, 340-343. (10.1126/science.abq4280) PubMed DOI

De Koning K, Broekhuijsen J, Kühn I, Ovaskainen O, Taubert F, Endresen D, Schigel D, Grimm V. 2023. Digital twins: Dynamic model-data fusion for ecology. Trends Ecol. Evol. 38, 916-926. (10.1016/j.tree.2023.04.010) PubMed DOI

Leclère D, et al. 2020. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551-556. (10.1038/s41586-020-2705-y) PubMed DOI

Bowler DE, et al. 2022. Decision-making of citizen scientists when recording species observations. Sci. Rep. 12, 11069. (10.1038/s41598-022-15218-2) PubMed DOI PMC

Jönsson M, Kasperowski D, Coulson SJ, Nilsson J, Bína P, Kullenberg C, Hagen N, Van Der Wal R, Peterson J. 2023. Inequality persists in a large citizen science programme despite increased participation through ICT innovations. Ambio. 53, 126-137. (10.1007/s13280-023-01917-1) PubMed DOI PMC

Pateman R, Dyke A, West S. 2021. The Diversity of Participants in Environmental Citizen Science. Citizen Science: Theory and Practice 6, 9. (10.5334/cstp.369) DOI

Ceccaroni L, Bibby J, Roger E, Flemons P, Michael K, Fagan L, Oliver JL. 2019. Opportunities and Risks for Citizen Science in the Age of Artificial Intelligence. Citizen Science: Theory and Practice 4, 29. (10.5334/cstp.241) DOI

Altrudi S. 2021. Connecting to nature through tech? The case of the iNaturalist app. Convergence 27, 124-141. (10.1177/1354856520933064) DOI

Cappa F, Laut J, Porfiri M, Giustiniano L. 2018. Bring them aboard: Rewarding participation in technology-mediated citizen science projects. Comput. Hum. Behav. 89, 246-257. (10.1016/j.chb.2018.08.017) DOI

Serhan D. 2020. Transitioning from Face-to-Face to Remote Learning: Students' Attitudes and Perceptions of using Zoom during COVID-19 Pandemic. Int. J. Technol. Edu. Sci. 4, 335-342. (10.46328/ijtes.v4i4.148) DOI

Benyei P, et al. 2023. Challenges, Strategies, and Impacts of Doing Citizen Science with Marginalised and Indigenous Communities: Reflections from Project Coordinators. Citizen Sci.: Theory Pract. 8, 21. (10.5334/cstp.514) DOI

Pew Research Center. 2024. 8 charts on technology use around the world. Pew Research Center. See https://www.pewresearch.org/short-reads/2024/02/05/8-charts-on-technology-use-around-the-world/.

Getman-Pickering ZL, Campbell A, Aflitto N, Grele A, Davis JK, Ugine TA. 2020. LeafByte: A mobile application that measures leaf area and herbivory quickly and accurately. Methods Ecol. Evol. 11, 215-221. (10.1111/2041-210X.13340) DOI

Naturedigger, LCC. 2015. Monarch SOS (Version 3.3) [Mobile app]. App Store. See https://apps.apple.com/us/app/monarch-sos/id956347677.

Sobrevila C. 2008. The role of indigenous peoples in biodiversity conservation: the natural but often forgotten partners. Washington, D.C.: The World Bank.

Chiaravalloti RM, Skarlatidou A, Hoyte S, Badia MM, Haklay M, Lewis J. 2022. Extreme citizen science: Lessons learned from initiatives around the globe. Conserv. Sci. Pract. 4, e577. (10.1111/csp2.577) DOI

Koch W, Hogeweg L, Nilsen EB, Finstad AG. 2023. Recognizability bias in citizen science photographs. R. Soc. Open Sci. 10, 221063. (10.1098/rsos.221063) PubMed DOI PMC

Di Cecco GJ, Barve V, Belitz MW, Stucky BJ, Guralnick RP, Hurlbert AH. 2021. Observing the Observers: How Participants Contribute Data to iNaturalist and Implications for Biodiversity Science. BioScience 71, 1179-1188. (10.1093/biosci/biab093) DOI

Riyaz M, Ignacimuthu S. 2023. Smart phone-macro lens setup (SPMLS): A low-cost and portable photography device for amateur taxonomists, biodiversity researchers, and citizen enthusiasts. Bulletin Natl Res. Cent. 47, 143. (10.1186/s42269-023-01120-y) DOI

Tulloch AIT, et al. 2018. A decision tree for assessing the risks and benefits of publishing biodiversity data. Nat. Ecol. Evol. 2, 1209-1217. (10.1038/s41559-018-0608-1) PubMed DOI

United Nations Education, Scientific, and Cultural Organization. 2021. UNESCO Recommendation on Open Science. See https://unesco.org/en/open-science/about?hub=686.

Open Source Hardware Association. 2023. Open Source Hardware Definition. See https://www.oshwa.org/definition/.

Open Source Initiative. 2023. Open Source Definition. See https://www.opensource.org/osd/.

Pearce JM. 2020. Economic savings for scientific free and open source technology: A review. HardwareX 8, e00139. (10.1016/j.ohx.2020.e00139) PubMed DOI PMC

Arancio J. 2023. From inequalities to epistemic innovation: Insights from open science hardware projects in Latin America. Environ. Sci. Policy 150, 103576. (10.1016/j.envsci.2023.103576) DOI

Arancio J, Tirado MM, Pearce JM. 2022. Equitable research capacity towards the Sustainable Development Goals: The case for open source hardware. J. Sci. Pol. Govern. 21, 1-16. (10.38126/JSPG210202) DOI

Hill AP, Prince P, Snaddon JL, Doncaster CP, Rogers A. 2019. AudioMoth: A low-cost acoustic device for monitoring biodiversity and the environment. HardwareX 6, e00073. (10.1016/j.ohx.2019.e00073) DOI

Day C, et al. 2024. Forecasting the population development of within-season insect crop pests in sub-Saharan Africa: The Pest Risk Information Service. J. Integr. Pest Manag. 15, 7. (10.1093/jipm/pmad026) DOI

Nov O, Arazy O, Anderson D. 2021. Technology-Mediated Citizen Science Participation: A Motivational Model. Proceedings of the International AAAI Conference on Web and Social Media 5, 249-256. (10.1609/icwsm.v5i1.14113) DOI

Kirchhoff C, et al. 2021. Rapidly mapping fire effects on biodiversity at a large-scale using citizen science. Sci. Total Environ. 755, 142348. (10.1016/j.scitotenv.2020.142348) PubMed DOI

Isaac NJB, et al. 2020. Data Integration for Large-Scale Models of Species Distributions. Trends Ecol. Evol. 35, 56-67. (10.1016/j.tree.2019.08.006) PubMed DOI

Miller DAW, Pacifici K, Sanderlin JS, Reich BJ. 2019. The recent past and promising future for data integration methods to estimate species' distributions. Methods Ecol. Evol. 10, 22-37. (10.1111/2041-210X.13110) DOI

Rhinehart TA, Turek D, Kitzes J. 2022. A continuous-score occupancy model that incorporates uncertain machine learning output from autonomous biodiversity surveys. Methods Ecol. Evol. 13, 1778-1789. (10.1111/2041-210X.13905) DOI

Sheard JK, et al. 2024. Emerging technologies in citizen science and potential for insect monitoring. Figshare. (10.6084/m9.figshare.c.7183284) PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...