Protected area coverage of the full annual cycle of migratory butterflies
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
DFG-FZT 118
Deutsche Forschungsgemeinschaft
202548816
Deutsche Forschungsgemeinschaft
PubMed
39607325
PubMed Central
PMC12124171
DOI
10.1111/cobi.14423
Knihovny.cz E-zdroje
- Klíčová slova
- Kunming–Montreal Global Biodiversity Framework, Marco Mundial de Biodiversidad Kunming‐Montreal, conservación de insectos, conservation planning, insect conservation, mariposas migratorias, migratory butterflies, planeación de la conservación, protected area, área protegida,
- MeSH
- biologické modely MeSH
- ekosystém * MeSH
- migrace zvířat * MeSH
- motýli * fyziologie MeSH
- roční období MeSH
- zachování přírodních zdrojů * metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Effective conservation of migratory species relies on habitat protection throughout their annual cycle. Although protected areas (PAs) play a central role in conservation, their effectiveness at conserving habitats across the annual cycle of migratory species has rarely been assessed. We developed seasonal ecological niche models for 418 migratory butterfly species across their global distribution to assess whether they were adequately represented in the PAs across their full annual cycle. PA coverage was inadequate in at least one season for 84% of migratory butterflies, adequate for only 17% of species in one season, and inadequate for 45% of species in all seasons. There was marked geographic variation in PA coverage: 77% of species met representation targets in Sri Lanka, for example, but only 32% met targets in Italy. Our results suggest that coordinated efforts across multiple countries will be needed to develop international networks of PAs that cover the full annual cycle of migratory insects and that conservation measures, in addition to the establishment and maintenance of PAs, are likely to be needed to effectively conserve these species.
Cobertura del área protegida del ciclo anual completo de las mariposas migratorias Resumen La conservación eficaz de las especies migratorias depende de la protección de los hábitats a lo largo de su ciclo anual. Aunque las áreas protegidas (AP) desempeñan un papel fundamental en la conservación, pocas veces se evalúa su eficacia para conservar los hábitats a lo largo del ciclo anual de las especies migratorias. Desarrollamos modelos de nicho ecológico estacional para 418 especies de mariposas migratorias a lo largo de su distribución global para evaluar si estaban adecuadamente representadas en las AP a lo largo de todo su ciclo anual. La cobertura de las áreas protegidas era inadecuada en al menos una estación para el 84% de las mariposas migratorias, adecuada para el 17% de las especies en una estación e inadecuada para el 45% de las especies en todas las estaciones. La cobertura de las zonas protegidas varía considerablemente según la zona geográfica: El 77% de las especies cumplieron los objetivos de representación en Sri Lanka, por ejemplo, pero sólo el 32% cumplieron los objetivos en Italia. Nuestros resultados sugieren que serán necesarios esfuerzos coordinados entre múltiples países para desarrollar redes internacionales de AP que cubran el ciclo anual completo de los insectos migratorios y que es probable que se necesiten medidas de conservación, además del establecimiento y mantenimiento de áreas protegidas, para la conservación eficaz de estas especies.
Centre for Ecology and Conservation University of Exeter Penryn UK
Department of Ecosystem Services Helmholtz Centre for Environmental Research UFZ Leipzig Germany
Department of Entomology College of Plant Protection Nanjing Agricultural University Nanjing China
Department of Integrative Biology University of Guelph Guelph Ontario Canada
Environment and Sustainability Institute University of Exeter Penryn UK
Faculty of Environmental Sciences Czech University of Life Sciences Prague Prague Czech Republic
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Institute for Environmental Studies Vrije Universiteit Amsterdam Amsterdam The Netherlands
Institute of Biodiversity Friedrich Schiller University Jena Jena Germany
Research Computing Centre The University of Queensland St Lucia Queensland Australia
School of the Environment The University of Queensland St Lucia Queensland Australia
Zobrazit více v PubMed
Agrawal, A. A. , & Inamine, H. (2018). Mechanisms behind the monarch's decline. Science, 360, 1294–1296. PubMed
Allan, J. R. , Possingham, H. P. , Atkinson, S. C. , Waldron, A. , Di Marco, M. , Butchart, S. H. M. , Adams, V. M. , Kissling, W. D. , Worsdell, T. , Sandbrook, C. , Gibbon, G. , Kumar, K. , Mehta, P. , Maron, M. , Williams, B. A. , Jones, K. R. , Wintle, B. A. , Reside, A. E. , & Watson, J. E. M. (2022). The minimum land area requiring conservation attention to safeguard biodiversity. Science, 376, 1094–1101. PubMed
Butchart, S. H. M. , Clarke, M. , Smith, R. J. , Sykes, R. E. , Scharlemann, J. P. W. , Harfoot, M. , Buchanan, G. M. , Angulo, A. , Balmford, A. , Bertzky, B. , Brooks, T. M. , Carpenter, K. E. , Comeros‐Raynal, M. T. , Cornell, J. , Ficetola, G. F. , Fishpool, L. D. C. , Fuller, R. A. , Geldmann, J. , Harwell, H. , … Burgess, N. D. (2015). Shortfalls and solutions for meeting national and global conservation area targets. Conservation Letters, 8, 329–337.
Chamberlain, S. , Barve, V. , Mcglinn, D. , Oldoni, D. , Desmet, P. , Geffert, L. , & Ram, K. (2023). rgbif: Interface to the global biodiversity information facility API . R package version 3.7.8. https://CRAN.R‐project.org/package=rgbif
Chowdhury, S. , Aich, U. , Rokonuzzaman, M. , Alam, S. , Das, P. , Siddika, A. , Ahmed, S. , Labi, M. M. , Di Marco, M. , Fuller, R. A. , & Callaghan, C. T. (2023). Increasing biodiversity knowledge through social media: A case study from tropical Bangladesh. Bioscience, 73(6), 453–459. PubMed PMC
Chowdhury, S. , Alam, S. , Chowdhury, S. U. , Rokonuzzaman, M. , Shahriar, S. A. , Shome, A. R. , & Fuller, R. A. (2021). Butterflies are weakly protected in a mega‐populated country, Bangladesh. Global Ecology and Conservation, 26, Article e01484.
Chowdhury, S. , Fuller, R. A. , Ahmed, S. , Alam, S. , Callaghan, C. T. , Das, P. , Correia, R. A. , Di Marco, M. D. , Di Minin, E. D. , Jarić, I. , Labi, M. M. , Ladle, R. J. , Rokonuzzaman, M. , Roll, U. , Sbragaglia, V. , Siddika, A. , & Bonn, A. (2024). Using social media records to inform conservation planning. Conservation Biology, 38(1), Article e14161. PubMed
Chowdhury, S. , Fuller, R. A. , Dingle, H. , Chapman, J. W. , & Zalucki, M. P. (2021). Migration in butterflies: A global overview. Biological Reviews, 96, 1462–1483. PubMed
Chowdhury, S. , Jennions, M. D. , Zalucki, M. P. , Maron, M. , Watson, J. E. , & Fuller, R. A. (2023). Protected areas and the future of insect conservation. Trends in Ecology & Evolution, 38, 85–95. PubMed
Chowdhury, S. , Zalucki, M. P. , Amano, T. , Poch, T. J. , Lin, M. M. , Ohwaki, A. , Lin, D. , Yang, L. , Choi, S.‐W. , Jennions, M. D. , & Fuller, R. A. (2022). Trends and progress in studying butterfly migration. Integrative Conservation, 1(1), 8–24.
Chowdhury, S. , Zalucki, M. P. , Amano, T. , Woodworth, B. K. , Venegas‐Li, R. , & Fuller, R. A. (2021). Seasonal spatial dynamics of butterfly migration. Ecology Letters, 24, 1814–1823. PubMed
Chowdhury, S. , Zalucki, M. P. , Hanson, J. O. , Tiatragul, S. , Green, D. , Watson, J. E. M. , & Fuller, R. A. (2023). Three‐quarters of insect species are insufficiently represented by protected areas. One Earth, 6, 139–146.
Clarke, A. R. , & Zalucki, M. P. (2004). Monarchs in Australia: On the winds of a storm? Biological Invasions, 6, 123–127.
Coetzer, K. L. , Witkowski, E. T. , & Erasmus, B. F. (2014). Reviewing Biosphere Reserves globally: Effective conservation action or bureaucratic label? Biological Reviews, 89, 82–104. PubMed
Convention on Biological Diversity (CBD) . (2022). Kunming–Montreal Global biodiversity framework: Draft decision submitted by the President (CBD/COP/15/L.25). https://www.cbd.int/conferences/2021‐2022/cop‐15/documents
Cooke, S. J. , Piczak, M. L. , Singh, N. J. , Åkesson, S. , Ford, A. T. , Chowdhury, S. , Mitchell, G. W. , Norris, D. R. , Hardesty‐Moore, M. , Mccauley, D. , Hammerschlag, N. , Tucker, M. A. , Horns, J. J. , Reisinger, R. R. , Kubelka, V. , & Lennox, R. J. (2024). Animal migration in the Anthropocene: Threats and mitigation options. Biological Reviews, 99, 1242–1260. 10.1111/brv.13066 <./bib> PubMed DOI
Elith, J. , Graham, C. H. , Anderson, R. P. , Dudík, M. , Ferrier, S. , Guisan, A. , Hijmans, R. J. , Huettmann, F. , Leathwick, J. T. , Lehmann, A. , Li, J. , Lohmann, L. G. , Loiselle, B. A. , Manion, G. , Moritz, C. , Nakamura, M. , Nakazawa, Y. , Overton, J. M. M. , Peterson, A. A. , … Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151.
Elith, J. , Kearney, M. , & Phillips, S. (2010). The art of modelling range‐shifting species. Methods in Ecology and Evolution, 1(4), 330–342.
Flockhart, D. T. , Pichancourt, J. B. , Norris, D. R. , & Martin, T. G. (2015). Unravelling the annual cycle in a migratory animal: Breeding‐season habitat loss drives population declines of monarch butterflies. Journal of Animal Ecology, 84, 155–165. PubMed
Forister, M. L. , Halsch, C. A. , Nice, C. C. , Fordyce, J. A. , Dilts, T. E. , Oliver, J. C. , Prudic, K. L. , Shapiro, A. M. , Wilson, J. K. , & Glassberg, J. (2021). Fewer butterflies seen by community scientists across the warming and drying landscapes of the American West. Science, 371, 1042–1045. PubMed
Fox, R. , Brereton, T. M. , Asher, J. , August, T. A. , Botham, M. S. , Bourn, N. A. D. , Cruickshanks, K. L. , Bulman, C. R. , Ellis, S. , Harrower, C. A. , Middlebrook, I. , Noble, D. G. , Powney, G. D. , Randle, Z. , Warren, M. S. , & Roy, D. B. (2015). The State of the UK's Butterflies 2015. Butterfly Conservation and the Centre for Ecology & Hydrology.
Global Biodiversity Information Facility (GBIF) . (2023). GBIF Occurrence Download . 10.15468/dl.aje9rq DOI
Geldmann, J. , Barnes, M. , Coad, L. , Craigie, I. D. , Hockings, M. , & Burgess, N. D. (2013). Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biological Conservation, 161, 230–238.
Gilroy, J. J. , & Edwards, D. P. (2017). Source‐sink dynamics: A neglected problem for landscape‐scale biodiversity conservation in the tropics. Current Landscape Ecology Reports, 2, 51–60.
Habel, J. C. , Segerer, A. , Ulrich, W. , Torchyk, O. , Weisser, W. W. , & Schmitt, T. (2016). Butterfly community shifts over two centuries. Conservation Biology, 30, 754–762. PubMed
Hanson, J. O. (2022). wdpar: Interface to the world database on protected areas. Journal of Open Source Software, 7, Article 4594.
Hanson, J. O. , Rhodes, J. R. , Butchart, S. H. , Buchanan, G. M. , Rondinini, C. , Ficetola, G. F. , & Fuller, R. A. (2020). Global conservation of species’ niches. Nature, 580, 232–234. PubMed
Harvey, J. A. , Tougeron, K. , Gols, R. , Heinen, R. , Abarca, M. , Abram, P. K. , Basset, Y. , Berg, M. , Boggs, C. , Brodeur, J. , Cardoso, P. , De Boer, J. G. , De Snoo, G. R. , Deacon, C. , Dell, J. E. , Desneux, N. , Dillon, M. E. , Duffy, G. A. , Dyer, L. A. , … Chown, S. L. (2022). Scientists' warning on climate change and insects. Ecological Monographs, 93, Article e1553.
Heberling, J. M. , Miller, J. T. , Noesgaard, D. , Weingart, S. B. , & Schigel, D. (2021). Data integration enables global biodiversity synthesis. Proceedings of the National Academy of Sciences of the United States of America, 118, Article e2018093118. PubMed PMC
Hijmans, R. (2023). _raster: Geographic data analysis and modeling . R package version 3.6‐26. https://CRAN.R‐project.org/package=raster
Hochkirch, A. (2014). Melanoplus spretus. The IUCN Red List of Threatened Species 2014: E.T51269349A111451167 . International Union for Conservation of Nature.
Holland, R. A. , Wikelski, M. , & Wilcove, D. S. (2006). How and why do insects migrate? Science, 313, 794–796. PubMed
Hortal, J. , de Bello, F. , Diniz‐Filho, J. A. F. , Lewinsohn, T. M. , Lobo, J. M. , & Ladle, R. J. (2015). Seven shortfalls that beset large‐scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 46, 523–549.
Hu, G. , Stefanescu, C. , Oliver, T. H. , Roy, D. B. , Brereton, T. , Van Swaay, C. , Reynolds, D. R. , & Chapman, J. W. (2021). Environmental drivers of annual population fluctuations in a trans‐Saharan insect migrant. Proceedings of the National Academy of Sciences of the United States of America, 118, Article e2102762118. PubMed PMC
Huang, J. , Feng, H. , Drake, V. A. , Reynolds, D. R. , Gao, B. , Chen, F. , Zhang, G. , Zhu, J. , Gao, Y. , Zhai, B. , Li, G. , Tian, C. , Huang, B. , Hu, G. , & Chapman, J. W. (2024). Massive seasonal high‐altitude migrations of nocturnal insects above the agricultural plains of East China. Proceedings of the National Academy of Sciences of the United States of America, 121(18), Article e2317646121. PubMed PMC
López‐Hoffman, L. , Varady, R. G. , Flessa, K. W. , & Balvanera, P. (2010). Ecosystem services across borders: A framework for transboundary conservation policy. Frontiers in Ecology and the Environment, 8, 84–91.
Mammola, S. , Adamo, M. , Antić, D. , Calevo, J. , Cancellario, T. , Cardoso, P. , Chamberlain, D. , Chialva, M. , Durucan, F. , Fontaneto, D. , Goncalves, D. , Martínez, A. , Santini, L. , Rubio‐Lopez, I. , Sousa, R. , Villegas‐Rios, D. , Verdes, A. , & Correia, R. A. (2023). Drivers of species knowledge across the tree of life. eLife, 12, Article RP88251. PubMed PMC
Maxwell, S. L. , Cazalis, V. , Dudley, N. , Hoffmann, M. , Rodrigues, A. S. , Stolton, S. , Visconti, P. , Woodley, S. , Kingston, N. , Lewis, E. , Maron, M. , Strassburg, B. B. N. , Wenger, A. , Jonas, H. D. , Venter, O. , & Watson, J. E. (2020). Area‐based conservation in the twenty‐first century. Nature, 586, 217–227. PubMed
Muscarella, R. , Galante, P. J. , Soley‐Guardia, M. , Boria, R. A. , Kass, J. M. , Uriarte, M. , & Anderson, R. P. (2014). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution, 5, 1198–1205.
Nowakowski, J. A. , Watling, J. I. , Murray, A. , Deichmann, J. L. , Akre, T. S. , Muñoz Brenes, C. L. , Todd, B. D. , McRae, L. , Freeman, R. , & Frishkoff, L. O. (2023). Protected areas slow declines unevenly across the tetrapod tree of life. Nature, 622(7981), 101–106. 10.1038/s41586-023-06562-y PubMed DOI
Phillips, S. J. , Anderson, R. P. , Dudík, M. , Schapire, R. E. , & Blair, M. E. (2017). Opening the black box: An open‐source release of Maxent. Ecography, 40(7), 887–893.
Prudic, K. L. , McFarland, K. P. , Oliver, J. C. , Hutchinson, R. A. , Long, E. C. , Kerr, J. T. , & Larrivée, M. (2017). eButterfly: Leveraging massive online citizen science for butterfly conservation. Insects, 8, Article 53. PubMed PMC
Rada, S. , Schweiger, O. , Harpke, A. , Kühn, E. , Kuras, T. , Settele, J. , & Musche, M. (2019). Protected areas do not mitigate biodiversity declines: A case study on butterflies. Diversity and Distributions, 25, 217–224.
Raven , P. H. , & Wagner, D. L. (2021). Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 118, Article e2002548117. PubMed PMC
Riva, F. , Barbero, F. , Balletto, E. , & Bonelli, S. (2023). Combining environmental niche models, multi‐grain analyses, and species traits identifies pervasive effects of land use on butterfly biodiversity across Italy. Global Change Biology, 29(7), 1715–1728. PubMed
Riva, F. , & Fahrig, L. (2022). The disproportionately high value of small patches for biodiversity conservation. Conservation Letters, 15(3), Article e12881.
Riva, F. , & Fahrig, L. (2023). Obstruction of biodiversity conservation by minimum patch size criteria. Conservation Biology, 37(5), Article e14092. PubMed
Rodrigues, A. S. L. , Akçakaya, H. R. , Andelman, S. J. , Bakarr, M. I. , Boitani, L. , Brooks, T. M. , Chanson, J. S. , Fishpool, L. D. C. , Da Fonseca, G. A. B. , Gaston, K. J. , Hoffmann, M. , Marquet, P. A. , Pilgrim, J. D. , Pressey, R. L. , Schipper, J. , Sechrest, W. , Stuart, S. N. , Underhill, L. G. , Waller, R. W. , … Yan, X. (2004). Global gap analysis: Priority regions for expanding the global protected‐area network. Bioscience, 54, 1092–1100.
Ross, H. , Grant, C. , Robinson, C. J. , Izurieta, A. , Smyth, D. , & Rist, P. (2009). Co‐management and Indigenous protected areas in Australia: Achievements and ways forward. Australasian Journal of Environmental Management, 16, 242–252.
Runge, C. A. , Martin, T. G. , Possingham, H. P. , Willis, S. G. , & Fuller, R. A. (2014). Conserving mobile species. Frontiers in Ecology and the Environment, 12, 395–402.
Runge, C. A. , Watson, J. E. , Butchart, S. H. , Hanson, J. O. , Possingham, H. P. , & Fuller, R. A. (2015). Protected areas and global conservation of migratory birds. Science, 350, 1255–1258. PubMed
Sheard, J. K. , Adriaens, T. , Bowler, D. E. , Büermann, A. , Callaghan, C. T. , Camprasse, E. C. M. , Chowdhury, S. , Engel, T. , Finch, E. A. , Von Gönner, J. , Hsing, P.‐Y. , Mikula, P. , Rachel Oh, R. Y. , Peters, B. , Phartyal, S. S. , Pocock, M. J. O. , Wäldchen, J. , & Bonn, A. (2024). Emerging technologies in citizen science and potential for insect monitoring. Philosophical Transactions of the Royal Society B: Biological Sciences, 379(1904), Article 20230106. PubMed PMC
Soulé, M. E. (1985). What is conservation biology? Bioscience, 35(11), 727–734.
Stork, N. E. (2018). How many species of insects and other terrestrial arthropods are there on Earth? Annual Review of Entomology, 63, 31–45. PubMed
Talavera, G. , García‐Berro, A. , Talla, V. N. K. , Ng'iru, I. , Bahleman, F. , Kébé, K. , Nzala, K. M. , Plasencia, D. , Marafi, M. A. J. , Kassie, A. , Goudégnon, E. O. A. , Kiki, M. , Benyamini, D. , Reich, M. S. , López‐Mañas, R. , Benetello, F. , Collins, S. C. , Bataille, C. P. , Pierce, N. E. , … Vila, R. (2023). The Afrotropical breeding grounds of the Palearctic‐African migratory painted lady butterflies (Vanessa cardui). Proceedings of the National Academy of Sciences of the United States of America, 120, Article e2218280120. PubMed PMC
UN Environment Programme World Conservation Monitoring Centre (UNEP‐WCMC), & International Union for Conservation of Nature (IUCN) . (2021). Protected planet: The world database on protected areas (WDPA) and world database on other effective area‐based conservation measures (WD‐OECM). UNEP‐WCMC and IUCN. https://www.protectedplanet.net
Wagner, D. L. (2020). Insect declines in the Anthropocene. Annual Review of Entomology, 65, 457–480. PubMed
Watson, J. E. M. , Dudley, N. , Segan, D. B. , & Hockings, M. (2014). The performance and potential of protected areas. Nature, 515, 67–73. PubMed
Wepprich, T. , Adrion, J. R. , Ries, L. , Wiedmann, J. , & Haddad, N. M. (2019). Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. PLoS ONE, 14, Article e0216270. PubMed PMC
Whitford, A. M. , Shipley, B. R. , & McGuire, J. L. (2024). The influence of the number and distribution of background points in presence‐background species distribution models. Ecological Modelling, 488, Article 110604.
Wisz, M. S. , Hijmans, R. J. , Li, J. , Peterson, A. T. , Graham, C. H. , Guisan, A. , & NCEAS Predicting Species Distributions Working Group . (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763–773.
Wotton, K. R. , Gao, B. , Menz, M. H. , Morris, R. K. , Ball, S. G. , Lim, K. S. , Reynolds, D. R. , Hu, G. , & Chapman, J. W. (2019). Mass seasonal migrations of hoverflies provide extensive pollination and crop protection services. Current Biology, 29, 2167.e5–2173.e5. PubMed
Zizka, A. , Silvestro, D. , Andermann, T. , Azevedo, J. , Duarte Ritter, C. , Edler, D. , Farooq, H. , Herdean, A. , Ariza, M. , Scharn, R. , Svantesson, S. , Wengström, N. , Zizka, V. , & Antonelli, A. (2019). CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods in Ecology and Evolution, 10, 744–751.
Zurell, D. , Franklin, J. , König, C. , Bouchet, P. J. , Dormann, C. F. , Elith, J. , Fandos, G. , Feng, X. , Guillera‐Arroita, G. , Guisan, A. , Lahoz‐Monfort, J. J. , Leitão, P. J. , Park, D. S. , Peterson, A. T. , Rapacciuolo, G. , Schmatz, D. R. , Schröder, B. , Serra‐Diaz, J. M. , Thuiller, W. , … Merow, C. (2020). A standard protocol for reporting species distribution models. Ecography, 43(9), 1261–1277.
Zylstra, E. R. , Ries, L. , Neupane, N. , Saunders, S. P. , Ramírez, M. I. , Rendón‐Salinas, E. , Oberhauser, K. S. , Farr, M. T. , & Zipkin, E. F. (2021). Changes in climate drive recent monarch butterfly dynamics. Nature Ecology & Evolution, 5, 1441–1452. PubMed