Advances in ICP-MS-Based Nanoparticle Characterization: Techniques and Challenges in Biological Sample Analysis
Jazyk angličtina Země Německo Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
40931375
PubMed Central
PMC12423364
DOI
10.1002/jssc.70259
Knihovny.cz E-zdroje
- Klíčová slova
- biological samples | inductively coupled plasma mass spectrometry (ICP‐MS) | nanoparticles | separation | single particle,
- MeSH
- hmotnostní spektrometrie * metody MeSH
- lidé MeSH
- nanočástice * analýza chemie MeSH
- velikost částic MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The increasing use of engineered nanoparticles (NPs) in consumer and biomedical products has raised concern over their potential accumulation, transformation, and toxicity in biological systems. Accurate analytical methods are essential to detect, characterize, and quantify NPs in complex biological matrices. Inductively coupled plasma mass spectrometry (ICP-MS) has emerged as a leading technique due to its high sensitivity, elemental selectivity, and quantitative capabilities. This review critically evaluates recent advances (from January 2020 onward) in ICP-MS-based methods for analysis of NPs in biological samples. Two main strategies are discussed: single-particle ICP-MS (spICP-MS) and hyphenated techniques coupled to ICP-MS. spICP-MS allows direct determination of particle size, concentration, and metal content at environmentally relevant levels. It is the most widely used approach and is therefore examined in greater detail, with attention to extraction procedures, particle types, sample matrices, and inherent limitations. Advances in laser ablation spICP-MS for tissue imaging and spatially resolved NPs detection are also covered. Methods using hyphenated techniques, such as hydrodynamic chromatography, size-exclusion chromatography, capillary electrophoresis, Taylor dispersion analysis, and field-flow fractionation, are increasingly employed to address limitations spICP-MS. These approaches can provide enhanced insight into particle size distributions, aggregation behavior, and interactions with complex sample matrices. This review offers a comparative evaluation of both single-particle and hyphenated methods, discussing their respective advantages and limitations. Emphasis is placed on the complementarity of these techniques and how their combined use can offer a more complete understanding of NPs' fate in biological systems.
Zobrazit více v PubMed
Nasrollahpour H., Sánchez B. J., Sillanpää M., and Moradi R., “Metal Nanoclusters in Point‐of‐Care Sensing and Biosensing Applications,” ACS Applied Nano Materials 6, no. 14 (2023): 283–292.
Burlec A. F., Corciova A., Boev M., et al., “Current Overview of Metal Nanoparticles' Synthesis, Characterization, and Biomedical Applications, With a Focus on Silver and Gold Nanoparticles,” Pharmaceuticals 16, no. 10 (2023): 1410. PubMed PMC
Joseph T. M., Mahapatra D. K., Esmaeili A., et al., “Nanoparticles: Taking a Unique Position in Medicine,” Nanomaterials 13, no. 3 (2023): 574. PubMed PMC
Mourdikoudis S., Pallares R. M., and Thanh N. T. K., “Characterization Techniques for Nanoparticles: Comparison and Complementarity Upon Studying Nanoparticle Properties,” Nanoscale 10, no. 27 (2018): 12871–12934. PubMed
Brewer A. K., “Hydrodynamic Chromatography: The Underutilized Size‐Based Separation Technique,” Chromatographia 84, no. 9 (2021): 807–811.
Gouyon J., Boudier A., Barakat F., Pallotta A., and Clarot I., “Taylor Dispersion Analysis of Metallic‐Based Nanoparticles—A Short Review,” Electrophoresis 43, no. 23–24 (2022): 2377–2391. PubMed
Meermann B. and Nischwitz V., “ICP‐MS for the Analysis at the Nanoscale—A Tutorial Review,” Journal of Analytical Atomic Spectrometry 33, no. 9 (2018): 1432–1468.
Bolea E., Jimenez M. S., Perez‐Arantegui J., et al., “Analytical Applications of Single Particle Inductively Coupled Plasma Mass Spectrometry: A Comprehensive and Critical Review,” Analytical Methods 13, no. 25 (2021): 2742–2795. PubMed
Laycock A., Clark N. J., Clough R., Smith R., and Handy R. D., “Determination of Metallic Nanoparticles in Biological Samples by Single Particle ICP‐MS: A Systematic Review From Sample Collection to Analysis,” Environmental Science: Nano 9, no. 2 (2022): 420–453. PubMed PMC
Naasz S., Weigel S., Borovinskaya O., et al., “Multi‐Element Analysis of Single Nanoparticles by ICP‐MS Using Quadrupole and Time‐of‐Flight Technologies,” Journal of Analytical Atomic Spectrometry 33, no. 5 (2018): 835–845.
Chalifoux A., Hadioui M., Amiri N., and Wilkinson K. J., “Analysis of Silver Nanoparticles in Ground Beef by Single Particle Inductively Coupled Plasma Mass Spectrometry (SP‐ICP‐MS),” Molecules (Basel, Switzerland) 28, no. 11 (2023): 4442. PubMed PMC
Huang Y. Y., Lum J. T. S., and Leung K. S. Y., “Single Particle ICP‐MS Combined With Internal Standardization for Accurate Characterization of Polydisperse Nanoparticles in Complex Matrices,” Journal of Analytical Atomic Spectrometry 35, no. 10 (2020): 2148–2155.
Huang Y. Y., Lum J. T. S., and Leung K. S. Y., “An Integrated ICP‐MS‐Based Analytical Approach to Fractionate and Characterize Ionic and Nanoparticulate Ce Species,” Analytical and Bioanalytical Chemistry 414, no. 11 (2022): 3397–3410. PubMed
Lancaster S. T., Peniche G., Alzahrani A., et al., “Mercury Speciation in Scottish Raptors Reveals High Proportions of Inorganic Mercury in Scottish Golden Eagles ( PubMed
Paton L., Moro T. T., Lockwood T., et al., “AF
El Hanafi K., Gomez‐Gomez B., Pedrero Z., Bustamante P., Cherel Y., and Amouroux D., “Simple and Rapid Formic Acid Sample Treatment for the Isolation of HgSe Nanoparticles From Animal Tissues,” Analytica Chimica Acta 1250 (2023): 340952. PubMed
Toledano‐Serrabona J., de Moraes D. P., González‐Morales S., et al., “Tracking Soluble and Nanoparticulated Titanium Released PubMed
Aureli F., Ciprotti M., D'Amato M., et al., “Determination of Total Silicon and SiO PubMed PMC
Liu N., Li Y., Liu L. H., et al., “Administration of Silver Nasal Spray Leads to Nanoparticle Accumulation in Rat Brain Tissues,” Environmental Science & Technology 56, no. 1 (2022): 403–413. PubMed
Tao H., Nagano K., Tasaki I., et al., “Development and Evaluation of a System for the Semi‐Quantitative Determination of the Physical Properties of Skin After Exposure to Silver Nanoparticles,” Nanoscale Research Letters 15, no. 1 (2020): 187. PubMed PMC
Gao Y., Zhang R. Y., Sun H. Z., et al., “High‐Efficiency Mechanically Assisted Alkaline Extraction of Nanoparticles From Biological Tissues for spICP‐MS Analysis,” Analytical and Bioanalytical Chemistry 414, no. 15 (2022): 4401–4408. PubMed
Sun H. Z., Han D., Gao Y., et al., “Particle‐Size‐Dependent Biological Distribution of Gold Nanoparticles After Interstitial Injection,” Materials Chemistry Frontiers 6, no. 18 (2022): 2760–2767.
Yan T., Sun H. Z., Shi Y. H., et al., “Thoracic Interstitial Injection of Drug‐Liposomes in Mice for Treating Atherosclerosis,” Nano Research 16, no. 4 (2023): 5311–5321.
Sadeghalvad B. and Gray E. P., “Evaluation of Alternative Bases to TMAH for Tissue Extraction of ENMs From Tissues Prior to spICP‐MS Analysis,” Environmental Science: Nano 11, no. 10 (2024): 4309–4320.
Zhang W. C., Huo S. W., Deng S. X., et al., “ PubMed
Ji X., Yang L., Wu F., et al., “Identification of Mercury‐Containing Nanoparticles in the Liver and Muscle of Cetaceans,” Journal of Hazardous Materials 424 (2022): 127759. PubMed
Wu J., Sun J. Q., Bosker T., Vijver M. G., and Peijnenburg W., “Toxicokinetics and Particle Number‐Based Trophic Transfer of a Metallic Nanoparticle Mixture in a Terrestrial Food Chain,” Environmental Science & Technology 57 (2023): 2792–2803. PubMed
Kuehr S., Klehm J., Stehr C., Menzel M., and Schlechtriem C., “Unravelling the Uptake Pathway and Accumulation of Silver From Manufactured Silver Nanoparticles in the Freshwater Amphipod
Sun Y., Yang Y., Tou F. Y., et al., “Extraction and Quantification of Metal‐Containing Nanoparticles in Marine Shellfish Based on Single Particle Inductively Coupled Plasma‐Mass Spectrometry Technique,” Journal of Hazardous Materials 424 (2022): 127383. PubMed
Bruvold A., Valdersnes S., Loeschner K., and Bienfait A. M., “Validation of a Method for Surveillance of Nanoparticles in Mussels Using Single‐Particle Inductively Coupled Plasma‐Mass Spectrometry,” Journal of AOAC International 107 (2024): 608–616. PubMed PMC
Lu H. Y., Wang Y. J., and Hou W. C., “Bioaccumulation and Depuration of TiO PubMed
Gallocchio F., Moressa A., Pascoli F., et al., “Effect of TiO PubMed PMC
Taboada‐López M. V., Leal‐Martínez B. H., Domínguez‐González R., Bermejo‐Barrera P., Taboada‐Antelo P., and Moreda‐Piñeiro A., “Caco‐2 PubMed
Clark N. J., Clough R., Boyle D., and Handy R. D., “Quantification of Particulate Ag in Rainbow Trout Organs Following Dietary Exposure to Silver Nitrate, or Two Forms of Engineered Silver Nanoparticles,” Environmental Science: Nano 8, no. 6 (2021): 1642–1653.
Johnson M. E., Bennett J., Bustos A. R. M., et al., “Combining Secondary Ion Mass Spectrometry Image Depth Profiling and Single Particle Inductively Coupled Plasma Mass Spectrometry to Investigate the Uptake and Biodistribution of Gold Nanoparticles in PubMed
Zhou Q. F., Liu L. H., Liu N. A., He B., Hu L. G., and Wang L. N., “Determination and Characterization of Metal Nanoparticles in Clams and Oysters,” Ecotoxicology and Environmental Safety 198 (2020): 110670. PubMed
Yu Q., Zhang Z. Y., Monikh F. A., et al., “Trophic Transfer of Cu Nanoparticles in a Simulated Aquatic Food Chain,” Ecotoxicology and Environmental Safety 242 (2022): 113920. PubMed
Grasso A., Ferrante M., Moreda‐Pineiro A., et al., “Dietary Exposure of Zinc Oxide Nanoparticles (ZnO‐NPs) From Canned Seafood by Single Particle ICP‐MS: Balancing of Risks and Benefits for Human Health,” Ecotoxicology and Environmental Safety 231 (2022): 113217. PubMed
Kalman J., Connolly M., Abdolahpur‐Monikh F., et al., “Bioaccumulation of CuO Nanomaterials in Rainbow Trout: Influence of Exposure Route and Particle Shape,” Chemosphere 310 (2023): 136894. PubMed
Bocca B., Battistini B., Leso V., et al., “Occupational Exposure to Metal Engineered Nanoparticles: A Human Biomonitoring Pilot Study Involving Italian Nanomaterial Workers,” Toxics 11, no. 2 (2023): 120. PubMed PMC
Fernández‐Trujillo S., Jiménez‐Moreno M., Ríos A., and Martín‐Doimeadios R. D. R., “A Simple Analytical Methodology for Platinum Nanoparticles Control in Complex Clinical Matrices via SP‐ICP‐MS,” Talanta 231 (2021): 122370. PubMed
Bocca B., Battistini B., and Petrucci F., “Silver and Gold Nanoparticles Characterization by SP‐ICP‐MS and AF4‐FFF‐MALS‐UV‐ICP‐MS in Human Samples Used for Biomonitoring,” Talanta 220 (2020): 121404. PubMed
Cabré M., Fernández G., González E., Abellà J., and Verdaguer A., “Single Particle ICP‐MS: A Tool for the Characterization of Gold Nanoparticles in Nanotheranostics Applications,” Journal of Analytical Atomic Spectrometry 39, no. 10 (2024): 2508–2513.
Bocca B., Leso V., Battistini B., et al., “Human Biomonitoring and Personal Air Monitoring. An Integrated Approach to Assess Exposure of Stainless‐Steel Welders to Metal‐Oxide Nanoparticles,” Environmental Research 216 (2023): 114736. PubMed
Hernández‐Postigo M., Sánchez‐Cachero A., Jiménez‐Moreno M., and Martín‐Doimeadios R. C. R., “Determination of Size and Particle Number Concentration of Metallic Nanoparticles Using Isotope Dilution Analysis Combined With Single Particle ICP‐MS to Minimise Matrix Effects,” Microchimica Acta 192, no. 1 (2024): 28. PubMed
Salou S., Cirtiu C. M., Larivière D., and Fleury N., “Assessment of Strategies for the Formation of Stable Suspensions of Titanium Dioxide Nanoparticles in Aqueous Media Suitable for the Analysis of Biological Fluids,” Analytical and Bioanalytical Chemistry 412, no. 7 (2020): 1469–1481. PubMed
Abad‐Alvaro I., Leite D., Bartczak D., et al., “An Insight Into the Determination of Size and Number Concentration of Silver Nanoparticles in Blood Using Single Particle ICP‐MS (spICP‐MS): Feasibility of Application to Samples Relevant to
Ferrante M., Grasso A., Giuberti G., et al., “Behaviour and Fate of Ag‐NPs, TiO PubMed
Mehrabi K., Dengler M., Nilsson I., et al., “Detection of Magnetic Iron Nanoparticles by Single‐Particle ICP‐TOFMS: Case Study for a Magnetic Filtration Medical Device,” Analytical and Bioanalytical Chemistry 414, no. 23 (2022): 6743–6751. PubMed
Peloquin D. M., Baumann E. J., and Luxton T. P., “Multi‐Method Assessment of PVP‐Coated Silver Nanoparticles and Artificial Sweat Mixtures,” Chemosphere 249 (2020): 126173. PubMed PMC
Cosmi M., Gonzalez‐Quiñonez N., Díaz P. T., et al., “Evaluation of Nanodebris Produced by
Hachenberger Y. U., Rosenkranz D., Kromer C., et al., “Nanomaterial Characterization in Complex Media‐Guidance and Application,” Nanomaterials 13, no. 5 (2023): 18. PubMed PMC
Wu J. Y., Tou F. Y., Yang Y., et al., “Metal‐Containing Nanoparticles in Low‐Rank Coal‐Derived Fly Ash From China: Characterization and Implications Toward Human Lung Toxicity,” Environmental Science & Technology 55, no. 10 (2021): 6644–6654. PubMed
Akbaba T. N., Ertas N., and Alp O., “Characterization of the Silver Species Released From Clothing by Single Particle‐Inductively Coupled Plasma‐Mass Spectrometry Using a Microsecond Dwell Time,” Analytical Letters 55, no. 4 (2022): 580–595.
Zhang C. Y., Zhang Q., Zhao Y. C., Dong D. Q., and Huang L. J., “Determination of Titanium (IV) Oxide Nanoparticles Released From Textiles by Single Particle—Inductively Coupled Plasma—Mass Spectrometry (SP‐ICP‐MS),” Analytical Letters 57, no. 1 (2024): 82–91.
Jiménez M. S., Bakir M., Ben‐Jeddou K., Bolea E., Pérez‐Arantegui J., and Laborda F., “Comparative Study of Extraction Methods of Silver Species From Faeces of Animals Fed With Silver‐Based Nanomaterials,” Microchimica Acta 190, no. 6 (2023): 204. PubMed PMC
Sun Y. Z., Liu N., Wang Y. Y., et al., “Monitoring AuNP Dynamics in the Blood of a Single Mouse Using Single Particle Inductively Coupled Plasma Mass Spectrometry With an Ultralow‐Volume High‐Efficiency Introduction System,” Analytical Chemistry 92, no. 22 (2020): 14872–14877. PubMed
Peters R. J. B., Oomen A. G., van Bemmel G., et al., “Silicon Dioxide and Titanium Dioxide Particles Found in Human Tissues,” Nanotoxicology 14, no. 3 (2020): 420–432. PubMed
Gregar F., Gallo J., Milde D., et al., “In Vivo Assessment of TiO PubMed PMC
Seiffert S. B., Elinkmann M., Niehaves E., et al., “Calibration Strategy to Size and Localize Multi‐Shaped Nanoparticles in Tissue Sections Using LA‐spICP‐MS,” Analytical Chemistry 95, no. 15 (2023): 6383–6390. PubMed
Labied L., Rocchi P., Doussineau T., et al., “Biodegradation of Metal‐Based Ultra‐Small Nanoparticles: A Combined Approach Using TDA‐ICP‐MS and CE‐ICP‐MS,” Analytica Chimica Acta 1185 (2021): 339081. PubMed
Hamad A., Khashan K. S., and Hadi A., “Silver Nanoparticles and Silver Ions as Potential Antibacterial Agents,” Journal of Inorganic and Organometallic Polymers and Materials 30, no. 12 (2020): 4811–4828.
Radziwill‐Bienkowska J. M., Talbot P., Kamphuis J. B. J., et al., “Toxicity of Food‐Grade TiO PubMed PMC
Chen Z. J., Wang Y., Zhuo L., et al., “Effect of Titanium Dioxide Nanoparticles on the Cardiovascular System After Oral Administration,” Toxicology Letters 239, no. 2 (2015): 123–130. PubMed
Cornu R., Béduneau A., and Martin H., “Ingestion of Titanium Dioxide Nanoparticles: A Definite Health Risk for Consumers and Their Progeny,” Archives of Toxicology 96, no. 10 (2022): 2655–2686. PubMed
Chen Z. J., Zhou D., Wang Y., et al., “Combined Effect of Titanium Dioxide Nanoparticles and Glucose on the Cardiovascular System in Young Rats After Oral Administration,” Journal of Applied Toxicology 39, no. 4 (2019): 590–602. PubMed
Salou S., Larivière D., Cirtiu C. M., and Fleury N., “Quantification of Titanium Dioxide Nanoparticles in Human Urine by Single‐Particle ICP‐MS,” Analytical and Bioanalytical Chemistry 413, no. 1 (2021): 171–181. PubMed
Lavoie R. A., Jardine T. D., Chumchal M. M., Kidd K. A., and Campbell L. M., “Biomagnification of Mercury in Aquatic Food Webs: A Worldwide Meta‐Analysis,” Environmental Science & Technology 47, no. 23 (2013): 13385–13394. PubMed
Gajdosechova Z., Brownlow A., Cottin N. T., et al., “Possible Link Between Hg and Cd Accumulation in the Brain of Long‐Finned Pilot Whales ( PubMed
Gajdosechova Z., Mester Z., Feldmann J., and Krupp E. M., “The Role of Selenium in Mercury Toxicity–Current Analytical Techniques and Future Trends in Analysis of Selenium and Mercury Interactions in Biological Matrices,” TrAC Trends in Analytical Chemistry 104 (2018): 95–109.
Ji X. M., Yang L., Wu F. X., et al., “Identification of Mercury‐Containing Nanoparticles in the Liver and Muscle of Cetaceans,” Journal of Hazardous Materials 424 (2022): 127759. PubMed
Jeyaraj M., Gurunathan S., Qasim M., Kang M.‐H., and Kim J.‐H., “A Comprehensive Review on the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles,” Nanomaterials 9, no. 12 (2019): 1719. PubMed PMC
Pedone D., Moglianetti M., De Luca E., Bardi G., and Pompa P. P., “Platinum Nanoparticles in Nanobiomedicine,” Chemical Society Reviews 46, no. 16 (2017): 4951–4975. PubMed
Czubacka E. and Czerczak S., “Are Platinum Nanoparticles Safe to Human Health?,” Medycyna Pracy 70 (2019): 487–495. PubMed
Li Z., Chang S., Khuje S., and Ren S., “Recent Advancement of Emerging Nano Copper‐Based Printable Flexible Hybrid Electronics,” ACS Nano 15, no. 4 (2021): 6211–6232. PubMed
Gómez‐Rivera F., Field J. A., Brown D., and Sierra‐Alvarez R., “Fate of Cerium Dioxide (CeO PubMed
Goenaga‐Infante H. and Bartczak D., “Single Particle Inductively Coupled Plasma Mass Spectrometry (spICP‐MS),” in Characterization of Nanoparticles (Elsevier, 2020).
Fréchette‐Viens L., Hadioui M., and Wilkinson K. J., “Practical Limitations of Single Particle ICP‐MS in the Determination of Nanoparticle Size Distributions and Dissolution: Case of Rare Earth Oxides,” Talanta 163 (2017): 121–126. PubMed
Chronakis M. I., Meermann B., and von der Au M., “The Evolution of Data Treatment Tools in Single‐Particle and Single‐Cell ICP‐MS Analytics,” Analytical and Bioanalytical Chemistry 417, no. 1 (2025): 7–13. PubMed PMC
Lockwood T. E., Schlatt L., and Clases D., “SPCal—An Open Source, Easy‐to‐Use Processing Platform for ICP‐TOFMS‐Based Single Event Data,” Journal of Analytical Atomic Spectrometry 40, no. 1 (2025): 130–136.
Baron D., Pluhacek T., and Petr J., “Characterization of Nanoparticles in Mixtures by Taylor Dispersion Analysis Hyphenated to Inductively Coupled Plasma Mass Spectrometry,” Analytical Chemistry 96, no. 14 (2024): 5658–5663. PubMed PMC
Labied L., Rocchi P., Doussineau T., et al., “Taylor Dispersion Analysis Coupled to Inductively Coupled Plasma‐Mass Spectrometry for Ultrasmall Nanoparticle Size Measurement: From Drug Product to Biological Media Studies,” Analytical Chemistry 93, no. 3 (2021): 1254–1259. PubMed
Becker J. S., Matusch A., and Wu B., “Bioimaging Mass Spectrometry of Trace Elements—Recent Advance and Applications of LA‐ICP‐MS: A Review,” Analytica Chimica Acta 835 (2014): 1–18. PubMed
Nordhorn I. D., Dietrich D., Verlemann C., et al., “Spatially and Size‐Resolved Analysis of Gold Nanoparticles in Rat Spleen After Intratracheal Instillation by Laser Ablation‐Inductively Coupled Plasma‐Mass Spectrometry,” Metallomics 13, no. 6 (2021): mfab028. PubMed
Wang M., Zheng L. N., Wang B., et al., “Laser Ablation‐Single Particle‐Inductively Coupled Plasma Mass Spectrometry as a Sensitive Tool for Bioimaging of Silver Nanoparticles
Stiborek M., Jindrichová L., Meliorisová S., et al., “Infrared Laser Desorption of Intact Nanoparticles for Digital Tissue Imaging,” Analytical Chemistry 94, no. 51 (2022): 18114–18120. PubMed
Fernández‐Trujillo S., Jiménez‐Moreno M., Rodríguez‐Fariñas N., and Rodríguez Martín‐Doimeadios R. C., “Critical Evaluation of the Potential of ICP‐MS‐Based Systems in Toxicological Studies of Metallic Nanoparticles,” Analytical and Bioanalytical Chemistry 416, no. 11 (2024): 2657–2676. PubMed PMC
Quattrini F., Berrecoso G., Crecente‐Campo J., and Alonso M. J., “Asymmetric Flow Field‐Flow Fractionation as a Multifunctional Technique for the Characterization of Polymeric Nanocarriers,” Drug Delivery and Translational Research 11 (2021): 373–395. PubMed PMC
Robertson J. D., Rizzello L., Avila‐Olias M., et al., “Purification of Nanoparticles by Size and Shape,” Scientific Reports 6, no. 1 (2016): 27494. PubMed PMC
Chen Z., Wang D., Gu S., Wu N., Wang K., and Zhang Y., “Size Exclusion Chromatography and Asymmetrical Flow Field‐Flow Fractionation for Structural Characterization of Polysaccharides: A Comparative Review,” International Journal of Biological Macromolecules 277 (2024): 134236. PubMed
Bosch A., Bott J., Warfving N., and Nolde J., “Investigation on the Skin Penetration of Synthetic Amorphous Silica (SAS) Used in Cosmetic Products,” Toxicology Letters 399 (2024): 80–104. PubMed
Lai Y., Dong L., Sheng X., Chao J., Yu S., and Liu J., “Monitoring the Cd PubMed
Ben‐Jeddou K., Bakir M., Jiménez M. S., Gómez M. T., Abad‐Álvaro I., and Laborda F., “Nanosilver‐Based Materials as Feed Additives: Evaluation of Their Transformations Along In Vitro Gastrointestinal Digestion in Pigs and Chickens by Using an ICP‐MS Based Analytical Platform,” Analytical and Bioanalytical Chemistry 416, no. 16 (2024): 3821–3833. PubMed PMC
Ban E., Yoo Y. S., and Song E. J., “Analysis and Applications of Nanoparticles in Capillary Electrophoresis,” Talanta 141 (2015): 15–20. PubMed
Pyell U., “Characterization of Nanoparticles by Capillary Electromigration Separation Techniques,” Electrophoresis 31, no. 5 (2010): 814–831. PubMed
Trapiella‐Alfonso L., Ramírez‐García G., d'Orlyé F., and Varenne A., “Electromigration Separation Methodologies for the Characterization of Nanoparticles and the Evaluation of Their Behaviour in Biological Systems,” TrAC Trends in Analytical Chemistry 84 (2016): 121–130.
Timerbaev A. R., Pawlak K., Aleksenko S. S., Foteeva L. S., Matczuk M., and Jarosz M., “Advances of CE‐ICP‐MS in Speciation Analysis Related to Metalloproteomics of Anticancer Drugs,” Talanta 102 (2012): 164–170. PubMed
Sikorski J., Drozd M., and Matczuk M., “Red Flags and Adversities on the Way to the Robust CE‐ICP‐MS/MS Quantitative Monitoring of Self‐Synthesized Magnetic Iron Oxide(II, III)‐Based Nanoparticle Interactions With Human Serum Proteins,” Molecules (Basel, Switzerland) 27, no. 23 (2022): 8442. PubMed PMC
Baron D., Rozsypal J., Michel A., et al., “Study of Interactions Between Carboxylated Core Shell Magnetic Nanoparticles and Polymyxin B by Capillary Electrophoresis With Inductively Coupled Plasma Mass Spectrometry,” Journal of Chromatography A 1609 (2020): 460433. PubMed
Kruszewska J., Sikorski J., Samsonowicz‐Górski J., and Matczuk M., “A CE‐ICP‐MS/MS Method for the Determination of Superparamagnetic Iron Oxide Nanoparticles Under Simulated Physiological Conditions,” Analytical and Bioanalytical Chemistry 412, no. 29 (2020): 8145–8153. PubMed PMC
Wróblewska A. and Matczuk M., “First Application of CE‐ICP‐MS for Monitoring the Formation of Cisplatin Targeting Delivery Systems With Gold Nanocarriers,” Electrophoresis 41, no. 5–6 (2020): 394–398. PubMed
Adelantado C., Ríos A., and Zougagh M., “A New Nanometrological Strategy for Titanium Dioxide Nanoparticles Screening and Confirmation in Personal Care Products by CE‐spICP‐MS,” Talanta 219 (2020): 121385. PubMed
Maguire C. M., Rösslein M., Wick P., and Prina‐Mello A., “Characterisation of Particles in Solution—A Perspective on Light Scattering and Comparative Technologies,” Science and Technology of Advanced Materials 19, no. 1 (2018): 732–745. PubMed PMC
Moser M. R. and Baker C. A., “Taylor Dispersion Analysis in Fused Silica Capillaries: A Tutorial Review,” Analytical Methods 13, no. 21 (2021): 2357–2373. PubMed
d'Orlyé F., Varenne A., and Gareil P., “Determination of Nanoparticle Diffusion Coefficients by Taylor Dispersion Analysis Using a Capillary Electrophoresis Instrument,” Journal of Chromatography A 1204, no. 2 (2008): 226–232. PubMed
Degasperi A., Labied L., Farre C., et al., “Probing the Protein Corona of Gold/Silica Nanoparticles by Taylor Dispersion Analysis‐ICP‐MS,” Talanta 243 (2022): 123386. PubMed
Strzeminska I., Factor C., Jimenez‐Lamana J., et al., “Comprehensive Speciation Analysis of Residual Gadolinium in Deep Cerebellar Nuclei in Rats Repeatedly Administered With Gadoterate Meglumine or Gadodiamide,” Investigative Radiology 57, no. 5 (2022): 283–292. PubMed PMC