bread
Dotaz
Zobrazit nápovědu
UNLABELLED: The glycaemic index (GI) is a measure of the food power to raise blood glucose (B-glucose) concentration after a meal. For healthy eating, foods with low GI are recommended. However, for many foods in the European Union the GI has not been defined yet. The aims of this prospective open-label study were: (1) to determine the GI of white bread and juicy cereal bars FIT (Usovsko, Czech Republic) by means of the glucometer Optium (Abbott/Medisense); (2) to compare the GI of tested foods determined in the morning and in the evening hours; (3) to compare the GI of tested foods in men and women and (4) to assess the variability of the GI. METHODS: To determine the GI, measured portions of food containing 50 g of carbohydrates were eaten by 11 healthy volunteers. B-glucose curves were constructed from B-glucose values at time 0, 15, 30, 45, 60, 60, 120 min after the meal. The GI was calculated by dividing the incremental area under the curve (IAUC) for the tested food by that for the standard food (IAUCS). In each volunteer each food was tested 5 times so that 5 GI's was obtained and the average was calculated. The GI for each tested food was calculated as the mean from the respective average GI's of the 11 volunteers. MS Excel and the statistical program SPSS v. 10.1 were used to analyze the data. RESULTS: (1) The mean values of the GI for white bread was 70.3 % and for juicy cereal bars was 101.0 %, as determined in a total of 139 tests in the whole group of 11 volunteers. There was a difference when comparing white bread vs. glucose (p = 0.012) and white bread vs. cereal bars (p = 0.026) but no difference between glucose and cereal bars. (2) There was no significant difference between the GI determined in the morning and in the evening hours either for the total of 139 tests or for the individual tested foods. (3) No significant difference could be seen between the GI in men and women when comparing glucose, cereal bars and white bread. (4) There was a wide variability of GI in all tested foods: the standard deviation of GI for white bread was 30.7 %, for juicy cereal bars 38.0 %. CONCLUSIONS: The GI's for white bread and juicy cereal bars were determined. There was no difference either between the GI values determined in the morning vs. the evening hours or between the values in men vs. women. The results show wide variability. An accurate standard method for the determination of GI needs to be defined, carefully used and re-evaluated to enable a comparison of the results with various methods of other working groups.
- MeSH
- chléb MeSH
- dospělí MeSH
- glykemický index MeSH
- jedlá semena MeSH
- krevní glukóza analýza MeSH
- lidé MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
KEY MESSAGE: Using COS markers, the study reveals homeologous relationships between tetraploid Agropyron cristatum and bread wheat to support alien introgression breeding of wheat. Crested wheatgrass (Agropyron cristatum L. Gaertn.) is a wild relative of wheat that possesses many genes that are potentially useful in wheat improvement. The species comprises a complex of diploid, tetraploid and hexaploid forms. In this study, wheat-A. cristatum chromosome, telosome and translocation lines were used to characterize syntenic relationships between tetraploid A. cristatum and bread wheat. Prior to mapping COS markers, the cytogenetic stock lines were characterized for fertility and by FISH and GISH for karyotype stability. Out of 328 COS markers selected for the study, 279 consistently amplified products in tetraploid A. cristatum, and, out of these, 139 were polymorphic between tetraploid crested wheatgrass and wheat. Sixty-nine markers were found to be suitable for the detection of tetraploid A. cristatum chromosomes 1P-6P in wheat, ranging from 6 to 17 markers per chromosome. BLASTn of the source ESTs resulted in significant hits for 67 markers on the wheat pseudomolecules. Generally, COS markers of the same homeologous group were detected on similar arms in both Agropyron and wheat. However, some intragenomic duplications and chromosome rearrangements were detected in tetraploid A. cristatum. These results provide new insights into the structure and evolution of the tetraploid A. cristatum genome and will facilitate the exploitation of the wild species for introgression breeding of bread wheat.
- MeSH
- Agropyron genetika růst a vývoj MeSH
- chléb analýza MeSH
- chromozomy rostlin MeSH
- genetické markery * MeSH
- genom rostlinný genetika MeSH
- genotyp MeSH
- hybridizace genetická * MeSH
- mapování chromozomů MeSH
- pšenice genetika růst a vývoj MeSH
- tetraploidie * MeSH
- translokace genetická MeSH
- Publikační typ
- časopisecké články MeSH
The market need for good quality gluten-free (GF) bakery products is in focus, due the increasing number of people with Celiac Disease (CD), Non-Celiac Gluten Sensitivity (NCGS) and the growing popularity of following GF diet as a trend. However scientific knowledge of the technically challenging GF bread making is growing, data regarding consumer market needs, opinions, trends and issues are insufficient. The present study was aimed to evaluate the consumer’s acceptance of available GF breads and their satisfaction. The data of the study reveal that approximately half of the people following GF diet have other different food related health problems parallel with CD or NCGS. The present study shows, that 70.8% of the asked consumers are dissatisfied with GF breads due their texture and taste, and for home baking consumers usually mix 2-3 or even more different GF flours, as they are displeased with the quality of the available mixes on their own. Overall, the most relevant problem for the consumers is the particularly higher price of the GF flours and breads.
- MeSH
- bezlepková dieta * ekonomika MeSH
- celiakie dietoterapie ekonomika komplikace MeSH
- chléb ekonomika statistika a číselné údaje MeSH
- chování spotřebitelů * ekonomika statistika a číselné údaje MeSH
- kvalita jídla MeSH
- lidé MeSH
- marketing MeSH
- mouka ekonomika MeSH
- potravinová alergie epidemiologie komplikace MeSH
- přijímání potravy MeSH
- průzkumy a dotazníky MeSH
- vaření statistika a číselné údaje MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- práce podpořená grantem MeSH
- Geografické názvy
- Maďarsko MeSH
- Klíčová slova
- domácí pečení chleba,
- MeSH
- bezlepková dieta * využití MeSH
- celiakie * diagnóza dietoterapie prevence a kontrola MeSH
- chléb * analýza klasifikace normy využití zásobování a distribuce MeSH
- jedlá semena MeSH
- lidé MeSH
- lipidy MeSH
- minerály MeSH
- mouka MeSH
- nutriční hodnota MeSH
- potravinářské přísady MeSH
- potravinářský průmysl MeSH
- proteiny MeSH
- sacharidy MeSH
- Check Tag
- lidé MeSH
BACKGROUND: The IWGSC strategy for construction of the reference sequence of the bread wheat genome is based on first obtaining physical maps of the individual chromosomes. Our aim is to develop and use the physical map for analysis of the organization of the short arm of wheat chromosome 5B (5BS) which bears a number of agronomically important genes, including genes conferring resistance to fungal diseases. RESULTS: A physical map of the 5BS arm (290 Mbp) was constructed using restriction fingerprinting and LTC software for contig assembly of 43,776 BAC clones. The resulting physical map covered ~ 99% of the 5BS chromosome arm (111 scaffolds, N50 = 3.078 Mb). SSR, ISBP and zipper markers were employed for anchoring the BAC clones, and from these 722 novel markers were developed based on previously obtained data from partial sequencing of 5BS. The markers were mapped using a set of Chinese Spring (CS) deletion lines, and F2 and RICL populations from a cross of CS and CS-5B dicoccoides. Three approaches have been used for anchoring BAC contigs on the 5BS chromosome, including clone-by-clone screening of BACs, GenomeZipper analysis, and comparison of BAC-fingerprints with in silico fingerprinting of 5B pseudomolecules of T. dicoccoides. These approaches allowed us to reach a high level of BAC contig anchoring: 96% of 5BS BAC contigs were located on 5BS. An interesting pattern was revealed in the distribution of contigs along the chromosome. Short contigs (200-999 kb) containing markers for the regions interrupted by tandem repeats, were mainly localized to the 5BS subtelomeric block; whereas the distribution of larger 1000-3500 kb contigs along the chromosome better correlated with the distribution of the regions syntenic to rice, Brachypodium, and sorghum, as detected by the Zipper approach. CONCLUSION: The high fingerprinting quality, LTC software and large number of BAC clones selected by the informative markers in screening of the 43,776 clones allowed us to significantly increase the BAC scaffold length when compared with the published physical maps for other wheat chromosomes. The genetic and bioinformatics resources developed in this study provide new possibilities for exploring chromosome organization and for breeding applications.
The anthocyanin composition of blue (Triticum aestivum L., cv. Skorpion) and purple wheat (Triticum aethiopicum JAKUBZ cv. Abyssinskaja arrasajta cv. Abyssinskaja arrasajta), cultivated in the Czech Republic, and of the prepared whole blue and purple wheat bread was determined. In blue and purple wheat, 19 and 26 anthocyanins, respectively, were tentatively identified by liquid chromatography and mass spectrometry. The total content of anthocyanins determined in blue and purple wheat was 9.26 and 13.23 mgkg(-1), respectively. The breads were baked at 240 and 180 °C. Some significant differences in anthocyanins content were observed between breads prepared at different baking temperatures. The content of cyanidin-3-glucoside, delphinidin-3-glucoside and pelargonidin-3-glucoside was determinated in starting material, whole meal flours and baked breads. These kinds of wheat are suitable for baking bread, since intake of anthocyanins may play an important role in the prevention of human diseases.
- MeSH
- anthokyaniny analýza chemie MeSH
- chléb analýza MeSH
- chromatografie kapalinová MeSH
- druhová specificita MeSH
- glukosidy analýza MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- jedlá semena chemie MeSH
- lidé MeSH
- mouka analýza MeSH
- pšenice chemie MeSH
- vaření * MeSH
- vysoká teplota * MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
The capacity of the bread wheat (Triticum aestivum) genome to tolerate introgression from related genomes can be exploited for wheat improvement. A resistance to powdery mildew expressed by a derivative of the cross-bread wheat cv. Tähti × T. militinae (Tm) is known to be due to the incorporation of a Tm segment into the long arm of chromosome 4A. Here, a newly developed in silico method termed rearrangement identification and characterization (RICh) has been applied to characterize the introgression. A virtual gene order, assembled using the GenomeZipper approach, was obtained for the native copy of chromosome 4A; it incorporated 570 4A DArTseq markers to produce a zipper comprising 2132 loci. A comparison between the native and introgressed forms of the 4AL chromosome arm showed that the introgressed region is located at the distal part of the arm. The Tm segment, derived from chromosome 7G, harbours 131 homoeologs of the 357 genes present on the corresponding region of Chinese Spring 4AL. The estimated number of Tm genes transferred along with the disease resistance gene was 169. Characterizing the introgression's position, gene content and internal gene order should not only facilitate gene isolation, but may also be informative with respect to chromatin structure and behaviour studies.
- MeSH
- Ascomycota patogenita MeSH
- chléb MeSH
- chromozomy rostlin genetika metabolismus MeSH
- DNA rostlinná genetika MeSH
- genetické markery MeSH
- mapování chromozomů MeSH
- mikrosatelitní repetice MeSH
- nemoci rostlin genetika mikrobiologie MeSH
- odolnost vůči nemocem MeSH
- počítačová simulace MeSH
- pšenice genetika mikrobiologie MeSH
- rostlinné geny MeSH
- sekvence nukleotidů MeSH
- translokace genetická MeSH
- Publikační typ
- časopisecké články MeSH
Zinc (Zn) deficiency is a major problem for many people living on wheat-based diets. Here, we explored whether addition of green manure of red clover and sunflower to a calcareous soil or inoculating a non-indigenous arbuscular mycorrhizal fungal (AMF) strain may increase grain Zn concentration in bread wheat. For this purpose we performed a multifactorial pot experiment, in which the effects of two green manures (red clover, sunflower), ZnSO4 application, soil γ-irradiation (elimination of naturally occurring AMF), and AMF inoculation were tested. Both green manures were labeled with 65Zn radiotracer to record the Zn recoveries in the aboveground plant biomass. Application of ZnSO4 fertilizer increased grain Zn concentration from 20 to 39 mg Zn kg-1 and sole addition of green manure of sunflower to soil raised grain Zn concentration to 31 mg Zn kg-1. Adding the two together to soil increased grain Zn concentration even further to 54 mg Zn kg-1. Mixing green manure of sunflower to soil mobilized additional 48 µg Zn (kg soil)-1 for transfer to the aboveground plant biomass, compared to the total of 132 µg Zn (kg soil)-1 taken up from plain soil when neither green manure nor ZnSO4 were applied. Green manure amendments to soil also raised the DTPA-extractable Zn in soil. Inoculating a non-indigenous AMF did not increase plant Zn uptake. The study thus showed that organic matter amendments to soil can contribute to a better utilization of naturally stocked soil micronutrients, and thereby reduce any need for major external inputs.
- MeSH
- biologický transport MeSH
- biomasa MeSH
- chléb * MeSH
- dusík metabolismus MeSH
- hnůj * MeSH
- koncentrace vodíkových iontů MeSH
- kyselina pentetová chemie MeSH
- minerály chemie MeSH
- mykorhiza fyziologie MeSH
- průmyslová hnojiva analýza mikrobiologie MeSH
- pšenice metabolismus mikrobiologie MeSH
- půda chemie MeSH
- rozpustnost MeSH
- zinek metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Flowering time variation was identified within a mapping population of doubled haploid lines developed from a cross between the introgressive line 8.1 and spring bread wheat cv. Tähti. The line 8.1 carried introgressions from tetraploid Triticum militinae in the cv. Tähti genetic background on chromosomes 1A, 2A, 4A, 5A, 7A, 1B and 5B. The most significant QTL for the flowering time variation was identified within the introgressed region on chromosome 5A and its largest effect was associated with the VRN-A1 locus, accounting for up to 70% of phenotypic variance. The allele of T. militinae origin was designated as VRN-A1f-like. The effect of the VRN-A1f-like allele was verified in two other mapping populations. QTL analysis identified that in cv. Tähti and cv. Mooni genetic background, VRN-A1f-like allele incurred a delay of 1.9-18.6 days in flowering time, depending on growing conditions. Sequence comparison of the VRN-A1f-like and VRN-A1a alleles from the parental lines of the mapping populations revealed major mutations in the promoter region as well as in the first intron, including insertion of a MITE element and a large deletion. The sequence variation allowed construction of specific diagnostic PCR markers for VRN-A1f-like allele determination. Identification and quantification of the effect of the VRN-A1f-like allele offers a useful tool for wheat breeding and for studying fine-scale regulation of flowering pathways in wheat.