Advances in ICP-MS-Based Nanoparticle Characterization: Techniques and Challenges in Biological Sample Analysis

. 2025 Sep ; 48 (9) : e70259.

Jazyk angličtina Země Německo Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40931375

The increasing use of engineered nanoparticles (NPs) in consumer and biomedical products has raised concern over their potential accumulation, transformation, and toxicity in biological systems. Accurate analytical methods are essential to detect, characterize, and quantify NPs in complex biological matrices. Inductively coupled plasma mass spectrometry (ICP-MS) has emerged as a leading technique due to its high sensitivity, elemental selectivity, and quantitative capabilities. This review critically evaluates recent advances (from January 2020 onward) in ICP-MS-based methods for analysis of NPs in biological samples. Two main strategies are discussed: single-particle ICP-MS (spICP-MS) and hyphenated techniques coupled to ICP-MS. spICP-MS allows direct determination of particle size, concentration, and metal content at environmentally relevant levels. It is the most widely used approach and is therefore examined in greater detail, with attention to extraction procedures, particle types, sample matrices, and inherent limitations. Advances in laser ablation spICP-MS for tissue imaging and spatially resolved NPs detection are also covered. Methods using hyphenated techniques, such as hydrodynamic chromatography, size-exclusion chromatography, capillary electrophoresis, Taylor dispersion analysis, and field-flow fractionation, are increasingly employed to address limitations spICP-MS. These approaches can provide enhanced insight into particle size distributions, aggregation behavior, and interactions with complex sample matrices. This review offers a comparative evaluation of both single-particle and hyphenated methods, discussing their respective advantages and limitations. Emphasis is placed on the complementarity of these techniques and how their combined use can offer a more complete understanding of NPs' fate in biological systems.

Zobrazit více v PubMed

Nasrollahpour H., Sánchez B. J., Sillanpää M., and Moradi R., “Metal Nanoclusters in Point‐of‐Care Sensing and Biosensing Applications,” ACS Applied Nano Materials 6, no. 14 (2023): 283–292.

Burlec A. F., Corciova A., Boev M., et al., “Current Overview of Metal Nanoparticles' Synthesis, Characterization, and Biomedical Applications, With a Focus on Silver and Gold Nanoparticles,” Pharmaceuticals 16, no. 10 (2023): 1410. PubMed PMC

Joseph T. M., Mahapatra D. K., Esmaeili A., et al., “Nanoparticles: Taking a Unique Position in Medicine,” Nanomaterials 13, no. 3 (2023): 574. PubMed PMC

Mourdikoudis S., Pallares R. M., and Thanh N. T. K., “Characterization Techniques for Nanoparticles: Comparison and Complementarity Upon Studying Nanoparticle Properties,” Nanoscale 10, no. 27 (2018): 12871–12934. PubMed

Brewer A. K., “Hydrodynamic Chromatography: The Underutilized Size‐Based Separation Technique,” Chromatographia 84, no. 9 (2021): 807–811.

Gouyon J., Boudier A., Barakat F., Pallotta A., and Clarot I., “Taylor Dispersion Analysis of Metallic‐Based Nanoparticles—A Short Review,” Electrophoresis 43, no. 23–24 (2022): 2377–2391. PubMed

Meermann B. and Nischwitz V., “ICP‐MS for the Analysis at the Nanoscale—A Tutorial Review,” Journal of Analytical Atomic Spectrometry 33, no. 9 (2018): 1432–1468.

Bolea E., Jimenez M. S., Perez‐Arantegui J., et al., “Analytical Applications of Single Particle Inductively Coupled Plasma Mass Spectrometry: A Comprehensive and Critical Review,” Analytical Methods 13, no. 25 (2021): 2742–2795. PubMed

Laycock A., Clark N. J., Clough R., Smith R., and Handy R. D., “Determination of Metallic Nanoparticles in Biological Samples by Single Particle ICP‐MS: A Systematic Review From Sample Collection to Analysis,” Environmental Science: Nano 9, no. 2 (2022): 420–453. PubMed PMC

Naasz S., Weigel S., Borovinskaya O., et al., “Multi‐Element Analysis of Single Nanoparticles by ICP‐MS Using Quadrupole and Time‐of‐Flight Technologies,” Journal of Analytical Atomic Spectrometry 33, no. 5 (2018): 835–845.

Chalifoux A., Hadioui M., Amiri N., and Wilkinson K. J., “Analysis of Silver Nanoparticles in Ground Beef by Single Particle Inductively Coupled Plasma Mass Spectrometry (SP‐ICP‐MS),” Molecules (Basel, Switzerland) 28, no. 11 (2023): 4442. PubMed PMC

Huang Y. Y., Lum J. T. S., and Leung K. S. Y., “Single Particle ICP‐MS Combined With Internal Standardization for Accurate Characterization of Polydisperse Nanoparticles in Complex Matrices,” Journal of Analytical Atomic Spectrometry 35, no. 10 (2020): 2148–2155.

Huang Y. Y., Lum J. T. S., and Leung K. S. Y., “An Integrated ICP‐MS‐Based Analytical Approach to Fractionate and Characterize Ionic and Nanoparticulate Ce Species,” Analytical and Bioanalytical Chemistry 414, no. 11 (2022): 3397–3410. PubMed

Lancaster S. T., Peniche G., Alzahrani A., et al., “Mercury Speciation in Scottish Raptors Reveals High Proportions of Inorganic Mercury in Scottish Golden Eagles ( PubMed

Paton L., Moro T. T., Lockwood T., et al., “AF

El Hanafi K., Gomez‐Gomez B., Pedrero Z., Bustamante P., Cherel Y., and Amouroux D., “Simple and Rapid Formic Acid Sample Treatment for the Isolation of HgSe Nanoparticles From Animal Tissues,” Analytica Chimica Acta 1250 (2023): 340952. PubMed

Toledano‐Serrabona J., de Moraes D. P., González‐Morales S., et al., “Tracking Soluble and Nanoparticulated Titanium Released PubMed

Aureli F., Ciprotti M., D'Amato M., et al., “Determination of Total Silicon and SiO PubMed PMC

Liu N., Li Y., Liu L. H., et al., “Administration of Silver Nasal Spray Leads to Nanoparticle Accumulation in Rat Brain Tissues,” Environmental Science & Technology 56, no. 1 (2022): 403–413. PubMed

Tao H., Nagano K., Tasaki I., et al., “Development and Evaluation of a System for the Semi‐Quantitative Determination of the Physical Properties of Skin After Exposure to Silver Nanoparticles,” Nanoscale Research Letters 15, no. 1 (2020): 187. PubMed PMC

Gao Y., Zhang R. Y., Sun H. Z., et al., “High‐Efficiency Mechanically Assisted Alkaline Extraction of Nanoparticles From Biological Tissues for spICP‐MS Analysis,” Analytical and Bioanalytical Chemistry 414, no. 15 (2022): 4401–4408. PubMed

Sun H. Z., Han D., Gao Y., et al., “Particle‐Size‐Dependent Biological Distribution of Gold Nanoparticles After Interstitial Injection,” Materials Chemistry Frontiers 6, no. 18 (2022): 2760–2767.

Yan T., Sun H. Z., Shi Y. H., et al., “Thoracic Interstitial Injection of Drug‐Liposomes in Mice for Treating Atherosclerosis,” Nano Research 16, no. 4 (2023): 5311–5321.

Sadeghalvad B. and Gray E. P., “Evaluation of Alternative Bases to TMAH for Tissue Extraction of ENMs From Tissues Prior to spICP‐MS Analysis,” Environmental Science: Nano 11, no. 10 (2024): 4309–4320.

Zhang W. C., Huo S. W., Deng S. X., et al., “ PubMed

Ji X., Yang L., Wu F., et al., “Identification of Mercury‐Containing Nanoparticles in the Liver and Muscle of Cetaceans,” Journal of Hazardous Materials 424 (2022): 127759. PubMed

Wu J., Sun J. Q., Bosker T., Vijver M. G., and Peijnenburg W., “Toxicokinetics and Particle Number‐Based Trophic Transfer of a Metallic Nanoparticle Mixture in a Terrestrial Food Chain,” Environmental Science & Technology 57 (2023): 2792–2803. PubMed

Kuehr S., Klehm J., Stehr C., Menzel M., and Schlechtriem C., “Unravelling the Uptake Pathway and Accumulation of Silver From Manufactured Silver Nanoparticles in the Freshwater Amphipod

Sun Y., Yang Y., Tou F. Y., et al., “Extraction and Quantification of Metal‐Containing Nanoparticles in Marine Shellfish Based on Single Particle Inductively Coupled Plasma‐Mass Spectrometry Technique,” Journal of Hazardous Materials 424 (2022): 127383. PubMed

Bruvold A., Valdersnes S., Loeschner K., and Bienfait A. M., “Validation of a Method for Surveillance of Nanoparticles in Mussels Using Single‐Particle Inductively Coupled Plasma‐Mass Spectrometry,” Journal of AOAC International 107 (2024): 608–616. PubMed PMC

Lu H. Y., Wang Y. J., and Hou W. C., “Bioaccumulation and Depuration of TiO PubMed

Gallocchio F., Moressa A., Pascoli F., et al., “Effect of TiO PubMed PMC

Taboada‐López M. V., Leal‐Martínez B. H., Domínguez‐González R., Bermejo‐Barrera P., Taboada‐Antelo P., and Moreda‐Piñeiro A., “Caco‐2 PubMed

Clark N. J., Clough R., Boyle D., and Handy R. D., “Quantification of Particulate Ag in Rainbow Trout Organs Following Dietary Exposure to Silver Nitrate, or Two Forms of Engineered Silver Nanoparticles,” Environmental Science: Nano 8, no. 6 (2021): 1642–1653.

Johnson M. E., Bennett J., Bustos A. R. M., et al., “Combining Secondary Ion Mass Spectrometry Image Depth Profiling and Single Particle Inductively Coupled Plasma Mass Spectrometry to Investigate the Uptake and Biodistribution of Gold Nanoparticles in PubMed

Zhou Q. F., Liu L. H., Liu N. A., He B., Hu L. G., and Wang L. N., “Determination and Characterization of Metal Nanoparticles in Clams and Oysters,” Ecotoxicology and Environmental Safety 198 (2020): 110670. PubMed

Yu Q., Zhang Z. Y., Monikh F. A., et al., “Trophic Transfer of Cu Nanoparticles in a Simulated Aquatic Food Chain,” Ecotoxicology and Environmental Safety 242 (2022): 113920. PubMed

Grasso A., Ferrante M., Moreda‐Pineiro A., et al., “Dietary Exposure of Zinc Oxide Nanoparticles (ZnO‐NPs) From Canned Seafood by Single Particle ICP‐MS: Balancing of Risks and Benefits for Human Health,” Ecotoxicology and Environmental Safety 231 (2022): 113217. PubMed

Kalman J., Connolly M., Abdolahpur‐Monikh F., et al., “Bioaccumulation of CuO Nanomaterials in Rainbow Trout: Influence of Exposure Route and Particle Shape,” Chemosphere 310 (2023): 136894. PubMed

Bocca B., Battistini B., Leso V., et al., “Occupational Exposure to Metal Engineered Nanoparticles: A Human Biomonitoring Pilot Study Involving Italian Nanomaterial Workers,” Toxics 11, no. 2 (2023): 120. PubMed PMC

Fernández‐Trujillo S., Jiménez‐Moreno M., Ríos A., and Martín‐Doimeadios R. D. R., “A Simple Analytical Methodology for Platinum Nanoparticles Control in Complex Clinical Matrices via SP‐ICP‐MS,” Talanta 231 (2021): 122370. PubMed

Bocca B., Battistini B., and Petrucci F., “Silver and Gold Nanoparticles Characterization by SP‐ICP‐MS and AF4‐FFF‐MALS‐UV‐ICP‐MS in Human Samples Used for Biomonitoring,” Talanta 220 (2020): 121404. PubMed

Cabré M., Fernández G., González E., Abellà J., and Verdaguer A., “Single Particle ICP‐MS: A Tool for the Characterization of Gold Nanoparticles in Nanotheranostics Applications,” Journal of Analytical Atomic Spectrometry 39, no. 10 (2024): 2508–2513.

Bocca B., Leso V., Battistini B., et al., “Human Biomonitoring and Personal Air Monitoring. An Integrated Approach to Assess Exposure of Stainless‐Steel Welders to Metal‐Oxide Nanoparticles,” Environmental Research 216 (2023): 114736. PubMed

Hernández‐Postigo M., Sánchez‐Cachero A., Jiménez‐Moreno M., and Martín‐Doimeadios R. C. R., “Determination of Size and Particle Number Concentration of Metallic Nanoparticles Using Isotope Dilution Analysis Combined With Single Particle ICP‐MS to Minimise Matrix Effects,” Microchimica Acta 192, no. 1 (2024): 28. PubMed

Salou S., Cirtiu C. M., Larivière D., and Fleury N., “Assessment of Strategies for the Formation of Stable Suspensions of Titanium Dioxide Nanoparticles in Aqueous Media Suitable for the Analysis of Biological Fluids,” Analytical and Bioanalytical Chemistry 412, no. 7 (2020): 1469–1481. PubMed

Abad‐Alvaro I., Leite D., Bartczak D., et al., “An Insight Into the Determination of Size and Number Concentration of Silver Nanoparticles in Blood Using Single Particle ICP‐MS (spICP‐MS): Feasibility of Application to Samples Relevant to

Ferrante M., Grasso A., Giuberti G., et al., “Behaviour and Fate of Ag‐NPs, TiO PubMed

Mehrabi K., Dengler M., Nilsson I., et al., “Detection of Magnetic Iron Nanoparticles by Single‐Particle ICP‐TOFMS: Case Study for a Magnetic Filtration Medical Device,” Analytical and Bioanalytical Chemistry 414, no. 23 (2022): 6743–6751. PubMed

Peloquin D. M., Baumann E. J., and Luxton T. P., “Multi‐Method Assessment of PVP‐Coated Silver Nanoparticles and Artificial Sweat Mixtures,” Chemosphere 249 (2020): 126173. PubMed PMC

Cosmi M., Gonzalez‐Quiñonez N., Díaz P. T., et al., “Evaluation of Nanodebris Produced by

Hachenberger Y. U., Rosenkranz D., Kromer C., et al., “Nanomaterial Characterization in Complex Media‐Guidance and Application,” Nanomaterials 13, no. 5 (2023): 18. PubMed PMC

Wu J. Y., Tou F. Y., Yang Y., et al., “Metal‐Containing Nanoparticles in Low‐Rank Coal‐Derived Fly Ash From China: Characterization and Implications Toward Human Lung Toxicity,” Environmental Science & Technology 55, no. 10 (2021): 6644–6654. PubMed

Akbaba T. N., Ertas N., and Alp O., “Characterization of the Silver Species Released From Clothing by Single Particle‐Inductively Coupled Plasma‐Mass Spectrometry Using a Microsecond Dwell Time,” Analytical Letters 55, no. 4 (2022): 580–595.

Zhang C. Y., Zhang Q., Zhao Y. C., Dong D. Q., and Huang L. J., “Determination of Titanium (IV) Oxide Nanoparticles Released From Textiles by Single Particle—Inductively Coupled Plasma—Mass Spectrometry (SP‐ICP‐MS),” Analytical Letters 57, no. 1 (2024): 82–91.

Jiménez M. S., Bakir M., Ben‐Jeddou K., Bolea E., Pérez‐Arantegui J., and Laborda F., “Comparative Study of Extraction Methods of Silver Species From Faeces of Animals Fed With Silver‐Based Nanomaterials,” Microchimica Acta 190, no. 6 (2023): 204. PubMed PMC

Sun Y. Z., Liu N., Wang Y. Y., et al., “Monitoring AuNP Dynamics in the Blood of a Single Mouse Using Single Particle Inductively Coupled Plasma Mass Spectrometry With an Ultralow‐Volume High‐Efficiency Introduction System,” Analytical Chemistry 92, no. 22 (2020): 14872–14877. PubMed

Peters R. J. B., Oomen A. G., van Bemmel G., et al., “Silicon Dioxide and Titanium Dioxide Particles Found in Human Tissues,” Nanotoxicology 14, no. 3 (2020): 420–432. PubMed

Gregar F., Gallo J., Milde D., et al., “In Vivo Assessment of TiO PubMed PMC

Seiffert S. B., Elinkmann M., Niehaves E., et al., “Calibration Strategy to Size and Localize Multi‐Shaped Nanoparticles in Tissue Sections Using LA‐spICP‐MS,” Analytical Chemistry 95, no. 15 (2023): 6383–6390. PubMed

Labied L., Rocchi P., Doussineau T., et al., “Biodegradation of Metal‐Based Ultra‐Small Nanoparticles: A Combined Approach Using TDA‐ICP‐MS and CE‐ICP‐MS,” Analytica Chimica Acta 1185 (2021): 339081. PubMed

Hamad A., Khashan K. S., and Hadi A., “Silver Nanoparticles and Silver Ions as Potential Antibacterial Agents,” Journal of Inorganic and Organometallic Polymers and Materials 30, no. 12 (2020): 4811–4828.

Radziwill‐Bienkowska J. M., Talbot P., Kamphuis J. B. J., et al., “Toxicity of Food‐Grade TiO PubMed PMC

Chen Z. J., Wang Y., Zhuo L., et al., “Effect of Titanium Dioxide Nanoparticles on the Cardiovascular System After Oral Administration,” Toxicology Letters 239, no. 2 (2015): 123–130. PubMed

Cornu R., Béduneau A., and Martin H., “Ingestion of Titanium Dioxide Nanoparticles: A Definite Health Risk for Consumers and Their Progeny,” Archives of Toxicology 96, no. 10 (2022): 2655–2686. PubMed

Chen Z. J., Zhou D., Wang Y., et al., “Combined Effect of Titanium Dioxide Nanoparticles and Glucose on the Cardiovascular System in Young Rats After Oral Administration,” Journal of Applied Toxicology 39, no. 4 (2019): 590–602. PubMed

Salou S., Larivière D., Cirtiu C. M., and Fleury N., “Quantification of Titanium Dioxide Nanoparticles in Human Urine by Single‐Particle ICP‐MS,” Analytical and Bioanalytical Chemistry 413, no. 1 (2021): 171–181. PubMed

Lavoie R. A., Jardine T. D., Chumchal M. M., Kidd K. A., and Campbell L. M., “Biomagnification of Mercury in Aquatic Food Webs: A Worldwide Meta‐Analysis,” Environmental Science & Technology 47, no. 23 (2013): 13385–13394. PubMed

Gajdosechova Z., Brownlow A., Cottin N. T., et al., “Possible Link Between Hg and Cd Accumulation in the Brain of Long‐Finned Pilot Whales ( PubMed

Gajdosechova Z., Mester Z., Feldmann J., and Krupp E. M., “The Role of Selenium in Mercury Toxicity–Current Analytical Techniques and Future Trends in Analysis of Selenium and Mercury Interactions in Biological Matrices,” TrAC Trends in Analytical Chemistry 104 (2018): 95–109.

Ji X. M., Yang L., Wu F. X., et al., “Identification of Mercury‐Containing Nanoparticles in the Liver and Muscle of Cetaceans,” Journal of Hazardous Materials 424 (2022): 127759. PubMed

Jeyaraj M., Gurunathan S., Qasim M., Kang M.‐H., and Kim J.‐H., “A Comprehensive Review on the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles,” Nanomaterials 9, no. 12 (2019): 1719. PubMed PMC

Pedone D., Moglianetti M., De Luca E., Bardi G., and Pompa P. P., “Platinum Nanoparticles in Nanobiomedicine,” Chemical Society Reviews 46, no. 16 (2017): 4951–4975. PubMed

Czubacka E. and Czerczak S., “Are Platinum Nanoparticles Safe to Human Health?,” Medycyna Pracy 70 (2019): 487–495. PubMed

Li Z., Chang S., Khuje S., and Ren S., “Recent Advancement of Emerging Nano Copper‐Based Printable Flexible Hybrid Electronics,” ACS Nano 15, no. 4 (2021): 6211–6232. PubMed

Gómez‐Rivera F., Field J. A., Brown D., and Sierra‐Alvarez R., “Fate of Cerium Dioxide (CeO PubMed

Goenaga‐Infante H. and Bartczak D., “Single Particle Inductively Coupled Plasma Mass Spectrometry (spICP‐MS),” in Characterization of Nanoparticles (Elsevier, 2020).

Fréchette‐Viens L., Hadioui M., and Wilkinson K. J., “Practical Limitations of Single Particle ICP‐MS in the Determination of Nanoparticle Size Distributions and Dissolution: Case of Rare Earth Oxides,” Talanta 163 (2017): 121–126. PubMed

Chronakis M. I., Meermann B., and von der Au M., “The Evolution of Data Treatment Tools in Single‐Particle and Single‐Cell ICP‐MS Analytics,” Analytical and Bioanalytical Chemistry 417, no. 1 (2025): 7–13. PubMed PMC

Lockwood T. E., Schlatt L., and Clases D., “SPCal—An Open Source, Easy‐to‐Use Processing Platform for ICP‐TOFMS‐Based Single Event Data,” Journal of Analytical Atomic Spectrometry 40, no. 1 (2025): 130–136.

Baron D., Pluhacek T., and Petr J., “Characterization of Nanoparticles in Mixtures by Taylor Dispersion Analysis Hyphenated to Inductively Coupled Plasma Mass Spectrometry,” Analytical Chemistry 96, no. 14 (2024): 5658–5663. PubMed PMC

Labied L., Rocchi P., Doussineau T., et al., “Taylor Dispersion Analysis Coupled to Inductively Coupled Plasma‐Mass Spectrometry for Ultrasmall Nanoparticle Size Measurement: From Drug Product to Biological Media Studies,” Analytical Chemistry 93, no. 3 (2021): 1254–1259. PubMed

Becker J. S., Matusch A., and Wu B., “Bioimaging Mass Spectrometry of Trace Elements—Recent Advance and Applications of LA‐ICP‐MS: A Review,” Analytica Chimica Acta 835 (2014): 1–18. PubMed

Nordhorn I. D., Dietrich D., Verlemann C., et al., “Spatially and Size‐Resolved Analysis of Gold Nanoparticles in Rat Spleen After Intratracheal Instillation by Laser Ablation‐Inductively Coupled Plasma‐Mass Spectrometry,” Metallomics 13, no. 6 (2021): mfab028. PubMed

Wang M., Zheng L. N., Wang B., et al., “Laser Ablation‐Single Particle‐Inductively Coupled Plasma Mass Spectrometry as a Sensitive Tool for Bioimaging of Silver Nanoparticles

Stiborek M., Jindrichová L., Meliorisová S., et al., “Infrared Laser Desorption of Intact Nanoparticles for Digital Tissue Imaging,” Analytical Chemistry 94, no. 51 (2022): 18114–18120. PubMed

Fernández‐Trujillo S., Jiménez‐Moreno M., Rodríguez‐Fariñas N., and Rodríguez Martín‐Doimeadios R. C., “Critical Evaluation of the Potential of ICP‐MS‐Based Systems in Toxicological Studies of Metallic Nanoparticles,” Analytical and Bioanalytical Chemistry 416, no. 11 (2024): 2657–2676. PubMed PMC

Quattrini F., Berrecoso G., Crecente‐Campo J., and Alonso M. J., “Asymmetric Flow Field‐Flow Fractionation as a Multifunctional Technique for the Characterization of Polymeric Nanocarriers,” Drug Delivery and Translational Research 11 (2021): 373–395. PubMed PMC

Robertson J. D., Rizzello L., Avila‐Olias M., et al., “Purification of Nanoparticles by Size and Shape,” Scientific Reports 6, no. 1 (2016): 27494. PubMed PMC

Chen Z., Wang D., Gu S., Wu N., Wang K., and Zhang Y., “Size Exclusion Chromatography and Asymmetrical Flow Field‐Flow Fractionation for Structural Characterization of Polysaccharides: A Comparative Review,” International Journal of Biological Macromolecules 277 (2024): 134236. PubMed

Bosch A., Bott J., Warfving N., and Nolde J., “Investigation on the Skin Penetration of Synthetic Amorphous Silica (SAS) Used in Cosmetic Products,” Toxicology Letters 399 (2024): 80–104. PubMed

Lai Y., Dong L., Sheng X., Chao J., Yu S., and Liu J., “Monitoring the Cd PubMed

Ben‐Jeddou K., Bakir M., Jiménez M. S., Gómez M. T., Abad‐Álvaro I., and Laborda F., “Nanosilver‐Based Materials as Feed Additives: Evaluation of Their Transformations Along In Vitro Gastrointestinal Digestion in Pigs and Chickens by Using an ICP‐MS Based Analytical Platform,” Analytical and Bioanalytical Chemistry 416, no. 16 (2024): 3821–3833. PubMed PMC

Ban E., Yoo Y. S., and Song E. J., “Analysis and Applications of Nanoparticles in Capillary Electrophoresis,” Talanta 141 (2015): 15–20. PubMed

Pyell U., “Characterization of Nanoparticles by Capillary Electromigration Separation Techniques,” Electrophoresis 31, no. 5 (2010): 814–831. PubMed

Trapiella‐Alfonso L., Ramírez‐García G., d'Orlyé F., and Varenne A., “Electromigration Separation Methodologies for the Characterization of Nanoparticles and the Evaluation of Their Behaviour in Biological Systems,” TrAC Trends in Analytical Chemistry 84 (2016): 121–130.

Timerbaev A. R., Pawlak K., Aleksenko S. S., Foteeva L. S., Matczuk M., and Jarosz M., “Advances of CE‐ICP‐MS in Speciation Analysis Related to Metalloproteomics of Anticancer Drugs,” Talanta 102 (2012): 164–170. PubMed

Sikorski J., Drozd M., and Matczuk M., “Red Flags and Adversities on the Way to the Robust CE‐ICP‐MS/MS Quantitative Monitoring of Self‐Synthesized Magnetic Iron Oxide(II, III)‐Based Nanoparticle Interactions With Human Serum Proteins,” Molecules (Basel, Switzerland) 27, no. 23 (2022): 8442. PubMed PMC

Baron D., Rozsypal J., Michel A., et al., “Study of Interactions Between Carboxylated Core Shell Magnetic Nanoparticles and Polymyxin B by Capillary Electrophoresis With Inductively Coupled Plasma Mass Spectrometry,” Journal of Chromatography A 1609 (2020): 460433. PubMed

Kruszewska J., Sikorski J., Samsonowicz‐Górski J., and Matczuk M., “A CE‐ICP‐MS/MS Method for the Determination of Superparamagnetic Iron Oxide Nanoparticles Under Simulated Physiological Conditions,” Analytical and Bioanalytical Chemistry 412, no. 29 (2020): 8145–8153. PubMed PMC

Wróblewska A. and Matczuk M., “First Application of CE‐ICP‐MS for Monitoring the Formation of Cisplatin Targeting Delivery Systems With Gold Nanocarriers,” Electrophoresis 41, no. 5–6 (2020): 394–398. PubMed

Adelantado C., Ríos A., and Zougagh M., “A New Nanometrological Strategy for Titanium Dioxide Nanoparticles Screening and Confirmation in Personal Care Products by CE‐spICP‐MS,” Talanta 219 (2020): 121385. PubMed

Maguire C. M., Rösslein M., Wick P., and Prina‐Mello A., “Characterisation of Particles in Solution—A Perspective on Light Scattering and Comparative Technologies,” Science and Technology of Advanced Materials 19, no. 1 (2018): 732–745. PubMed PMC

Moser M. R. and Baker C. A., “Taylor Dispersion Analysis in Fused Silica Capillaries: A Tutorial Review,” Analytical Methods 13, no. 21 (2021): 2357–2373. PubMed

d'Orlyé F., Varenne A., and Gareil P., “Determination of Nanoparticle Diffusion Coefficients by Taylor Dispersion Analysis Using a Capillary Electrophoresis Instrument,” Journal of Chromatography A 1204, no. 2 (2008): 226–232. PubMed

Degasperi A., Labied L., Farre C., et al., “Probing the Protein Corona of Gold/Silica Nanoparticles by Taylor Dispersion Analysis‐ICP‐MS,” Talanta 243 (2022): 123386. PubMed

Strzeminska I., Factor C., Jimenez‐Lamana J., et al., “Comprehensive Speciation Analysis of Residual Gadolinium in Deep Cerebellar Nuclei in Rats Repeatedly Administered With Gadoterate Meglumine or Gadodiamide,” Investigative Radiology 57, no. 5 (2022): 283–292. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...