Physiological and Pathogenesis Significance of Chorein in Health and Disease
Language English Country Czech Republic Media print
Document type Journal Article, Review
PubMed
38710051
PubMed Central
PMC11081191
DOI
10.33549/physiolres.935268
PII: 935268
Knihovny.cz E-resources
- MeSH
- Neuroacanthocytosis * metabolism genetics physiopathology pathology MeSH
- Humans MeSH
- Lipid Metabolism physiology genetics MeSH
- Mutation MeSH
- Vesicular Transport Proteins * metabolism genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Vesicular Transport Proteins * MeSH
- VPS13A protein, human MeSH Browser
This comprehensive review explores the physiological and pathophysiological significance of VPS13A, a protein encoded by the VPS13A gene. The VPS13A gene is associated with Chorea-acanthocytosis (ChAc), a rare hereditary neurodegenerative disorder. The review covers essential aspects, beginning with the genetics of VPS13A, highlighting its role in the pathogenesis of ChAc, and addressing the spectrum of genetic variants involved. It delves into the structure and function of the VPS13A protein, emphasizing its presence in various tissues and its potential involvement in protein trafficking and lipid homeostasis. Molecular functions of VPS13A in the brain tissue and other cell types or tissues with respect to their role in cytoskeletal regulation and autophagy are explored. Finally, it explores the intriguing link between VPS13A mutations, lipid imbalances, and neurodegeneration, shedding light on future research directions. Overall, this review serves as a comprehensive resource for understanding the pivotal role of VPS13A in health and disease, particularly in the context of ChAc. Key words: Chorein , Tumor, Actin, Microfilament, Gene expression, Chorea-acanthocytosis.
See more in PubMed
Monfrini E, Di Fonzo A, Morgante F. Chorea-Acanthocytosis Presenting with Parkinsonism-Dystonia without Chorea. Mov Disord Clin Pract. 2023;10(S3) doi: 10.1002/mdc3.13771. PubMed DOI PMC
Peikert K, Federti E, Matte A, et al. Therapeutic targeting of Lyn kinase to treat chorea-acanthocytosis. Acta Neuropathol Commun. 2021;9(1):81. doi: 10.1186/s40478-021-01181-y. PubMed DOI PMC
Cui L, Li H, Xi Y, et al. Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. Mol Biomed. 2022;3(1):29. doi: 10.1186/s43556-022-00090-3. PubMed DOI PMC
Egea PF. Mechanisms of non-vesicular exchange of lipids at membrane contact sites: of shuttles, tunnels and, funnels. Front Cell Dev Biol. 2021:9. doi: 10.3389/fcell.2021.784367. PubMed DOI PMC
Lang F, Pelzl L, Schöls L, et al. Neurons, erythrocytes and beyond -the diverse functions of chorein. Neurosignals. 2017;25(1):117–126. doi: 10.1159/000485457. PubMed DOI
Alkahtani S, Alkahtane AA, Stournaras C, Alarifi S. Chorein sensitive microtubule organization in tumor cells. PeerJ. 2023;11:e16074. doi: 10.7717/peerj.16074. PubMed DOI PMC
Alesutan I, Seifert J, Pakladok T, et al. Chorein sensitivity of actin polymerization, cell shape and mechanical stiffness of vascular endothelial cells. Cell Physiol Biochem. 2013;32(3):728–742. doi: 10.1159/000354475. PubMed DOI
Honisch S, Yu W, Liu G, et al. Chorein addiction in VPS13A overexpressing rhabdomyosarcoma cells. Oncotarget. 2015;6(12):10309–10319. doi: 10.18632/oncotarget.3582. PubMed DOI PMC
Lees JA, Reinisch KM. Inter-organelle lipid transfer: a channel model for Vps13 and chorein-N motif proteins. Curr Opin Cell Biol. 2020;65:66–71. doi: 10.1016/j.ceb.2020.02.008. PubMed DOI PMC
Dziurdzik SK, Conibear E. The Vps13 family of lipid transporters and its role at membrane contact sites. Int J Mol Sci. 2021;22(6):2905. doi: 10.3390/ijms22062905. PubMed DOI PMC
Levine TP. Sequence analysis and structural predictions of lipid transfer bridges in the repeating beta groove (RBG) superfamily reveal past and present domain variations affecting form, function and interactions of VPS13, ATG2, SHIP164, Hobbit and Tweek. Contact. 2022;5:251525642211343. doi: 10.1177/25152564221134328. PubMed DOI PMC
Kumar N, Leonzino M, Hancock-Cerutti W, et al. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J Cell Biol. 2018;217(10):3625–3639. doi: 10.1083/jcb.201807019. PubMed DOI PMC
Zhu X, Li L, Wang J, et al. Vacuolar Protein-Sorting Receptor MoVps13 Regulates Conidiation and Pathogenicity in Rice Blast Fungus Magnaporthe oryzae. J Fungi. 2021;7(12):1084. doi: 10.3390/jof7121084. PubMed DOI PMC
Sipos G, Brickner JH, Brace EJ, et al. Soi3p/Rav1p Functions at the early endosome to regulate endocytic trafficking to the vacuole and localization of trans -golgi network transmembrane proteins. Mol Biol Cell. 2004;15(7):3196–3209. doi: 10.1091/mbc.e03-10-0755. PubMed DOI PMC
De M, Oleskie AN, Ayyash M, et al. The Vps13p-Cdc31p complex is directly required for TGN late endosome transport and TGN homotypic fusion. J Cell Biol. 2017;216(2):425–439. doi: 10.1083/jcb.201606078. PubMed DOI PMC
Kim A, Chae HY, Park HS. Compound heterozygous VPS13A variants in a patient with neuroacanthocytosis: a case report and review of the literature. Lab Med. 2022;53(4):433–435. doi: 10.1093/labmed/lmab124. PubMed DOI
Weber J, Frings L, Rijntjes M, et al. Chorea-Acanthocytosis presenting as autosomal recessive epilepsy in a family with a novel VPS13A mutation. Front Neurol. 2019:9. doi: 10.3389/fneur.2018.01168. PubMed DOI PMC
Rodrigues JM, Fernandes HD, Caruthers C, Braddock SR, Knutsen AP. Cohen Syndrome: Review of the Literature. Cureus. doi: 10.7759/cureus.3330. Published online September 18, 2018. PubMed DOI PMC
Lesage S, Drouet V, Majounie E, et al. Loss of VPS13C Function in autosomal-recessive parkinsonism causes mitochondrial dysfunction and increases PINK1/Parkin-dependent mitophagy. Am J Hum Genet. 2016;98(3):500–513. doi: 10.1016/j.ajhg.2016.01.014. PubMed DOI PMC
Wang J, Fang N, Xiong J, Du Y, Cao Y, Ji WK. An ESCRT-dependent step in fatty acid transfer from lipid droplets to mitochondria through VPS13D–TSG101 interactions. Nat Commun. 2021;12(1):1252. doi: 10.1038/s41467-021-21525-5. PubMed DOI PMC
Velayos-Baeza A, Vettori A, Copley RR, Dobson-Stone C, Monaco AP. Analysis of the human VPS13 gene family. Genomics. 2004;84(3):536–549. doi: 10.1016/j.ygeno.2004.04.012. PubMed DOI
Zorn M, Kühnisch J, Bachmann S, Seifert W. Disease relevance of rare VPS13B missense variants for neurodevelopmental Cohen syndrome. Sci Rep. 2022;12(1):9686. doi: 10.1038/s41598-022-13717-w. PubMed DOI PMC
Rzepnikowska W, Flis K, Kaminska J, et al. Amino acid substitution equivalent to human chorea-acanthocytosis I2771R in yeast Vps13 protein affects its binding to phosphatidylinositol 3-phosphate. Hum Mol Genet. 2017;26(8):1497–1510. doi: 10.1093/hmg/ddx054. PubMed DOI PMC
Mizuno E, Nakamura M, Agemura A, et al. Brain-specific transcript variants of 5′ and 3′ ends of mouse VPS13A and VPS13C. Biochem Biophys Res Commun. 2007;353(4):902–907. doi: 10.1016/j.bbrc.2006.12.122. PubMed DOI
Momtazmanesh S, Rayzan E, Shahkarami S, Rohlfs M, Klein C, Rezaei N. A novel VPS13B mutation in Cohen syndrome: a case report and review of literature. BMC Med Genet. 2020;21(1):140. doi: 10.1186/s12881-020-01075-1. PubMed DOI PMC
Chen X, Zhang P, Wang L, Zhang Y. Novel heterozygous VPS13A pathogenic variants in chorea-neuroacanthocytosis: a case report. BMC Neurol. 2023;23(1):350. doi: 10.1186/s12883-023-03398-x. PubMed DOI PMC
Monfrini E, Spagnolo F, Canesi M, et al. VPS13C-associated Parkinson’s disease: Two novel cases and review of the literature. Parkinsonism Relat Disord. 2022;94:37–39. doi: 10.1016/j.parkreldis.2021.11.031. PubMed DOI
Koh K, Ishiura H, Shimazaki H, et al. VPS13D-related disorders presenting as a pure and complicated form of hereditary spastic paraplegia. Mol Genet Genomic Med. 2020;8(3) doi: 10.1002/mgg3.1108. PubMed DOI PMC
Rzepnikowska W, Flis K, Muñoz-Braceras S, Menezes R, Escalante R, Zoladek T. Yeast and other lower eukaryotic organisms for studies of Vps13 proteins in health and disease. Traffic. 2017;18(11):711–719. doi: 10.1111/tra.12523. PubMed DOI
Kent WJ, Sugnet CW, Furey TS, et al. The Human Genome Browser at UCSC. Genome Res. 2002;12(6):996–1006. https://doi.org/10.1101/gr.229102, https://doi.org/10.1101/gr.229102. PubMed DOI PMC
McEwan DG, Ryan KM. ATG2 and VPS13 proteins: molecular highways transporting lipids to drive membrane expansion and organelle communication. FEBS J. 2022;289(22):7113–7127. doi: 10.1111/febs.16280. PubMed DOI
Leterme S, Bastien O, Aiese Cigliano R, Amato A, Michaud M. Phylogenetic and Structural Analyses of VPS13 Proteins in Archaeplastida Reveal Their Complex Evolutionary History in Viridiplantae. Contact. 2023:6. doi: 10.1177/25152564231211976. PubMed DOI PMC
Rampoldi L, Danek A, Monaco AP. Clinical features and molecular bases of neuroacanthocytosis. J Mol Med. 2002;80(8):475–491. doi: 10.1007/s00109-002-0349-z. PubMed DOI
Prohaska R, Sibon OCM, Rudnicki DD, et al. Brain, blood, and iron: Perspectives on the roles of erythrocytes and iron in neurodegeneration. Neurobiol Dis. 2012;46(3):607–624. doi: 10.1016/j.nbd.2012.03.006. PubMed DOI PMC
Peikert K, Danek A, Hermann A. Current state of knowledge in chorea-acanthocytosis as core neuroacanthocytosis syndrome. Eur J Med Genet. 2018;61(11):699–705. doi: 10.1016/j.ejmg.2017.12.007. PubMed DOI
Vrijsen S, Vrancx C, Del Vecchio M, et al. Inter-organellar communication in Parkinson’s and Alzheimer’s disease: looking beyond endoplasmic reticulum-mitochondria contact sites. Front Neurosci. 2022:16. doi: 10.3389/fnins.2022.900338. PubMed DOI PMC
Monteiro-Cardoso VF, Rochin L, Arora A, et al. ORP5/8 and MIB/MICOS link ER-mitochondria and intra-mitochondrial contacts for non-vesicular transport of phosphatidylserine. Cell Rep. 2022;40(12):111364. doi: 10.1016/j.celrep.2022.111364. PubMed DOI
Guillén-Samander A, Wu Y, Pineda SS, et al. A partnership between the lipid scramblase XK and the lipid transfer protein VPS13A at the plasma membrane. Proc Natl Acad Sci. 2022;119(35) doi: 10.1073/pnas.2205425119. PubMed DOI PMC
Geltinger F, Schartel L, Wiederstein M, et al. Friend or Foe: Lipid droplets as organelles for protein and lipid storage in cellular stress response, aging and disease. Molecules. 2020;25(21):5053. doi: 10.3390/molecules25215053. PubMed DOI PMC
García-García E, Chaparro-Cabanillas N, Coll-Manzano A, et al. Unraveling the spatiotemporal distribution of VPS13A in the mouse brain. Int J Mol Sci. 2021;22(23):13018. doi: 10.3390/ijms222313018. PubMed DOI PMC
Yeshaw WM, van der Zwaag M, Pinto F, et al. Human VPS13A is associated with multiple organelles and influences mitochondrial morphology and lipid droplet motility. Elife. 2019:8. doi: 10.7554/eLife.43561. PubMed DOI PMC
Sasaki N, Nakamura M, Kodama A, et al. Chorein interacts with α-tubulin and histone deacetylase 6, and overexpression preserves cell viability during nutrient deprivation in human embryonic kidney 293 cells. FASEB J. 2016;30(11):3726–3732. doi: 10.1096/fj.201500191RR. PubMed DOI
Rabe A, Kihm A, Darras A, et al. The erythrocyte sedimentation rate and its relation to cell shape and rigidity of red blood cells from chorea-acanthocytosis patients in an off-label treatment with dasatinib. Biomolecules. 2021;11(5):727. doi: 10.3390/biom11050727. PubMed DOI PMC
Murakami J, Shimizu Y. Hepatic manifestations in hematological disorders. Int J Hepatol. 2013;2013:1–13. doi: 10.1155/2013/484903. PubMed DOI PMC
Fujii J, Homma T, Kobayashi S, Warang P, Madkaikar M, Mukherjee MB. Erythrocytes as a preferential target of oxidative stress in blood. Free Radic Res. 2021;55(8):781–799. doi: 10.1080/10715762.2021.1873318. PubMed DOI
Shiokawa N, Nakamura M, Sameshima M, et al. Chorein, the protein responsible for chorea-acanthocytosis, interacts with β-adducin and β-actin. Biochem Biophys Res Commun. 2013;441(1):96–101. doi: 10.1016/j.bbrc.2013.10.011. PubMed DOI
Schmidt E, Schmid E, Münzer P, et al. Chorein sensitivity of cytoskeletal organization and degranulation of platelets. FASEB J. 2013;27(7):2799–2806. doi: 10.1096/fj.13-229286. PubMed DOI
Ryoden Y, Segawa K, Nagata S. Requirement of Xk and Vps13a for the P2X7-mediated phospholipid scrambling and cell lysis in mouse T cells. Proc Natl Acad Sci. 2022;119(7) doi: 10.1073/pnas.2119286119. PubMed DOI PMC
Htao Zhang, Wu J, Zhang Hfeng, Zhu Qfeng. Efflux of potassium ion is an important reason of HL-60 cells apoptosis induced by tachyplesin. Acta Pharmacol Sin. 2006;27(10):1367–1374. doi: 10.1111/j.1745-7254.2006.00377.x. PubMed DOI
Siegl C, Hamminger P, Jank H, et al. Alterations of red cell membrane properties in nneuroacanthocytosis. In: Chishti AH, editor. PLoS One. 10. Vol. 8. 2013. p. e76715. PubMed DOI PMC
Reichel F, Kräter M, Peikert K, et al. Changes in blood cell deformability in chorea-acanthocytosis and effects of treatment with dasatinib or lithium. Front Physiol. 2022:13. doi: 10.3389/fphys.2022.852946. PubMed DOI PMC
Honisch S, Gu S, vom Hagen JM, et al. Chorein sensitive arrangement of cytoskeletal architecture. Cell Physiol Biochem. 2015;37(1):399–408. doi: 10.1159/000430363. PubMed DOI
Stanslowsky N, Reinhardt P, Glass H, et al. Neuronal Dysfunction in iPSC-Derived Medium Spiny Neurons from Chorea-Acanthocytosis Patients Is Reversed by Src Kinase Inhibition and F-Actin Stabilization. J Neurosci. 2016;36(47):12027–12043. doi: 10.1523/JNEUROSCI.0456-16.2016. PubMed DOI PMC
Honisch S, Fehrenbacher B, Lebedeva A, et al. Chorein Sensitive Dopamine Release from Pheochromocytoma (PC12) Cells. Neurosignals. 2015;23(1):1–10. doi: 10.1159/000442599. PubMed DOI
Romer LH, Birukov KG, Garcia JGN. Focal Adhesions. Circ Res. 2006;98(5):606–616. doi: 10.1161/01.RES.0000207408.31270.db. PubMed DOI
Kovacs D, Cardinali G, Picardo M, Bastonini E. Shining light on autophagy in skin pigmentation and pigmentary disorders. Cells. 2022;11(19):2999. doi: 10.3390/cells11192999. PubMed DOI PMC
Lee E, Choi HS, Hwang JH, Hoh JK, Cho YH, Baek EJ. The RNA in reticulocytes is not just debris: It is necessary for the final stages of erythrocyte formation. Blood Cells, Mol Dis. 2014;53(1–2):1–10. doi: 10.1016/j.bcmd.2014.02.009. PubMed DOI
Nomura N, Ito C, Ooshio T, et al. Essential role of autophagy in protecting neonatal haematopoietic stem cells from oxidative stress in a p62-independent manner. Sci Rep. 2021;11(1):1666. doi: 10.1038/s41598-021-81076-z. PubMed DOI PMC
Muñoz-Braceras S, Tornero-Écija AR, Vincent O, Escalante R. VPS13A, a closely associated mitochondrial protein, is required for efficient lysosomal degradation. Dis Model Mech. 2019 Feb 22;12(2):dmm036681. doi: 10.1242/dmm.036681. PubMed DOI PMC
Muñoz-Braceras S, Calvo R, Escalante R. TipC and the chorea-acanthocytosis protein VPS13A regulate autophagy in Dictyostelium and human HeLa cells. Autophagy. 2015;11(6):918–927. doi: 10.1080/15548627.2015.1034413. PubMed DOI PMC
Ingley E. Functions of the Lyn tyrosine kinase in health and disease. Cell Commun Signal. 2012;10(1):21. doi: 10.1186/1478-811X-10-21. PubMed DOI PMC
Kumar A, Jaggi AS, Singh N. Pharmacology of Src family kinases and therapeutic implications of their modulators. Fundam Clin Pharmacol. 2015;29(2):115–130. doi: 10.1111/fcp.12097. PubMed DOI
Lupo F, Tibaldi E, Matte A, et al. A new molecular link between defective autophagy and erythroid abnormalities in chorea-acanthocytosis. Blood. 2016;128(25):2976–2987. doi: 10.1182/blood-2016-07-727321. PubMed DOI PMC
Zhang Q, Meng X, Qin G, Xue X, Dang N. Lyn Kinase Promotes the Proliferation of Malignant Melanoma Cells through Inhibition of Apoptosis and Autophagy via the PI3K/Akt Signaling Pathway. J Cancer. 2019;10(5):1197–1208. doi: 10.7150/jca.28908. PubMed DOI PMC
Vidoni C, Fuzimoto A, Ferraresi A, Isidoro C. Targeting autophagy with natural products to prevent SARS-CoV-2 infection. J Tradit Complement Med. 2022;12(1):55–68. doi: 10.1016/j.jtcme.2021.10.003. PubMed DOI PMC
Zhen Y, Stenmark H. Autophagosome Biogenesis. Cells. 2023;12(4):668. doi: 10.3390/cells12040668. PubMed DOI PMC
De Franceschi L, Tomelleri C, Matte A, et al. Erythrocyte membrane changes of chorea-acanthocytosis are the result of altered Lyn kinase activity. Blood. 2011;118(20):5652–5663. doi: 10.1182/blood-2011-05-355339. PubMed DOI PMC
Smyth JT, Hwang S, Tomita T, DeHaven WI, Mercer JC, Putney JW. Activation and regulation of store-operated calcium entry. J Cell Mol Med. 2010;14(10):2337–2349. doi: 10.1111/j.1582-4934.2010.01168.x. PubMed DOI PMC
Roderick HL, Cook SJ. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer. 2008;8(5):361–375. doi: 10.1038/nrc2374. PubMed DOI
Pelzl L, Hauser S, Elsir B, et al. Lithium Sensitive ORAI1 Expression, Store Operated Ca2+ Entry and Suicidal Death of Neurons in Chorea-Acanthocytosis. Sci Rep. 2017;7(1):6457. doi: 10.1038/s41598-017-06451-1. PubMed DOI PMC
Hajnóczky G, Csordás G, Das S, et al. Mitochondrial calcium signalling and cell death: Approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium. 2006;40(5–6):553–560. doi: 10.1016/j.ceca.2006.08.016. PubMed DOI PMC
Sukkar B, Hauser S, Pelzl L, et al. Inhibition of Lithium Sensitive Orai1/STIM1 Expression and Store Operated Ca2+ Entry in Chorea-Acanthocytosis Neurons by NF-κB Inhibitor Wogonin. Cell Physiol Biochem. 2018;51(1):278–289. doi: 10.1159/000495229. PubMed DOI
Lang F, Eylenstein A, Shumilina E. Regulation of Orai1/STIM1 by the kinases SGK1 and AMPK. Cell Calcium. 2012;52(5):347–354. doi: 10.1016/j.ceca.2012.05.005. PubMed DOI
Yu W, Honisch S, Schmidt S, et al. Chorein Sensitive Orai1 Expression and Store Operated Ca2+ Entry in Rhabdomyosarcoma Cells. Cell Physiol Biochem. 2016;40(5):1141–1152. doi: 10.1159/000453168. PubMed DOI
Orlacchio A, Calabresi P, Rum A, et al. Neuroacanthocytosis associated with a defect of the 4.1R membrane protein. BMC Neurol. 2007;7(1):4. doi: 10.1186/1471-2377-7-4. PubMed DOI PMC
Föller M, Hermann A, Gu S, et al. Chorein-sensitive polymerization of cortical actin and suicidal cell death in chorea-acanthocytosis. FASEB J. 2012;26(4):1526–1534. doi: 10.1096/fj.11-198317. PubMed DOI
Dobson-Stone C, Danek A, Rampoldi L, et al. Mutational spectrum of the CHAC gene in patients with chorea-acanthocytosis. Eur J Hum Genet. 2002;10(11):773–781. doi: 10.1038/sj.ejhg.5200866. PubMed DOI