Long-Term Accumulation, Biological Effects and Toxicity of BSA-Coated Gold Nanoparticles in the Mouse Liver, Spleen, and Kidneys

. 2024 ; 19 () : 4103-4120. [epub] 20240508

Jazyk angličtina Země Nový Zéland Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38736658

INTRODUCTION: Gold nanoparticles are promising candidates as vehicles for drug delivery systems and could be developed into effective anticancer treatments. However, concerns about their safety need to be identified, addressed, and satisfactorily answered. Although gold nanoparticles are considered biocompatible and nontoxic, most of the toxicology evidence originates from in vitro studies, which may not reflect the responses in complex living organisms. METHODS: We used an animal model to study the long-term effects of 20 nm spherical AuNPs coated with bovine serum albumin. Mice received a 1 mg/kg single intravenous dose of nanoparticles, and the biodistribution and accumulation, as well as the organ changes caused by the nanoparticles, were characterized in the liver, spleen, and kidneys during 120 days. RESULTS: The amount of nanoparticles in the organs remained high at 120 days compared with day 1, showing a 39% reduction in the liver, a 53% increase in the spleen, and a 150% increase in the kidneys. The biological effects of chronic nanoparticle exposure were associated with early inflammatory and fibrotic responses in the organs and were more pronounced in the kidneys, despite a negligible amount of nanoparticles found in renal tissues. CONCLUSION: Our data suggest, that although AuNPs belong to the safest nanomaterial platforms nowadays, due to their slow tissue elimination leading to long-term accumulation in the biological systems, they may induce toxic responses in the vital organs, and so understanding of their long-term biological impact is important to consider their potential therapeutic applications.

Zobrazit více v PubMed

Dykman LA, Khlebtsov NG. Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae. 2011;3(2):34–55. doi:10.32607/20758251-2011-3-2-34-55 PubMed DOI PMC

Li X, Zhang Y, Liu GK, et al. Recent progress in the applications of gold-based nanoparticles towards tumor-targeted imaging and therapy. RSC Adv. 2022;12(13):7635–7651. doi:10.1039/d2ra00566b PubMed DOI PMC

Hu X, Zhang Y, Ding T, et al. Multifunctional gold nanoparticles: a novel nanomaterial for various medical applications and biological activities. Front Bioeng Biotechnol. 2020;8. doi:10.3389/fbioe.2020.00990 PubMed DOI PMC

Dreaden EC, Alkilany AM, Huang X, et al. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012;41:2740–2779. doi:10.1039/c1cs15237h PubMed DOI PMC

Alric C, Taleb J, Le Duc G, et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J Am Chem Soc. 2008;130(18):5908–5915. doi:10.1021/ja078176p PubMed DOI

Sibuyi NRS, Moabelo KL, Fadaka AO, et al. Multifunctional gold nanoparticles for improved diagnostic and therapeutic applications: a review. Nanoscale Res Lett. 2021;16(1). doi:10.1186/s11671-021-03632-w PubMed DOI PMC

Arnida, Janát-Amsbury MM, Ray A, Peterson CM, Ghandehari H, Ghandehari H. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm. 2011;77(3):417–423. doi:10.1016/j.ejpb.2010.11.010 PubMed DOI PMC

Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, et al. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Commun. 2010;393(4):649–655. doi:10.1016/j.bbrc.2010.02.046 PubMed DOI

Pan Y, Leifert A, Ruau D, et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small. 2009;5(18):2067–2076. doi:10.1002/smll.200900466 PubMed DOI

Goodman CM, McCusker CD, Yilmaz T, et al. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem. 2004;15(4):897–900. doi:10.1021/bc049951i PubMed DOI

Sani A, Cao C, Cui D. Toxicity of gold nanoparticles (AuNPs): a review. Biochem Biophys Rep. 2021;26:100991. doi:10.1021/bc049951i PubMed DOI PMC

Fraga S, Brandão A, Soares ME, et al. Short- and long-term distribution and toxicity of gold nanoparticles in the rat after a single-dose intravenous administration. Nanomedicine. 2014;10(8):1757–1766. doi:10.1016/j.nano.2014.06.005 PubMed DOI

Abu-Dief AM, Salaheldeen M, El-Dabea T. Recent advances in development of gold nanoparticles for drug delivery systems. J Mod Nanotechnol. 2021;1(1). doi:10.53964/jmn.2021001 DOI

Nghiem THL, Nguyen TT, Fort E, et al. Capping and in vivo toxicity studies of gold nanoparticles. Adv Nat Sci. 2012;3(1):015002.

Brewer SH, Glomm WR, Johnson MC, et al. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir. 2005;21(20):9303–9307. doi:10.1021/la050588t PubMed DOI

Zhang XD, Wu D, Shen X, et al. Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int j Nanomed. 2011;6:2071–2081. doi:10.2147/IJN.S21657 PubMed DOI PMC

Zhang XD, Wu HY, Wu D, et al. Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int j Nanomed. 2010;5:771–781. doi:10.2147/IJN.S8428 PubMed DOI PMC

Kimling J, Maier M, Okenve B, et al. Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B. 2006;110(32):15700–15707. doi:10.1021/jp061667w PubMed DOI

Nemethova V, Buliakova B, Mazancova P, et al. Intracellular uptake of magnetite nanoparticles: a focus on physico-chemical characterization and interpretation of in vitro data. Mater Sci Eng. 2017;70:161–168. doi:10.1016/j.msec.2016.08.064 PubMed DOI

Wu Y, Cao Y, Xu K, et al. Dynamically remodeled hepatic extracellular matrix predicts prognosis of early-stage cirrhosis. Cell Death Dis. 2021;12(2):163. doi:10.1038/s41419-021-03443-y PubMed DOI PMC

Yang RSH, Chang LW, Wu JP, et al. Persistent tissue kinetics and redistribution of nanoparticles, quantum Dot 705, in Mice: ICP-MS quantitative assessment. Environ Health Perspect. 2007;115(9):1339–1343. doi:10.1289/ehp.10290 PubMed DOI PMC

Lopez-Chaves C, Soto-Alvaredo J, Montes-Bayon M, et al. Gold nanoparticles: distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine. 2018;14(1):1–12. doi:10.1016/j.nano.2017.08.011 PubMed DOI

de Jong WH, Hagens WI, Krystek P, et al. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials. 2008;29(12):1912–1919. doi:10.1016/j.biomaterials.2007.12.037 PubMed DOI

Aravinthan A, Kamala-Kannan S, Govarthanan M, et al. Accumulation of biosynthesized gold nanoparticles and its impact on various organs of Sprague Dawley rats: a systematic study. Toxicol Res. 2016;5(6):1530–1538. doi:10.1039/c6tx00202a PubMed DOI PMC

Kozics K, Sramkova M, Kopecka K, et al. Pharmacokinetics, Biodistribution, and Biosafety of PEGylated Gold Nanoparticles In Vivo. Nanomaterials. 2021;11(7):1702. doi:10.3390/nano11071702 PubMed DOI PMC

Dutta S, Sengupta P. Men and mice: relating their ages. Life Sci. 2016;152:244–248. doi:10.1016/j.lfs.2015.10.025 PubMed DOI

Vines JB, Yoon JH, Ryu NE, et al. Gold nanoparticles for photothermal cancer therapy. Front Chem. 2019;7:167. doi:10.3389/fchem.2019.00167 PubMed DOI PMC

Jain S, Hirst DG, O’Sullivan JM. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol. 2012;85(1010):101–113. doi:10.1259/bjr/59448833 PubMed DOI PMC

Yang Y, Zheng X, Chen L, et al. Multifunctional gold nanoparticles in cancer diagnosis and treatment. Int j Nanomed. 2022;17:2041–2067. doi:10.2147/IJN.S355142 PubMed DOI PMC

Downs TR, Crosby ME, Hu T, et al. Silica nanoparticles administered at the maximum tolerated dose induce genotoxic effects through an inflammatory reaction while gold nanoparticles do not. Mutat Res. 2012;745(1–2):38–50. doi:10.1016/j.mrgentox.2012.03.012 PubMed DOI

Schulz M, Ma-Hock L, Brill S, et al. Investigation on the genotoxicity of different sizes of gold nanoparticles administered to the lungs of rats. Mutat Res. 2012;745(1–2):51–57. doi:10.1016/j.mrgentox.2011.11.016 PubMed DOI

Javed I, Hussain SZ, Shahzad A, et al. Lecithin-gold hybrid nanocarriers as efficient and pH selective vehicles for oral delivery of diacerein-In-vitro and in-vivo study. Colloids Surf B. 2016;141:1–9. doi:10.1016/j.colsurfb.2016.01.022 PubMed DOI

Paino IMM, Marangoni VS, de Oliveira R de CS, et al. Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells. Toxicol Lett. 2012;215(2):119–125. doi:10.1016/j.toxlet.2012.09.025 PubMed DOI

Liu H, Liu T, Wang H, et al. Impact of PEGylation on the biological effects and light heat conversion efficiency of gold nanoshells on silica nanorattles. Biomaterials. 2013;34(28):6967–6975. doi:10.1016/j.biomaterials.2013.05.059 PubMed DOI

Cho WS, Cho M, Jeong J, et al. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol. 2009;236(1):16–24. doi:10.1016/j.taap.2008.12.023 PubMed DOI

Brzoska K, Szczygiel M, Drzał A, et al. Transient vasodilation in mouse 4T1 tumors after intragastric and intravenous administration of gold nanoparticles. Int J Mol Sci. 2021;22(5):2361. doi:10.3390/ijms22052361 PubMed DOI PMC

Komatsu T, Nakamura K, Okumura Y, Konishi K. Optimal method of gold nanoparticle administration in melanoma-bearing mice. Exp Ther Med. 2018;15(3):2994–2999. doi:10.3892/etm.2018.5746 PubMed DOI PMC

Degli Esposti D, Hamelin J, Bosselut N, et al. Mitochondrial roles and cytoprotection in chronic liver injury. Biochem Res Int. 2012;387626. doi:10.1155/2012/387626 PubMed DOI PMC

Zhang IW, López-Vicario C, Duran-Güell M, et al. Mitochondrial dysfunction in advanced liver disease: emerging concepts. Front Mol Biosci. 2021;8:772174. doi:10.3389/fmolb.2021.772174 PubMed DOI PMC

Ali MRK, Rahman MA, Wu Y, et al. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proc Natl Acad Sci USA. 2017;114:3110–3118. doi:10.1073/pnas.1619302114 PubMed DOI PMC

Cho WS, Cho M, Jeong J, et al. Size-dependent tissue kinetics of PEG-coated gold nanoparticles. Toxicol Appl Pharmacol. 2010;245(1):116–123. doi:10.1016/j.taap.2010.02.013 PubMed DOI

Poon W, Zhang YN, Ouyang B, et al. Elimination Pathways of Nanoparticles. ACS Nano. 2019;13(5):5785–5798. doi:10.1021/acsnano.9b01383 PubMed DOI

Melsom T, Stefansson V, Schei J, et al. Association of increasing GFR with change in albuminuria in the general population. Clin J Am Soc Nephrol. 2016;11(12):2186–2194. doi:10.2215/CJN.04940516 PubMed DOI PMC

Babelova A, Avaniadi D, Jung O, et al. Role of Nox4 in murine models of kidney disease. Free Radic Biol Med. 2012;53(4):842–853. doi:10.1016/j.freeradbiomed.2012.06.027 PubMed DOI

Bülow RD, Boor P. Extracellular matrix in kidney fibrosis: more than just a scaffold. J Histochem Cytochem. 2019;67(9):643–661. doi:10.1369/0022155419849388 PubMed DOI PMC

Norris KC, Smoyer KE, Rolland C, et al. Albuminuria, serum creatinine, and estimated glomerular filtration rate as predictors of cardio-renal outcomes in patients with type 2 diabetes mellitus and kidney disease: a systematic literature review. BMC Nephrol. 2018;19(1):36. doi:10.1186/s12882-018-0821-9 PubMed DOI PMC

Elwan WM, Ragab AMH, Ragab MH. Histological and immunohistochemical evaluation of the dose-dependent effect of gold nanoparticles on the renal cortex of adult female albino rat. Egypt J Histol. 2018;41(2):167–181. doi:10.21608/EJH.2018.13839 DOI

Hall CL, Tighe R. The effect of continuing penicillamine and gold treatment on the course of penicillamine and gold nephropathy. Br J Rheumatol. 1989;28(1):53–57. doi:10.1093/rheumatology/28.1.53 PubMed DOI

Robbins G, McIllmurray MB. Acute renal failure due to gold. Postgrad Med J. 1980;56(655):366–367. doi:10.1136/pgmj.56.655.366 PubMed DOI PMC

Antonovych TT. Gold Nephropathy. Ann Clin Lab Sci. 1981;11(5):386–391. PubMed

Derot M, Kahn J, Mazalton A, et al. Fatal acute anuric nephritis after gold therapy, with associated chrysocyanosis. Bulletins Et Memoires de la Societe Medicale Des Hopitaux de Paris. 1954;70(7–8):234–239. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...