Using Single-Particle Inductively Coupled Plasma Mass Spectrometry to Determine the Changes of Silver Nanoparticles in Bread Induced via Simulated Digestion
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38731682
PubMed Central
PMC11083480
DOI
10.3390/foods13091311
PII: foods13091311
Knihovny.cz E-zdroje
- Klíčová slova
- bread, food contamination, food safety, silver nanoparticles, simulated digestion, sp-ICP-MS,
- Publikační typ
- časopisecké články MeSH
Silver nanoparticles (AgNPs), widely used in various fields of technology as an antimicrobial agent, represent a new type of environmental pollutant. Through various routes, AgNPs might penetrate into agricultural crops and foodstuffs. It is important to know if AgNPs contained in food persist in digested food and are therefore available for entering the inner organs of the consumer's body. Using the technique of single-particle ICP-MS, we analysed the changes in the number and size distribution of AgNPs added to a sample of bread submitted to in vitro simulated gastrointestinal digestion. The majority of silver, in terms of mass, was transformed from the state of particles to the dissolved state during bread digestion, but the number of particles was reduced by 25% only. The most abundant particle size was reduced from 60 nm to 49 nm. Hence, a substantial part of transformed nanoparticles is still present in food digestate. This means that AgNPs consumed together with food can theoretically enter the inner cells of human body.
Zobrazit více v PubMed
Hosokawa M., Nogi K., Naito M., Yokoyama T. Nanoparticle Technology Handbook. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2012. pp. 12–56.
Awan T.I., Bashir A., Tehseen A. Chemistry of Nanomaterials. Fundametals and Applications. 1st ed. Elsevier; Amsterdam, The Netherlands: 2020. pp. 14–25.
Assadpour E., Dima C., Jafari S.M. Fundamentals of food nanotechnology. In: Jafari S.M., editor. Handbook of Food Nanotechnology. Applicactions and Approaches. 1st ed. Elsevier; Academic Press; Amsterdam, The Netherlands: 2020. pp. 379–415.
Paidari S., Tahergorabi R., Anari E.S., Nafchi A.M., Zamindar N., Goli M. Migration of Various Nanoparticles into Food Samples: A Review. Foods. 2021;10:2114. doi: 10.3390/foods10092114. PubMed DOI PMC
Pulit-Prociak J., Banach M. Silver nanoparticles—A material of the future…? Open Chem. 2016;14:76–91. doi: 10.1515/chem-2016-0005. DOI
Bhatt I., Tripathi B.N. Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere. 2011;82:308–317. doi: 10.1016/j.chemosphere.2010.10.011. PubMed DOI
Mourdikoudis S., Pallares R.M., Thanh N.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018;10:12871–12934. doi: 10.1039/C8NR02278J. PubMed DOI
Laborda F., Bolea E., Jiménez-Lamana J. Single Particle Inductively Coupled Plasma Mass Spectrometry: A Powerful Tool for Nanoanalysis. Anal. Chem. 2014;86:2270–2278. doi: 10.1021/ac402980q. PubMed DOI
Peters R.J.B., Herrera-Rivera Z., Undas A.K., van der Lee M.K., Marvin H.J.P., Bouwmeester H., Weigel S. Single particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices. J. Anal. At. Spectrom. 2015;30:1274–1285. doi: 10.1039/C4JA00357H. DOI
Laborda F., Bolea E., Jiménez-Lamana J. Single particle inductively coupled plasma mass spectrometry for the analysis of inorganic engineered nanoparticles in environmental samples. TrEAC. 2016;9:15–23. doi: 10.1016/j.teac.2016.02.001. DOI
Mozhayeva D., Engelhard E. A critical review of single particle inductively coupled plasma mass spectrometry—A step towards an ideal method for nanomaterial characterization. J. Anal. At. Spectrom. 2020;35:1740–1783. doi: 10.1039/C9JA00206E. DOI
Chalifoux A., Hadioui M., Amiri N., Wilkinson K.J. Analysis of Silver Nanoparticles in Ground Beef by Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS) Molecules. 2023;28:4442. doi: 10.3390/molecules28114442. PubMed DOI PMC
Ferraris F., Adelantado C., Raggi A., Savini S., Zougagh M., Ríos Á., Cubadda F. An ICP-MS-Based Analytical Strategy for Assessing Compliance with the Ban of E 171 as a Food Additive on the EU Market. Nanomaterials. 2023;13:2957. doi: 10.3390/nano13222957. PubMed DOI PMC
Gomez-Gomez B., Perez-Corona M.T., Madrid Y. Using single-particle ICP-MS for unravelling the effect of type of food on the physicochemical properties and gastrointestinal stability of ZnONPs released from packaging materials. Anal. Chim. Acta. 2020;1100:12–21. doi: 10.1016/j.aca.2019.11.063. PubMed DOI
Vidmar J., Hässmann L., Loeschner K. Single-Particle ICP−MS as a Screening Technique for the Presence of Potential Inorganic Nanoparticles in Food. J. Agric. Food Chem. 2021;69:9979–9990. doi: 10.1021/acs.jafc.0c07363. PubMed DOI
EFSA Scientific Committee Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: Human and animal health. EFSA J. 2021;19:6768. PubMed PMC
Loula M., Kaňa A., Koplík R., Hanuš J., Vosmanská M., Mestek O. Analysis of Silver Nanoparticles Using Single-Particle Inductively Coupled Plasma—Mass Spectrometry (ICP-MS): Parameters Affecting the Quality of Results. Anal. Lett. 2019;52:288–307. doi: 10.1080/00032719.2018.1459657. DOI
Loula M., Kaňa A., Mestek O. Non-spectral interferences in single-particle ICP-MS analysis: An underestimated phenomenon. Talanta. 2019;202:565–571. doi: 10.1016/j.talanta.2019.04.073. PubMed DOI
Velišek J., Koplík R., Cejpek K. The Chemistry of Food. 2nd ed. Wiley Blackwell; Hoboken, NJ, USA: 2020. p. 483.
Kantorová V., Krausová G., Hyršlová I., Loula M., Mestek O., Kaňa A. Determination of selenium nanoparticles in fermented dairy products. Spectrochim. Acta Part B At. Spectrosc. 2023;199:106592. doi: 10.1016/j.sab.2022.106592. DOI
Vítková I. Master’s Thesis. UCT Prague; Prague, Czech Republic: 2018. Methodology of Silver Determination in Foodstuffs. (In Czech)
Joly W.L. Modern Inorganic Chemistry. 2nd ed. McGraw-Hill College; New York, NY, USA: 1991. p. 325.
Holzbecher Z., Jeník J., Šůcha L., Vláčil F., Vrbský J. Analytical Chemistry. SNTL/Alfa; Prague, Czech Republic: 1968. p. 40.
Walczak A.P., Fokkink R., Peters R., Tromp P., Herrera Rivera Z.E., Rietjens I.M., Hendriksen P.J., Bouwmeester H. Behaviour of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model. Nanotoxicology. 2013;7:1198–1210. doi: 10.3109/17435390.2012.726382. PubMed DOI
Ramos K., Ramos L., Gómez-Gómez M.M. Simultaneous characterisation of silver nanoparticles and determination of dissolved silver in chicken meat subjected to in vitro human gastrointestinal digestion using single particle inductively coupled plasma mass spectrometry. Food Chem. 2017;221:822–828. doi: 10.1016/j.foodchem.2016.11.091. PubMed DOI