In vivo assessment of TiO2 based wear nanoparticles in periprosthetic tissues
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
IGA_LF_2024_010
Internal grant agency of Palacky university
IGA_PrF_2023_027
Internal grant agency of Palacky university
IGA_PrF_2024_026
Internal grant agency of Palacky university
FNOl
ministry of health
0098892
ministry of health
PubMed
38724776
PubMed Central
PMC11180632
DOI
10.1007/s00216-024-05320-x
PII: 10.1007/s00216-024-05320-x
Knihovny.cz E-resources
- Keywords
- Fractionation, Inductively coupled plasma mass spectrometry, Raman spectroscopy, Scanning electron microscopy, Tissue samples, Titanium nanoparticles,
- MeSH
- Mass Spectrometry methods MeSH
- Humans MeSH
- Microscopy, Electron, Scanning MeSH
- Arthroplasty, Replacement, Hip MeSH
- Nanoparticles chemistry MeSH
- Spectrum Analysis, Raman * methods MeSH
- Spectrometry, X-Ray Emission methods MeSH
- Titanium * chemistry analysis MeSH
- Particle Size MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Titanium * MeSH
- titanium dioxide MeSH Browser
A multimodal approach combining inductively coupled plasma mass spectrometry (ICP-MS), single-particle ICP-MS (spICP-MS), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) and Raman spectroscopy enabled a deeper insight into the balance between total titanium (Ti), the soluble titanium fraction and titanium dioxide based particle fraction levels in periprosthetic tissues collected from patients undergoing revision surgery. Hydrofluoric acid usage in the sample digestion allowed for complete digestion of TiO2 particles, thus enabling accurate estimation of total Ti levels. The TiO2 fraction represents 38-94% of the titanium load in the six samples where particles were detected, and the fraction is present mainly in samples from patients with aseptically loosened total hip arthroplasty. Further attention was given to this fraction determining the elemental composition, particle count, particle size and modification of TiO2. The spICP-MS analysis confirmed the presence of the TiO2-derived (nano)particles (NPs) with a 39- to 187-nm median size and particle count up to 2.3 × 1011 particles per gram of tissue. On top of that, the SEM-EDS confirmed the presence of the TiO2 nanoparticles with 230-nm median size and an anatase crystal phase was determined by Raman spectroscopy. This study presents a novel multimodal approach for TiO2 particle determination and characterization in tissue samples and is the first in vivo study of this character.
See more in PubMed
Matusiewicz H. Potential release of in vivo trace metals from metallic medical implants in the human body: from ions to nanoparticles - a systematic analytical review. Acta Biomaterialia. 2014;10(6):2379–403. doi: 10.1016/j.actbio.2014.02.027. PubMed DOI
OECD, Union E. Health at a Glance: Europe 2022.
Gilbert JL. Metals: basic principles. In: Wagner WR, Sakiyama-Elbert SE, Zhang G, Yaszemski MJ, editors. Biomaterials science. London: Academic Press; Elsevier; 2020; p. 205–27.
Ozan S, Munir K, Biesiekeirski A, Ipek R, Li Y, Wen C. Titanium alloys, including nitinol. In: Wagner WR, Sakiyama-Elbert SE, Zhang G, Yaszemski MJ, editors. Biomaterials science. London: Academic Press; Elsevier; 2020. p. 229–47.
Gilbert JL. Metallic degradation and the biological environment. In: Wagner WR, Sakiyama-Elbert SE, Zhang G, Yaszemski MJ, editors. Biomaterials science. London: Academic Press; Elsevier; 2020. p. 941–54.
Yao JJ, Lewallen EA, Trousdale WH, Xu W, Thaler R, Salib CG, et al. Local cellular responses to titanium dioxide from orthopedic implants. Bioresearch Open Access. 2017;6(1):94–103. doi: 10.1089/biores.2017.0017. PubMed DOI PMC
Addison O, Davenport AJ, Newport RJ, Kalra S, Monir M, Mosselmans JFW, et al. Do ‘passive’ medical titanium surfaces deteriorate in service in the absence of wear? Journal of the Royal Society Interface. 2012;9(76):3161–4. doi: 10.1098/rsif.2012.0438. PubMed DOI PMC
Liu Z, Liu H, Vowden R, Hughes L, Qi D, Francis W, et al. Combination of cobalt, chromium and titanium nanoparticles increases cytotoxicity in vitro and pro-inflammatory cytokines in vivo. J Orthop Translat. 2023;38:203–12. doi: 10.1016/j.jot.2022.10.013. PubMed DOI PMC
Urrutia-Ortega IM, Garduno-Balderas LG, Delgado-Buenrostro NL, Freyre-Fonseca V, Flores-Flores JO, Gonzalez-Robles A, et al. Food-grade titanium dioxide exposure exacerbates tumor formation in colitis associated cancer model. Food and Chemical Toxicology. 2016;93:20–31. doi: 10.1016/j.fct.2016.04.014. PubMed DOI
Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora SJS. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug and Chemical Toxicology. 2014;37(3):336–47. doi: 10.3109/01480545.2013.866134. PubMed DOI
Morgan AM, Ibrahim MA, Noshy PA. Reproductive toxicity provoked by titanium dioxide nanoparticles and the ameliorative role of Tiron in adult male rats. Biochemical and Biophysical Research Communications. 2017;486(2):595–600. doi: 10.1016/j.bbrc.2017.03.098. PubMed DOI
Hong FS, Zhou YJ, Zhao XY, Sheng L, Wang L. Maternal exposure to nanosized titanium dioxide suppresses embryonic development in mice. International Journal of Nanomedicine. 2017;12:6197–204. doi: 10.2147/IJN.S143598. PubMed DOI PMC
Hanawa T. Biocompatibility of titanium from the viewpoint of its surface. Sci Technol Adv Mater. 2022;23(1):457–72. doi: 10.1080/14686996.2022.2106156. PubMed DOI PMC
Liamas E, Thomas ORT, Munoz AI, Zhang ZJ. Tribocorrosion behaviour of pure titanium in bovine serum albumin solution: a multiscale study. J Mech Behav Biomed Mater. 2020;102:103511. doi: 10.1016/j.jmbbm.2019.103511. PubMed DOI
Cosmi M, Gonzalez-Quinonez N, Diaz PT, Manteca A, Blanco-Gonzalez E, Bettmer J, et al. Evaluation of nanodebris produced by in vitro degradation of titanium-based dental implants in the presence of bacteria using single particle and single cell inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry. 2021;36(9):2007–16. doi: 10.1039/D1JA00154J. DOI
de Souza W, Gemini-Piperni S, Grenho L, Rocha LA, Granjeiro JM, Melo SA, et al. Titanium dioxide nanoparticles affect osteoblast-derived exosome cargos and impair osteogenic differentiation of human mesenchymal stem cells. Biomater Sci. 2023;11(7):2427–44. doi: 10.1039/D2BM01854C. PubMed DOI
Krystek P, Tentschert J, Nia Y, Trouiller B, Noel L, Goetz ME, et al. Method development and inter-laboratory comparison about the determination of titanium from titanium dioxide nanoparticles in tissues by inductively coupled plasma mass spectrometry. Analytical and Bioanalytical Chemistry. 2014;406(16):3853–61. PubMed
Faucher S, Lespes G. Quantification of titanium from TiO2 particles in biological tissue. Journal of Trace Elements in Medicine and Biology. 2015;32:40–4. doi: 10.1016/j.jtemb.2015.06.001. PubMed DOI
Watkins PS, Castellon BT, Tseng C, Wright MV, Matson CW, Cobb GP. Validation of a sulfuric acid digestion method for inductively coupled plasma mass spectrometry quantification of TiO2 nanoparticles. Bulletin of environmental contamination and toxicology. 2018;100:809–14. doi: 10.1007/s00128-018-2336-2. PubMed DOI
Nelson K, Hesse B, Addison O, Morrell AP, Gross C, Lagrange A, et al. Distribution and chemical speciation of exogenous micro- and nanoparticles in inflamed soft tissue adjacent to titanium and ceramic dental implants. Anal Chem. 2020;92(21):14432–43. doi: 10.1021/acs.analchem.0c02416. PubMed DOI
Revenco D, Loula M, Mestek O, Koplik R. Determination of inorganic nanoparticles in biological samples and foodstuffs using single particle inductively coupled plasma mass spectrometry. Chemicke Listy. 2019;113(8):478–84.
de Moraes DP, González-Morales S, Toledano-Serrabona J, Sánchez-Garcés MÁ, Bettmer J, Montes-Bayón M, et al. Tracking soluble and nanoparticulated titanium released in vivo from metal dental implant debris using (single-particle)-ICP-MS. Journal of Trace Elements in Medicine and Biology. 2023;77:127143. doi: 10.1016/j.jtemb.2023.127143. PubMed DOI
Services USDoHaH, Administration FaD, (CDER) CfDEaR, (CVM) CfVM. Bioanalytical Method Validation Guidance for Industry. 2018.
Flores EMM. Microwave-assisted sample preparation for trace element determination: Newnes; 2014. PubMed
Kuba M, Gallo J, Pluhacek T, Hobza M, Milde D. Content of distinct metals in periprosthetic tissues and pseudosynovial joint fluid in patients with total joint arthroplasty. Journal of Biomedical Materials Research Part B-Applied Biomaterials. 2019;107(2):454–62. doi: 10.1002/jbm.b.34137. PubMed DOI
McKellop HA, Hart A, Park SH, Hothi H, Campbell P, Skinner JA. A lexicon for wear of metal-on-metal hip prostheses. J Orthop Res. 2014;32(9):1221–33. doi: 10.1002/jor.22651. PubMed DOI
Bormann T, Muller U, Gibmeier J, Mai PT, Renkawitz T, Kretzer JP. Insights into imprinting: how is the phenomenon of tribocorrosion at head-neck taper interfaces related to corrosion, fretting, and implant design parameters? Clin Orthop Relat Res. 2022;480(8):1585–600. doi: 10.1097/CORR.0000000000002202. PubMed DOI PMC
Hallab NJ, Jacobs, J.J. Orthopedic applications. In: Wagner WR, Sakiyama-Elbert SE, Zhang G, Yaszemski MJ, editors. Biomaterials science. London: Academic Press; Elsevier; 2020. p. 1079–118.
Gilbert JL, Zhu D. A metallic biomaterial tribocorrosion model linking fretting mechanics, currents, and potentials: model development and experimental comparison. J Biomed Mater Res B Appl Biomater. 2020;108(8):3174–89. doi: 10.1002/jbm.b.34643. PubMed DOI
Kurtz MA, Khullar P, Gilbert JL. Cathodic activation and inflammatory species are critical to simulating in vivo Ti-6Al-4V selective dissolution. Acta Biomater. 2022;149:399–409. doi: 10.1016/j.actbio.2022.07.020. PubMed DOI
Curtin JP, Wang M. Are clinical findings of systemic titanium dispersion following implantation explained by available in vitro evidence? An evidence-based analysis. J Biol Inorg Chem. 2017;22(6):799–806. doi: 10.1007/s00775-017-1464-1. PubMed DOI
MacDonald DW, Chen AF, Lee GC, Klein GR, Mont MA, Kurtz SM, et al. Fretting and corrosion damage in taper adapter sleeves for ceramic heads: a retrieval study. J Arthroplasty. 2017;32(9):2887–91. doi: 10.1016/j.arth.2017.04.025. PubMed DOI
Gustafson JA, Mell SP, Levine BR, Pourzal R, Lundberg HJ. Interaction of surface topography and taper mismatch on head-stem modular junction contact mechanics during assembly in modern total hip replacement. J Orthop Res. 2023;41(2):418–25. doi: 10.1002/jor.25357. PubMed DOI PMC
Wimmer MAL, M.P. Tribology of the artificial hip joint. In: Berry DJL, J.R., editor. Surgery of the hip. Philadelphia: Elsevier Saunders; 2013. p. 35–53.
Podlipec R, Punzon-Quijorna E, Pirker L, Kelemen M, Vavpetic P, Kavalar R, et al. Revealing inflammatory indications induced by titanium alloy wear debris in periprosthetic tissue by label-free correlative high-resolution ion, electron and optical microspectroscopy. Materials (Basel). 2021;14(11). PubMed PMC
Eingartner C, Ihm A, Maurer F, Volkmann R, Weise K, Weller S. Good long term results with a cemented straight femoral shaft prosthesis made of titanium. Unfallchirurg. 2002;105(9):804–10. doi: 10.1007/s00113-002-0425-4. PubMed DOI
Choi HC, Jung YM, Kim SB. Size effects in the Raman spectra of TiO2 nanoparticles. Vibrational Spectroscopy. 2005;37(1):33–8. doi: 10.1016/j.vibspec.2004.05.006. DOI
Ozan F, Kahraman M, Baktir A, Gencer K. Catastrophic failure and metallosis of the acetabular component in total hip arthroplasty. J Orthop Surg Res. 2021;16(1):349. doi: 10.1186/s13018-021-02492-5. PubMed DOI PMC
Hunter AM, Hsu A, Shah A, Naranje SM. A case example and literature review of catastrophic wear before catastrophic failure: identification of trunnionosis and metallosis in metal-on-polyethylene hip arthroplasty prior to frank failure or fracture. Eur J Orthop Surg Traumatol. 2019;29(3):711–5. doi: 10.1007/s00590-018-2333-5. PubMed DOI
Khan RJ, Wimhurst J, Foroughi S, Toms A. The natural history of metallosis from catastrophic failure of a polyethylene liner in a total hip. J Arthroplasty. 2009;24(7):1144 e1-4. PubMed
Mbanga O, Cukrowska E, Gulumian M. Dissolution of titanium dioxide nanoparticles in synthetic biological and environmental media to predict their biodurability and persistence. Toxicol In Vitro. 2022;84:105457. doi: 10.1016/j.tiv.2022.105457. PubMed DOI
Breisch M, Olejnik M, Loza K, Prymak O, Rosenkranz N, Bunger J, et al. Cell-biological response and sub-toxic inflammatory effects of titanium dioxide particles with defined polymorphic phase, size, and shape. Nanomaterials (Basel). 2023;13(10). PubMed PMC
Silva-Bermudez LS, Sevastyanova TN, Schmuttermaier C, De La Torre C, Schumacher L, Kluter H, et al. Titanium nanoparticles enhance production and suppress stabilin-1-mediated clearance of GDF-15 in human primary macrophages. Front Immunol. 2021;12:760577. doi: 10.3389/fimmu.2021.760577. PubMed DOI PMC
Jamsen E, Pajarinen J, Kouri VP, Rahikkala A, Goodman SB, Manninen M, et al. Tumor necrosis factor primes and metal particles activate the NLRP3 inflammasome in human primary macrophages. Acta Biomater. 2020;108:347–57. doi: 10.1016/j.actbio.2020.03.017. PubMed DOI PMC
Yao JJ, Lewallen EA, Trousdale WH, Xu W, Thaler R, Salib CG, et al. Local cellular responses to titanium dioxide from orthopedic implants. Biores Open Access. 2017;6(1):94–103. doi: 10.1089/biores.2017.0017. PubMed DOI PMC
Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc'h M. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am. 2000;82(4):457–76. doi: 10.2106/00004623-200004000-00002. PubMed DOI
Hall DJ, Pourzal R, Jacobs JJ, Urban RM. Metal wear particles in hematopoietic marrow of the axial skeleton in patients with prior revision for mechanical failure of a hip or knee arthroplasty. J Biomed Mater Res B Appl Biomater. 2019;107(6):1930–6. doi: 10.1002/jbm.b.34285. PubMed DOI PMC