Pharmacological Significance of Boraginaceae with Special Insights into Shikonin and Its Potential in the Food Industry
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
IGA/FT/2024/005
Tomas Bata University in Zlín
PubMed
38731721
PubMed Central
PMC11082953
DOI
10.3390/foods13091350
PII: foods13091350
Knihovny.cz E-resources
- Keywords
- Boraginaceae, acetylshikonin, naphthoquinone, shikonin,
- Publication type
- Journal Article MeSH
- Review MeSH
Shikonin is a naphthoquinone pigment present in the hairy roots of the plant species from the Boraginaceae family. The compound has been well investigated for its highly efficient medicinal, antioxidant, and antimicrobial properties. Various extraction methodologies have been employed to maximise yield while minimising waste production of shikonin and its derivatives. Despite substantial research on shikonin and Boraginaceae plants, a research gap persists in the food industry and extraction technologies. This review addresses crucial aspects of shikonin deserving of further exploration. It begins by elucidating the attributes of the Boraginaceae plants and their medicinal traits in folklore. It proceeds to focus on the roots of the plant and its medicinal properties, followed by extraction procedures explored in the last fifteen years, emphasising the novel technologies that have been chosen to improve the yield extract while minimising extraction times. Furthermore, this review briefly outlines studies employing cell culture techniques to enhance in vitro shikonin production. Lastly, attention is directed towards research in the food industry, particularly on shikonin-loaded biodegradable films and the antioxidant activity of shikonin. This review concludes by summarising the future potential in food science and prominent research gaps in this field.
See more in PubMed
Kaur K., Sharma R., Singh A., Attri S., Arora S., Kaur S., Bedi N. Pharmacological and analytical aspects of alkannin/shikonin and their derivatives: An update from 2008 to 2022. Chin. Herb. Med. 2022;14:511–527. doi: 10.1016/j.chmed.2022.08.001. PubMed DOI PMC
Andújar I., Ríos J.L., Giner R.M., Recio M.C. Pharmacological properties of shikonin—A review of literature since 2002. Planta Medica. 2013;79:1685–1697. doi: 10.1055/s-0033-1350934. PubMed DOI
Fu J.-Y., Zhao H., Bao J.-X., Wen Z.-L., Fang R.-J., Fazal A., Yang M.-K., Liu B., Yin T.-M., Pang Y.-J., et al. Establishment of the hairy root culture of Echium plantagineum L. and its shikonin production. 3 Biotech. 2020;10:429. doi: 10.1007/s13205-020-02419-7. PubMed DOI PMC
Olennikov D.N., Kruglov D.S., Daironas Z.V., Zilfikarov I.N. Shikonin and its Esters from Buglossoides arvensis and Other Species of the Family Boraginaceae. Chem. Nat. Compd. 2020;56:713–715. doi: 10.1007/s10600-020-03127-7. DOI
Albreht A., Vovk I., Simonovska B., Srbinoska M. Identification of shikonin and its ester derivatives from the roots of Echium italicum L. J. Chromatogr. A. 2009;1216:3156–3162. doi: 10.1016/j.chroma.2009.01.098. PubMed DOI
Kumar A., Shashni S., Kumar P., Pant D., Singh A., Verma R.K. Phytochemical constituents, distributions and traditional usages of Arnebia euchroma: A review. J. Ethnopharmacol. 2021;271:113896. doi: 10.1016/j.jep.2021.113896. PubMed DOI
Chen X., Yang L., Oppenheim J.J., Howard O.M.Z. Cellular pharmacology studies of shikonin derivatives. Phytother. Res. 2002;16:199–209. doi: 10.1002/ptr.1100. PubMed DOI
Descamps C., Quinet M., Jacquemart A.-L. Climate change–induced stress reduce quantity and alter composition of nectar and pollen from a bee-pollinated species (Borago officinalis, Boraginaceae) Front. Plant Sci. 2021;12:755843. doi: 10.3389/fpls.2021.755843. PubMed DOI PMC
Du G. Natural Small Molecule Drugs from Plants. Springer; Berlin/Heidelberg, Germany: 2018.
Bhalla T.C. International Laws and Food-Borne Illness. Elsevier; Amsterdam, The Netherlands: 2019. pp. 319–371.
Aniszewski T. Alkaloids-Secrets of Life: Aklaloid Chemistry, Biological Significance, Applications and Ecological Role. Elsevier; Amsterdam, The Netherlands: 2007.
Pieszak M., Mikolajczak P.L., Manikowska K. Borage (Borago officinalis L.)—A valuable medicinal plant used in herbal medicine. Herba Pol. 2012;95-103
Larrea M.I.S.A., Larrea M.D.S.A., Olivos-Oré L.A. Encyclopedia of Toxicology. Academic Press; Oxford, UK: 2024. Plants, Poisonous (Animals) pp. 685–703. DOI
Skoneczny D., Zhu X., A Weston P., Gurr G.M., Callaway R.M., A Weston L. Production of pyrrolizidine alkaloids and shikonins in Echium plantagineum L. in response to various plant stressors. Pest Manag. Sci. 2019;75:2530–2541. doi: 10.1002/ps.5540. PubMed DOI
Oza M.J., Kulkarni Y.A. Traditional uses, phytochemistry and pharmacology of the medicinal species of the genus Cordia (Boraginaceae) J. Pharm. Pharmacol. 2017;69:755–789. doi: 10.1111/jphp.12715. PubMed DOI
Hempen C., Fischer T. A Materia Medica for Chinese Medicine: Plants, Minerals, and Animal Products. Elsevier Health Sciences; Amsterdam, The Netherlands: 2009.
Gautam S., Lapcik L., Lapcikova B., Repka D., Szyk-Warszyńska L. Physicochemical characterisation of polysaccharide films with embedded bioactive substances. Foods. 2023;12:4454. doi: 10.3390/foods12244454. PubMed DOI PMC
Lapcik L., Lapcikova B., Zboril R. Paper-Based Composite Planar Material. European Patent Office; Muenchen, Germany: 2018. EP 3034693-B1.
Sayyah M., Boostani H., Pakseresht S., Malaieri A. Efficacy of aqueous extract of Echium amoenum in treatment of obsessive–compulsive disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2009;33:1513–1516. doi: 10.1016/j.pnpbp.2009.08.021. PubMed DOI
Ahvazi M., Khalighi-Sigaroodi F., Charkhchiyan M.M., Mojab F., Mozaffarian V.-A., Zakeri H. Introduction of medicinal plants species with the most traditional usage in Alamut region. Iran. J. Pharm. Res. IJPR. 2012;11:185. PubMed PMC
De Natale A., Pollio A. Plants species in the folk medicine of Montecorvino Rovella (inland Campania, Italy) J. Ethnopharmacol. 2007;109:295–303. doi: 10.1016/j.jep.2006.07.038. PubMed DOI
Eruygur N., Yılmaz G., Kutsal O., Yücel G., Üstün O. Bioassay-guided isolation of wound healing active compounds from Echium species growing in Turkey. J. Ethnopharmacol. 2016;185:370–376. doi: 10.1016/j.jep.2016.02.045. PubMed DOI
Foster S., Duke J.A. A field guide to medicinal plants: Eastern and central North America. Peterson Field Guide Ser. (USA) 1990:40.
Félix-Silva J., Silva-Junior A.A., Zucolotto S.M., de Freitas Fernandes-Pedrosa M. Medicinal plants for the treatment of local tissue damage induced by snake venoms: An overview from traditional use to pharmacological evidence. Evid. Based Complement. Altern. Med. 2017;2017:5748256. doi: 10.1155/2017/5748256. PubMed DOI PMC
Jin J., Boersch M., Nagarajan A., Davey A.K., Zunk M. Antioxidant properties and reported ethnomedicinal use of the genus Echium (Boraginaceae) Antioxidants. 2020;9:722. doi: 10.3390/antiox9080722. PubMed DOI PMC
Dresler S., Szymczak G., Wójcik M. Comparison of some secondary metabolite content in the seventeen species of the Boraginaceae family. Pharm. Biol. 2017;55:691–695. doi: 10.1080/13880209.2016.1265986. PubMed DOI PMC
Li G., Qiao M., Guo Y., Wang X., Xu Y., Xia X. Effect of subinhibitory concentrations of chlorogenic acid on reducing the virulence factor production by Staphylococcus aureus. Foodborne Pathog. Dis. 2014;11:677–683. doi: 10.1089/fpd.2013.1731. PubMed DOI
Chen D., Li Q., Li Q., Lyu C. Traditional Chinese medicine for hypertrophic scars—A review of the therapeutic methods and potential effects. Front. Pharmacol. 2022;13:1025602. doi: 10.3389/fphar.2022.1025602. PubMed DOI PMC
Yadav S., Sharma A., Nayik G.A., Cooper R., Bhardwaj G., Sohal H.S., Mutreja V., Kaur R., Areche F.O., AlOudat M., et al. Review of shikonin and derivatives: Isolation, chemistry, biosynthesis, pharmacology and toxicology. Front. Pharmacol. 2022;13:905755. doi: 10.3389/fphar.2022.905755. PubMed DOI PMC
Guo C., He J., Song X., Tan L., Wang M., Jiang P., Li Y., Cao Z., Peng C. Pharmacological properties and derivatives of shikonin—A review in recent years. Pharmacol. Res. 2019;149:104463. doi: 10.1016/j.phrs.2019.104463. PubMed DOI
Dai Q., Fang J., Zhang F.-S. Dual role of shikonin in early and late stages of collagen type II arthritis. Mol. Biol. Rep. 2009;36:1597–1604. doi: 10.1007/s11033-008-9356-7. PubMed DOI
Kim H.-J., Hwang K.-E., Park D.-S., Oh S.-H., Jun H.Y., Yoon K.-H., Jeong E.-T., Kim H.-R., Kim Y.-S. Shikonin-induced necroptosis is enhanced by the inhibition of autophagy in non-small cell lung cancer cells. J. Transl. Med. 2017;15:123. doi: 10.1186/s12967-017-1223-7. PubMed DOI PMC
Tang J.-C., Zhao J., Long F., Chen J.-Y., Mu B., Jiang Z., Ren Y., Yang J. Efficacy of Shikonin against Esophageal Cancer Cells and its possible mechanisms in vitro and in vivo. J. Cancer. 2018;9:32. doi: 10.7150/jca.21224. PubMed DOI PMC
Lu B., Wang Z., Ding Y., Wang X., Lu S., Wang C., He C., Piao M., Chi G., Luo Y., et al. RIP1 and RIP3 contribute to shikonin-induced glycolysis suppression in glioma cells via increase of intracellular hydrogen peroxide. Cancer Lett. 2018;425:31–42. doi: 10.1016/j.canlet.2018.03.046. PubMed DOI
Chaudhury A., Gupta B., Chakrabort S. Identification of novel targets for shikonin as a potent drug for inflammation and cancer. Pharmacologia. 2016;7:350–360. doi: 10.5567/pharmacologia.2016.350.360. DOI
Chen J., Xie J., Jiang Z., Wang B., Wang Y., Hu X. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene. 2011;30:4297–4306. doi: 10.1038/onc.2011.137. PubMed DOI
Altenberg B., Greulich K. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics. 2004;84:1014–1020. doi: 10.1016/j.ygeno.2004.08.010. PubMed DOI
Christofk H.R., Vander Heiden M.G., Harris M.H., Ramanathan A., Gerszten R.E., Wei R., Fleming M.D., Schreiber S.L., Cantley L.C. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008;452:230–233. doi: 10.1038/nature06734. PubMed DOI
Yang W., Lu Z. Nuclear PKM2 regulates the Warburg effect. Cell Cycle. 2013;12:3343–3347. doi: 10.4161/cc.26182. PubMed DOI PMC
Peti W., Page R. Molecular basis of MAP kinase regulation. Protein Sci. 2013;22:1698–1710. doi: 10.1002/pro.2374. PubMed DOI PMC
Zhang Y., Dong C. Regulatory mechanisms of mitogen-activated kinase signaling. Cell. Mol. Life Sci. 2007;64:2771–2789. doi: 10.1007/s00018-007-7012-3. PubMed DOI PMC
Shaul Y.D., Seger R. The MEK/ERK cascade: From signaling specificity to diverse functions. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2007;1773:1213–1226. doi: 10.1016/j.bbamcr.2006.10.005. PubMed DOI
Zhao Q., Assimopoulou A.N., Klauck S.M., Damianakos H., Chinou I., Kretschmer N., Rios J.-L., Papageorgiou V.P., Bauer R., Efferth T. Inhibition of c-MYC with involvement of ERK/JNK/MAPK and AKT pathways as a novel mechanism for shikonin and its derivatives in killing leukemia cells. Oncotarget. 2015;6:38934. doi: 10.18632/oncotarget.5380. PubMed DOI PMC
Shan Z.-L., Zhong L., Xiao C.-L., Gan L.-G., Xu T., Song H., Yang R., Li L., Liu B.-Z. Shikonin suppresses proliferation and induces apoptosis in human leukemia NB4 cells through modulation of MAPKs and c-Myc. Mol. Med. Rep. 2017;16:3055–3060. doi: 10.3892/mmr.2017.6965. PubMed DOI PMC
Zhuang S., Schnellmann R.G. A death-promoting role for extracellular signal-regulated kinase. J. Pharmacol. Exp. Ther. 2006;319:991–997. doi: 10.1124/jpet.106.107367. PubMed DOI
Davis R.J. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103:239–252. doi: 10.1016/S0092-8674(00)00116-1. PubMed DOI
Davies C., Tournier C. Exploring the function of the JNK (c-Jun N-terminal kinase) signalling pathway in physiological and pathological processes to design novel therapeutic strategies. Biochem. Soc. Trans. 2012;40:85–89. doi: 10.1042/BST20110641. PubMed DOI
Mao X., Yu C.R., Li W.X. Induction of apoptosis by shikonin through a ROS/JNK-mediated process in Bcr/Abl-positive chronic myelogenous leukemia (CML) cells. Cell Res. 2008;18:879–888. doi: 10.1038/cr.2008.86. PubMed DOI
Zhou G., Yang Z., Wang X., Tao R., Zhou Y. TRAIL enhances shikonin induced apoptosis through ROS/JNK signaling in cholangiocarcinoma cells. Cell. Physiol. Biochem. 2017;42:1073–1086. doi: 10.1159/000478758. PubMed DOI
Ko H., Kim S.-J., Shim S.H., Chang H., Ha C.H. Shikonin induces apoptotic cell death via regulation of p53 and Nrf2 in AGS human stomach carcinoma cells. Biomol. Ther. 2016;24:501. doi: 10.4062/biomolther.2016.008. PubMed DOI PMC
Lin K.-H., Huang M.-Y., Cheng W.-C., Wang S.-C., Fang S.-H., Tu H.-P., Su C.-C., Hung Y.-L., Liu P.-L., Chen C.-S., et al. RNA-seq transcriptome analysis of breast cancer cell lines under shikonin treatment. Sci. Rep. 2018;8:2672. doi: 10.1038/s41598-018-21065-x. PubMed DOI PMC
Zhai T., Hei Z., Ma Q., Liang H., Xu Y., Zhang Y., Jin L., Han C., Wang J. Shikonin induces apoptosis and G0/G1 phase arrest of gallbladder cancer cells via the JNK signaling pathway. Oncol. Rep. 2017;38:3473–3480. PubMed
Gwon S.Y., Choi W.H., Lee D.H., Ahn J.Y., Jung C.H., Moon B., Ha T.Y. Shikonin protects against obesity through the modulation of adipogenesis, lipogenesis, and β-oxidation in vivo. J. Funct. Foods. 2015;16:484–493. doi: 10.1016/j.jff.2015.04.040. DOI
Wiench B., Eichhorn T., Paulsen M., Efferth T. Shikonin directly targets mitochondria and causes mitochondrial dysfunction in cancer cells. Evid.-Based Complement. Altern. Med. 2013;2012:726025. doi: 10.1155/2012/726025. PubMed DOI PMC
Wang H., Liu Z., Li X., Zhao R., Pu Y., Wu H., Guan W. Shikonin causes apoptosis by disrupting intracellular calcium homeostasis and mitochondrial function in human hepatoma cells. Exp. Ther. Med. 2018;15:1484–1492. doi: 10.3892/etm.2017.5591. PubMed DOI PMC
Liang W., Cui J., Zhang K., Xi H., Cai A., Li J., Gao Y., Hu C., Liu Y., Lu Y., et al. Shikonin induces ROS-based mitochondria-mediated apoptosis in colon cancer. Oncotarget. 2017;8:109094. doi: 10.18632/oncotarget.22618. PubMed DOI PMC
Gara R.K., Srivastava V.K., Duggal S., Bagga J.K., Bhatt M., Sanyal S., Mishra D.P. Shikonin selectively induces apoptosis in human prostate cancer cells through the endoplasmic reticulum stress and mitochondrial apoptotic pathway. J. Biomed. Sci. 2015;22:26. doi: 10.1186/s12929-015-0127-1. PubMed DOI PMC
Gupta B., Chakraborty S., Saha S., Chandel S.G., Baranwal A.K., Banerjee M., Chatterjee M., Chaudhury A. Antinociceptive properties of shikonin: In vitro and in vivo studies. Can. J. Physiol. Pharmacol. 2016;94:788–796. doi: 10.1139/cjpp-2015-0465. PubMed DOI
Han X., Kang K.A., Piao M.J., Zhen A.X., Hyun Y.J., Kim H.M., Ryu Y.S., Hyun J.W. Shikonin exerts cytotoxic effects in human colon cancers by inducing apoptotic cell death via the endoplasmic reticulum and mitochondria-mediated pathways. Biomol. Ther. 2019;27:41. doi: 10.4062/biomolther.2018.047. PubMed DOI PMC
Chen C., Xiao W., Huang L., Yu G., Ni J., Yang L., Wan R., Hu G. Shikonin induces apoptosis and necroptosis in pancreatic cancer via regulating the expression of RIP1/RIP3 and synergizes the activity of gemcitabine. Am. J. Transl. Res. 2017;9:5507. PubMed PMC
Zhang Z., Zhang Z., Li Q., Jiao H., Chong D., Sun X., Zhang P., Huo Q., Liu H. Shikonin induces necroptosis by reactive oxygen species activation in nasopharyngeal carcinoma cell line CNE-2Z. J. Bioenerg. Biomembr. 2017;49:265–272. doi: 10.1007/s10863-017-9714-z. PubMed DOI
Fu Z., Deng B., Liao Y., Shan L., Yin F., Wang Z., Zeng H., Zuo D., Hua Y., Cai Z. The anti-tumor effect of shikonin on osteosarcoma by inducing RIP1 and RIP3 dependent necroptosis. BMC Cancer. 2013;13:580. doi: 10.1186/1471-2407-13-580. PubMed DOI PMC
Park S., Shin H., Cho Y. Shikonin induces programmed necrosis-like cell death through the formation of receptor interacting protein 1 and 3 complex. Food Chem. Toxicol. 2013;55:36–41. doi: 10.1016/j.fct.2012.12.017. PubMed DOI
Lu B., Gong X., Wang Z.-Q., Ding Y., Wang C., Luo T.-F., Piao M.-H., Meng F.-K., Chi G.-F., Luo Y.-N., et al. Shikonin induces glioma cell necroptosis in vitro by ROS overproduction and promoting RIP1/RIP3 necrosome formation. Acta Pharmacol. Sin. 2017;38:1543–1553. doi: 10.1038/aps.2017.112. PubMed DOI PMC
Papageorgiou V.P., Assimopoulou A.N., Couladouros E.A., Hepworth D., Nicolaou K.C. The chemistry and biology of alkannin, shikonin, and related naphthazarin natural products. Angew. Chem. Int. Ed. 1999;38:270–301. doi: 10.1002/(SICI)1521-3773(19990201)38:3<270::AID-ANIE270>3.0.CO;2-0. PubMed DOI
Tanaka S., Tajima M., Tsukada M., Tabata M. A comparative study on anti-inflammatory activities of the enantiomers, shikonin and alkannin. J. Nat. Prod. 1986;49:466–469. doi: 10.1021/np50045a014. PubMed DOI
Wang F., Yao X., Zhang Y., Tang J. Synthesis, biological function and evaluation of Shikonin in cancer therapy. Fitoterapia. 2019;134:329–339. doi: 10.1016/j.fitote.2019.03.005. PubMed DOI
Kim J.Y., Jeong H.J., Park J.-Y., Kim Y.M., Park S.-J., Cho J.K., Park K.H., Ryu Y.B., Lee W.S. Selective and slow-binding inhibition of shikonin derivatives isolated from Lithospermum erythrorhizon on glycosyl hydrolase 33 and 34 sialidases. Bioorganic Med. Chem. 2012;20:1740–1748. doi: 10.1016/j.bmc.2012.01.011. PubMed DOI
Deng B., Feng Y., Deng B. TIPE2 mediates the suppressive effects of shikonin on MMP13 in osteosarcoma cells. Cell. Physiol. Biochem. 2015;37:2434–2443. doi: 10.1159/000438596. PubMed DOI
Lee D.Y., Choi S.-I., Han S.H., Lee Y.-J., Choi J.-G., Lee Y.-S., Choi J.H., Lee S.-E., Kim G.-S. Potential of Pseudoshikonin I isolated from Lithospermi Radix as inhibitors of MMPs in IL-1β-induced SW1353 cells. Int. J. Mol. Sci. 2016;17:1350. doi: 10.3390/ijms17081350. PubMed DOI PMC
Guo T., Jiang Z.-B., Tong Z.-Y., Zhou Y., Chai X.-P., Xiao X.-Z. Shikonin ameliorates LPS-induced cardiac dysfunction by SIRT1-dependent inhibition of NLRP3 inflammasome. Front. Physiol. 2020;11:570441. doi: 10.3389/fphys.2020.570441. PubMed DOI PMC
Hsu P.-C., Huang Y.-T., Tsai M.-L., Wang Y.-J., Lin J.-K., Pan M.-H. Induction of apoptosis by shikonin through coordinative modulation of the Bcl-2 family, p27, and p53, release of cytochrome c, and sequential activation of caspases in human colorectal carcinoma cells. J. Agric. Food Chem. 2004;52:6330–6337. doi: 10.1021/jf0495993. PubMed DOI
Liang Y., Ju D., Liu W., Wu D., Zhao Y., Du Y., Li X., Zhao M. Natural Shikonin Potentially Alters Intestinal Flora to Alleviate Acute Inflammation. Microorganisms. 2023;11:2139. doi: 10.3390/microorganisms11092139. PubMed DOI PMC
Moon J., Koh S.S., Malilas W., Cho I.-R., Kaewpiboon C., Kaowinn S., Lee K., Jhun B.H., Choi Y.W., Chung Y.-H. Acetylshikonin induces apoptosis of hepatitis B virus X protein-expressing human hepatocellular carcinoma cells via endoplasmic reticulum stress. Eur. J. Pharmacol. 2014;735:132–140. doi: 10.1016/j.ejphar.2014.04.021. PubMed DOI
Yong-Guy K., Jin-Hyung L., Sanghun K., Sunyoung P., Yu-Jeong K., Choong-Min R., Hwi Won S., Jintae L. Inhibition of Multispecies Biofilm Formation by Phytopigment Shikonin against Three Acne-Related Microbes. [(accessed on 25 April 2024)]. Available online: https://ssrn.com/abstract=4646981. DOI
Singh B., Sharma R.A. Anti-inflammatory and antimicrobial activity of Shikonin derivatives from Arnebia hispidissima (Lehm.) DC. Phytopharmacology. 2012;3:68–81. PubMed
Aburjai T., Al-Janabi R., Al-Mamoori F., Azzam H. In vivo wound healing and antimicrobial activity of Alkanna strigose. Wound Med. 2019;25:100152. doi: 10.1016/j.wndm.2019.100152. DOI
Xie Y., Fan C., Dong Y., Lynam E., Leavesley D.I., Li K., Su Y., Yang Y., Upton Z. Functional and mechanistic investigation of Shikonin in scarring. Chem.-Biol. Interact. 2015;228:18–27. doi: 10.1016/j.cbi.2014.12.037. PubMed DOI
Yuan D.-P., Gu L., Long J., Chen J., NI J., Qian N., Shi Y.-L. Shikonin reduces endometriosis by inhibiting RANTES secretion and mononuclear macrophage chemotaxis. Exp. Ther. Med. 2014;7:685–690. doi: 10.3892/etm.2013.1458. PubMed DOI PMC
Lu H.-T., Jiang Y., Chen F. Preparative high-speed counter-current chromatography for purification of shikonin from the Chinese medicinal plant Lithospermum erythrorhizon. J. Chromatogr. A. 2004;1023:159–163. doi: 10.1016/j.chroma.2003.09.022. PubMed DOI
Hu Y., Jiang Z., Leung K.S.-Y., Zhao Z. Simultaneous determination of naphthoquinone derivatives in Boraginaceous herbs by high-performance liquid chromatography. Anal. Chim. Acta. 2006;577:26–31. doi: 10.1016/j.aca.2006.06.031. PubMed DOI
Xiao Y., Wang Y., Gao S., Zhang R., Ren R., Li N., Zhang H. Determination of the active constituents in Arnebia euchroma (Royle) Johnst. by ionic liquid-based ultrasonic-assisted extraction high-performance liquid chromatography. J. Chromatogr. B. 2011;879:1833–1838. doi: 10.1016/j.jchromb.2011.05.009. PubMed DOI
Duan J., Li M., Hao Z., Shen X., Liu L., Jin Y., Wang S., Guo Y., Yang L., Wang L., et al. Subinhibitory concentrations of resveratrol reduce alpha-hemolysin production in Staphylococcus aureus isolates by downregulating saeRS. Emerg. Microbes Infect. 2018;7:1–10. doi: 10.1038/s41426-018-0142-x. PubMed DOI PMC
Huang X., Fu H.-L., Tang H.-Q., Yin Z.-Q., Zhang W., Shu G., Yin L.-Z., Zhao L., Yan X.-R., Lin J.-C. Optimization extraction of shikonin using ultrasound-assisted response surface methodology and antibacterial studies. Evid.-Based Complement. Altern. Med. 2020;2020:1208617. doi: 10.1155/2020/1208617. PubMed DOI PMC
Xie X., Qiu M. Study on the extracting procedures of radix Arnebiaeseu Lithospermi in different preparations. Chin. Pharm. 1997;8:60–61.
Cui X. Extraction of shikonin with surfactant-assisted ultrasonic from Arnebia euchroma. Asian J. Chem. 2014;26:2414–2416. doi: 10.14233/ajchem.2014.16113. DOI
Wu Q., Er-Bu A., Liang X., Luan S., He C., Yin L., Yin Z., Zou Y., Li L., Song X. Determination of the main naphthoquinones in Onosma hookeri Clarke. var. longiforum Duthie and its optimization of the ultrasound-assisted extraction using response surface methodology. J. Food Sci. 2021;86:357–365. doi: 10.1111/1750-3841.15460. PubMed DOI
Yang Q., Wang Z., Aga E.-B., Liang X. The extraction and anti-inflammatory screening of Onosma glomeratum YL Liu. Prep. Biochem. Biotechnol. 2023;54:282–293. doi: 10.1080/10826068.2023.2227885. PubMed DOI
Akgun I., Erkucuk A., Pilavtepe M., Yesil-Celiktas O. Optimization of total alkannin yields of Alkanna tinctoria by using sub-and supercritical carbon dioxide extraction. J. Supercrit. Fluids. 2011;57:31–37. doi: 10.1016/j.supflu.2011.02.003. DOI
Pilavtepe M., Erkucuk A., Akgun I.H., Yesil-Celiktas O. Supercritical CO2 extraction of Alkanna species and investigating functional characteristics of alkannin-enriched yoghurt during storage. Eur. Food Res. Technol. 2012;234:807–812. doi: 10.1007/s00217-012-1690-2. DOI
Azuma H., Li J., Youda R., Suzuki T., Miyamoto K., Taniguchi T., Nagasaki T. Improved isolation procedure for shikonin from the root of the Chinese medicinal plant Lithospermum erythrorhizon and its solubilization with cyclodextrins. J. Appl. Res. Med. Aromat. Plants. 2016;3:58–63. doi: 10.1016/j.jarmap.2016.01.002. DOI
Gao S., You J., Wang Y., Zhang R., Zhang H. On-line continuous sampling dynamic microwave-assisted extraction coupled with high performance liquid chromatographic separation for the determination of lignans in Wuweizi and naphthoquinones in Zicao. J. Chromatogr. B. 2012;887:35–42. doi: 10.1016/j.jchromb.2012.01.005. PubMed DOI
Liu T., Ma C., Yang L., Wang W., Sui X., Zhao C., Zu Y. Optimization of shikonin homogenate extraction from Arnebia euchroma using response surface methodology. Molecules. 2013;18:466–481. doi: 10.3390/molecules18010466. PubMed DOI PMC
Sut S., Pavela R., Kolarčik V., Cappellacci L., Petrelli R., Maggi F., Dall’acqua S., Benelli G. Identification of Onosma visianii roots extract and purified shikonin derivatives as potential acaricidal agents against Tetranychus urticae. Molecules. 2017;22:1002. doi: 10.3390/molecules22061002. PubMed DOI PMC
Zhang Q., Cai D., Wang L., Yang X., Fan S., Zhang K. Rapid and sensitive determination of shikonin and its derivatives in the roots of Arnebia euchroma (Royle) Johnst using matrix solid-phase dispersion extraction and ultrahigh-performance liquid chromatography with photodiode array detector. J. Liq. Chromatogr. Relat. Technol. 2018;41:489–497. doi: 10.1080/10826076.2018.1467836. DOI
Sun Q., Du B., Wang C., Xu W., Fu Z., Yan Y., Li S., Wang Z., Zhang H. Ultrasound-assisted ionic liquid solid-liquid extraction coupled with aqueous two-phase extraction of naphthoquinone pigments in Arnebia euchroma (Royle) Johnst. Chromatographia. 2019;82:1777–1789. doi: 10.1007/s10337-019-03804-y. DOI
Mateus N.M., Branco L.C., Lourenço N.M.T., Afonso C.A.M. Synthesis and properties of tetra-alkyl-dimethylguanidinium salts as a potential new generation of ionic liquids. Green Chem. 2003;5:347–352. doi: 10.1039/B303408A. DOI
Yang H., Gu Y., Deng Y., Shi F. Electrochemical activation of carbon dioxide in ionic liquid: Synthesis of cyclic carbonates at mild reaction conditions. Chem. Commun. 2002;54:274–275. doi: 10.1039/b108451h. PubMed DOI
Cazes J. Encyclopedia of Chromatography. CRC Press; Boca Raton, FL, USA: 2009.
Tsermentseli S.K., Manesiotis P., Assimopoulou A.N., Papageorgiou V.P. Molecularly imprinted polymers for the isolation of bioactive naphthoquinones from plant extracts. J. Chromatogr. A. 2013;1315:15–20. doi: 10.1016/j.chroma.2013.09.044. PubMed DOI
Fu X.-Q., Lu D.-W. Stimulation of shikonin production by combined fungal elicitation and in situ extraction in suspension cultures of Arnebia euchroma. Enzym. Microb. Technol. 1999;24:243–246. doi: 10.1016/S0141-0229(98)00104-5. DOI
Touno K., Tamaoka J., Ohashi Y., Shimomura K. Ethylene induced shikonin biosynthesis in shoot culture of Lithospermum erythrorhizon. Plant Physiol. Biochem. 2005;43:101–105. doi: 10.1016/j.plaphy.2005.01.004. PubMed DOI
Sim S.J., Chang H.N. Increased shikonin production by hairy roots of Lithospermum erythrorhizon in two phase bubble column reactor. Biotechnol. Lett. 1993;15:145–150. doi: 10.1007/BF00133014. DOI
Kim D.J., Chang H.N. Enhanced shikonin production from Lithospermum erythrorhizon by in situ extraction and calcium alginate immobilization. Biotechnol. Bioeng. 1990;36:460–466. doi: 10.1002/bit.260360505. PubMed DOI
Moore R.E., Scheuer P.J. Nuclear Magnetic Resonance Spectra of Substituted Naphthoquinones. Influence of Substituents on Tautomerism, Anisotropy, and Stereochemistry in the Naphthazarin System1. J. Org. Chem. 1966;31:3272–3283. doi: 10.1021/jo01348a040. PubMed DOI
Ohta A., Sivalingam P., Lin S., Ikekawa N., Yaginuma N., Inada Y. Isolation of naphthazarin from walnut ‘Onigurumi’, and its inhibitory action on oxidative phosphorylation in mitochondria. Toxicon. 1973;11:235–241. doi: 10.1016/0041-0101(73)90049-4. PubMed DOI
Kourounakis A.P., Assimopoulou A.N., Papageorgiou V.P., Gavalas A., Kourounakis P.N. Alkannin and Shikonin: Effect on free radical processes and on inflammation-a preliminary pharmacochemical investigation. Arch. Pharm. Int. J. Pharm. Med. Chem. 2002;335:262–266. doi: 10.1002/1521-4184(200208)335:6<262::AID-ARDP262>3.0.CO;2-Y. PubMed DOI
Assimopoulou A., Boskou D., Papageorgiou V. Antioxidant activities of alkannin, shikonin and Alkanna tinctoria root extracts in oil substrates. Food Chem. 2004;87:433–438. doi: 10.1016/j.foodchem.2003.12.017. DOI
Ordoudi S.A., Tsermentseli S.K., Nenadis N., Assimopoulou A.N., Tsimidou M.Z., Papageorgiou V.P. Structure-radical scavenging activity relationship of alkannin/shikonin derivatives. Food Chem. 2011;124:171–176. doi: 10.1016/j.foodchem.2010.06.004. DOI
Ordoudi S.A., Tsimidou M.Z. Crocin Bleaching Assay (CBA) in structure−radical scavenging activity studies of selected phenolic compounds. J. Agric. Food Chem. 2006;54:9347–9356. doi: 10.1021/jf062115d. PubMed DOI
Prior R.L., Wu X., Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005;53:4290–4302. doi: 10.1021/jf0502698. PubMed DOI
Priyadarshi R., Shikonin J.-W.R. properties and applications in active and intelligent packaging. Packag. Technol. Sci. 2022;35:863–877. doi: 10.1002/pts.2687. DOI
Su L., Liu L., Wang Y., Yan G., Zhang Y. Long-term systemic toxicity of shikonin derivatives in Wistar rats. Pharm. Biol. 2014;52:486–490. doi: 10.3109/13880209.2013.846913. PubMed DOI
Figat R., Zgadzaj A., Geschke S., Sieczka P., Pietrosiuk A., Sommer S., Skrzypczak A. Cytotoxicity and antigenotoxicity evaluation of acetylshikonin and shikonin. Drug Chem. Toxicol. 2021;44:140–147. doi: 10.1080/01480545.2018.1536710. PubMed DOI
Cheng Y., Tang S., Chen A., Zhang Y., Liu M., Wang X. Evaluation of the inhibition risk of shikonin on human and rat UDP-glucuronosyltransferases (UGT) through the cocktail approach. Toxicol. Lett. 2019;312:214–221. doi: 10.1016/j.toxlet.2019.05.017. PubMed DOI
Li J., Li S., Li H., Guo X., Guo D., Yang Y., Wang X., Zhang C., Shan Z., Xia X., et al. Antibiofilm activity of shikonin against Listeria monocytogenes and inhibition of key virulence factors. Food Control. 2021;120:107558. doi: 10.1016/j.foodcont.2020.107558. DOI
Wan Y., Wang X., Zhang P., Zhang M., Kou M., Shi C., Peng X., Wang X. Control of foodborne Staphylococcus aureus by shikonin, a natural extract. Foods. 2021;10:2954. doi: 10.3390/foods10122954. PubMed DOI PMC
Xu Y., Guo W., Luo D., Li P., Xiang J., Chen J., Xia X., Xie Q. Antimicrobial activity of punicalagin against Staphylococcus aureus and its effect on biofilm formation. Foodborne Pathog. Dis. 2017;14:282–287. doi: 10.1089/fpd.2016.2226. PubMed DOI
Subramaniam S., Rajendran N., Muralidharan S.B., Subramaniam G., Raju R., Sivasubramanian A. Dual role of select plant based nutraceuticals as antimicrobial agents to mitigate food borne pathogens and as food preservatives. RSC Adv. 2015;5:77168–77174. doi: 10.1039/C5RA15039F. DOI
Lee Y.-S., Lee D.-Y., Kim Y.B., Lee S.-W., Cha S.-W., Park H.-W., Kim G.-S., Kwon D.-Y., Lee M.-H., Han S.-H. The mechanism underlying the antibacterial activity of shikonin against methicillin-resistant Staphylococcus aureus. Evid.-Based Complement. Altern. Med. 2015;2015:520578. doi: 10.1155/2015/520578. PubMed DOI PMC
Ye Z., Lu Y., Wu T. The impact of ATP-binding cassette transporters on metabolic diseases. Nutr. Metab. 2020;17:61. doi: 10.1186/s12986-020-00478-4. PubMed DOI PMC
Dong H., Ling Z., Zhang X., Zhang X., Ramaswamy S., Xu F. Smart colorimetric sensing films with high mechanical strength and hydrophobic properties for visual monitoring of shrimp and pork freshness. Sens. Actuators B Chem. 2020;309:127752. doi: 10.1016/j.snb.2020.127752. DOI
Zou Y., Sun Y., Shi W., Wan B., Zhang H. Dual-functional shikonin-loaded quaternized chitosan/polycaprolactone nanofibrous film with pH-sensing for active and intelligent food packaging. Food Chem. 2023;399:133962. doi: 10.1016/j.foodchem.2022.133962. PubMed DOI
Ezati P., Priyadarshi R., Bang Y.-J., Rhim J.-W. CMC and CNF-based intelligent pH-responsive color indicator films integrated with shikonin to monitor fish freshness. Food Control. 2021;126:108046. doi: 10.1016/j.foodcont.2021.108046. DOI
Ezati P., Rhim J.-W. Starch and agar-based color-indicator films integrated with shikonin for smart packaging application of shrimp. ACS Food Sci. Technol. 2021;1:1963–1969. doi: 10.1021/acsfoodscitech.1c00292. DOI
Roy S., Rhim J.-W. Preparation of gelatin/carrageenan-based color-indicator film integrated with shikonin and propolis for smart food packaging applications. ACS Appl. Bio Mater. 2020;4:770–779. doi: 10.1021/acsabm.0c01353. DOI
Roy S., Rhim J.-W. Fabrication of cellulose nanofiber-based functional color indicator film incorporated with shikonin extracted from Lithospermum erythrorhizon root. Food Hydrocoll. 2021;114:106566. doi: 10.1016/j.foodhyd.2020.106566. DOI
Roy S., Kim H.-J., Rhim J.-W. Effect of blended colorants of anthocyanin and shikonin on carboxymethyl cellulose/agar-based smart packaging film. Int. J. Biol. Macromol. 2021;183:305–315. doi: 10.1016/j.ijbiomac.2021.04.162. PubMed DOI
Oun A.A., Roy S., Shin G.H., Yoo S., Kim J.T. pH-sensitive smart indicators based on cellulose and different natural pigments for tracing kimchi ripening stages. Int. J. Biol. Macromol. 2023;242:124905. doi: 10.1016/j.ijbiomac.2023.124905. PubMed DOI
Roy S., Kim H.-J., Rhim J.-W. Synthesis of carboxymethyl cellulose and agar-based multifunctional films reinforced with cellulose nanocrystals and shikonin. ACS Appl. Polym. Mater. 2021;3:1060–1069. doi: 10.1021/acsapm.0c01307. DOI
Roy S., Ezati P., Biswas D., Rhim J.-W. Shikonin functionalized packaging film for monitoring the freshness of shrimp. Materials. 2022;15:6615. doi: 10.3390/ma15196615. PubMed DOI PMC
An N., Hu J., Ding Y., Sheng P., Zhang Z., Guo X. Ionic liquid treated cellulose-based intelligent pH-responsive color indicator film, with excellent anti-ultraviolet function. J. Polym. Res. 2023;30:343. doi: 10.1007/s10965-023-03716-4. DOI