Structural and microstructural predictors of cognitive decline in deep brain stimulation of subthalamic nucleus in Parkinson's disease
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38749145
PubMed Central
PMC11112358
DOI
10.1016/j.nicl.2024.103617
PII: S2213-1582(24)00056-1
Knihovny.cz E-zdroje
- Klíčová slova
- Deep brain stimulation, Diffusion tensor imaging, Diffusion weighted imaging, Parkinson’s disease, Subthalamic nucleus,
- MeSH
- hluboká mozková stimulace * škodlivé účinky MeSH
- kognitivní dysfunkce * etiologie diagnostické zobrazování patofyziologie patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- neuropsychologické testy MeSH
- nucleus subthalamicus * diagnostické zobrazování MeSH
- Parkinsonova nemoc * terapie diagnostické zobrazování patologie MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND OBJECTIVES: The intricate relationship between deep brain stimulation (DBS) in Parkinson's disease (PD) and cognitive impairment has lately garnered substantial attention. The presented study evaluated pre-DBS structural and microstructural cerebral patterns as possible predictors of future cognitive decline in PD DBS patients. METHODS: Pre-DBS MRI data in 72 PD patients were combined with neuropsychological examinations and follow-up for an average of 2.3 years after DBS implantation procedure using a screening cognitive test validated for diagnosis of mild cognitive impairment in PD in a Czech population - Dementia Rating Scale 2. RESULTS: PD patients who would exhibit post-DBS cognitive decline were found to have, already at the pre-DBS stage, significantly lower cortical thickness and lower microstructural complexity than cognitively stable PD patients. Differences in the regions directly related to cognition as bilateral parietal, insular and cingulate cortices, but also occipital and sensorimotor cortex were detected. Furthermore, hippocampi, putamina, cerebellum and upper brainstem were implicated as well, all despite the absence of pre-DBS differences in cognitive performance and in the position of DBS leads or stimulation parameters between the two groups. CONCLUSIONS: Our findings indicate that the cognitive decline in the presented PD cohort was not attributable primarily to DBS of the subthalamic nucleus but was associated with a clinically silent structural and microstructural predisposition to future cognitive deterioration present already before the DBS system implantation.
Zobrazit více v PubMed
Beaulieu C. Diffusion MRI. Elsevier; 2014. The biological basis of diffusion anisotropy; pp. 155–183.
Beheshti I., Mishra S., Sone D., Khanna P., Matsuda H. T1-Weighted MRI-Driven brain age estimation in Alzheimer’s disease and Parkinson’s disease. Aging Dis. 2020;11(3):618–628. doi: 10.14336/AD.2019.0617. PubMed DOI PMC
Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc.: Ser. B (Methodol.) 1995;57(1):289–300.
Bezdicek O., Michalec J., Nikolai T., Havránková P., Roth J., Jech R., R\uužička E. Clinical validity of the Mattis dementia rating scale in differentiating mild cognitive impairment in Parkinson’s disease and normative data. Dement. Geriatr. Cogn. Disord. 2015;39(5–6):303–311. PubMed
Bezdicek O., Ballarini T., R\uužička F., Roth J., Mueller K., Jech R., Schroeter M.L. Mild cognitive impairment disrupts attention network connectivity in Parkinson’s disease: combined multimodal MRI and meta-analytical study. Neuropsychologia. 2018;112:105–115. PubMed
Bezdicek O., Ballarini T., Buschke H., Růžička F., Roth J., Albrecht F., Růžička E., Mueller K., Schroeter M.L., Jech R. Memory impairment in Parkinson’s disease: the retrieval versus associative deficit hypothesis revisited and reconciled. Neuropsychology. 2019;33(3):391–405. doi: 10.1037/neu0000503. PubMed DOI
Boban, Jasmina, Thurnher, M.M., Boban, N., Law, M., Jahanshad, N., Nir, T.M., Lendak, D.F., Kozic, D., 2022. Gradient patterns of age-related diffusivity changes in cerebral white matter. Front. Neurol. 13. doi:10.3389/fneur.2022.870909. PubMed PMC
Boel J.A., de Bie R.M.A., Schmand B.A., Dalrymple-Alford J.C., Marras C., Adler C.H., Goldman J.G., et al. Level I PD-MCI using global cognitive tests and the risk for Parkinson’s disease dementia. Movement Disorders Clinical Practice. 2022;9(4):479–483. doi: 10.1002/mdc3.13451. PubMed DOI PMC
Cammisuli D.M., Cammisuli S.M., Fusi J., Franzoni F., Pruneti C. Parkinson’s disease–mild cognitive impairment (PD-MCI): A useful summary of update knowledge. Front. Aging Neurosci. 2019;11:303. PubMed PMC
Combs H.L., Folley B.S., Berry D.TR., Segerstrom S.C., Han D.Y., Anderson-Mooney A.J., Walls B.D., van Horne C. Cognition and depression following deep brain stimulation of the subthalamic nucleus and globus pallidus pars internus in Parkinson’s disease: a meta-analysis. Neuropsychol. Rev. 2015;25:439–454. PubMed
Cordero-Grande L., Christiaens D., Hutter J., Price A.N., Hajnal J.V. Complex diffusion-weighted image estimation via matrix recovery under general noise models. Neuroimage. 2019;200(říjen):391–404. doi: 10.1016/j.neuroimage.2019.06.039. PubMed DOI PMC
Eickhoff, C.R., Hoffstaedter, F., Caspers, J., Reetz, K., Mathys, C., Dogan, I., Amunts, K., Schnitzler, A., Eickhoff, S.B., 2021. Advanced brain ageing in Parkinson’s disease is related to disease duration and individual impairment. Brain Commun. 3(3), fcab191. https://doi.org/10.1093/braincomms/fcab191. PubMed PMC
Filip, P., Kokošová, V., Valenta, Z., Baláž, M., Mangia, S., Michaeli, S., Vojtíšek, L., 2023. Utility of quantitative MRI metrics in brain ageing research. Front. Aging Neurosci. 15. PubMed PMC
Floden D., Busch R.M., Cooper S.E., Kubu C.S., Machado A.G. Global cognitive scores do not predict outcome after subthalamic nucleus deep brain stimulation. Movement Disorders. 2015;30(9):1279–1283. doi: 10.1002/mds.26292. PubMed DOI PMC
Frankemolle A.MM., Jennifer Wu., Noecker A.M., Voelcker-Rehage C., Ho J.C., Vitek J.L., McIntyre C.C., Alberts J.L. Reversing cognitive–motor impairments in Parkinson’s disease patients using a computational modelling approach to deep brain stimulation programming. Brain. 2010;133(3):746–761. PubMed PMC
Glasser M.F., Sotiropoulos S.N., Anthony Wilson J., Coalson T.S., Fischl B., Andersson J.L., Junqian Xu., Jbabdi S.a., Webster M., Polimeni J.R. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage. 2013;80:105–124. PubMed PMC
Glasser M.F., Coalson T.S., Robinson E.C., Hacker C.D., Harwell J., Yacoub E., Ugurbil K., Andersson J., Beckmann C.F., Jenkinson M. A multi-modal parcellation of human cerebral cortex. Nature. 2016;536(7615):171–178. PubMed PMC
Gologorsky Y., Ben-Haim S., Moshier E.L., Godbold J., Tagliati M., Weisz D., Alterman R.L. Transgressing the ventricular wall during subthalamic deep brain stimulation surgery for Parkinson disease increases the risk of adverse neurological sequelae. Neurosurgery. 2011;69(2):294–300. PubMed
Gruber D., Calmbach L., Kühn A.A., Krause P., Kopp U.A., Schneider G.-H., Kupsch A. Longterm outcome of cognition, affective state, and quality of life following subthalamic deep brain stimulation in Parkinson’s disease. J. Neural Transm. 2019;126(3):309–318. doi: 10.1007/s00702-019-01972-7. PubMed DOI
Horn A., Kühn A.A. Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations. Neuroimage. 2015;107:127–135. PubMed
Horn A., Li N., Dembek T.A., Kappel A., Boulay C., Ewert S., Tietze A., Husch A., Perera T., Neumann W.-J. Lead-DBS v2: towards a comprehensive pipeline for deep brain stimulation imaging. Neuroimage. 2019;184:293–316. PubMed PMC
Ibarretxe-Bilbao N., Junque C., Marti M.J., Tolosa E. Brain structural MRI correlates of cognitive dysfunctions in Parkinson’s disease. J. Neurol. Sci. 2011;310(1):70–74. doi: 10.1016/j.jns.2011.07.054. PubMed DOI
Jech R., Mueller K. Connectomic Deep Brain Stimulation. Elsevier; 2022. Investigating network effects of DBS with fMRI; pp. 275–301.
Jellinger K.A. Morphological basis of Parkinson disease-associated cognitive impairment: an update. J. Neural Transm. 2022;129(8):977–999. PubMed
Ji J.L., Spronk M., Kulkarni K., Repovš G., Anticevic A., Cole M.W. Mapping the human Brain’s cortical-subcortical functional network organization. Neuroimage. 2019;185:35–57. doi: 10.1016/j.neuroimage.2018.10.006. PubMed DOI PMC
Jr M., Erwin B., Gale J.T. Mechanisms of action of deep brain stimulation (DBS) Neurosci. Biobehav. Rev. 2008;32(3):388–407. PubMed
Karolis V.R., Callaghan M.F., Tseng C.-E., Hope T., Weiskopf N., Rees G., Cappelletti M. Spatial gradients of healthy aging: a study of myelin-sensitive maps. Neurobiol. Aging. 2019;79(červenec):83–92. doi: 10.1016/j.neurobiolaging.2019.03.002. PubMed DOI
Kellner E., Dhital B., Kiselev V.G., Reisert M. Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn. Reson. Med. 2016;76(5):1574–1581. PubMed
Kessler L.G., Barnhart H.X., Buckler A.J., Choudhury K.R., Kondratovich M.V., Toledano A., Guimaraes A.R., Filice R., Zhang Z., Sullivan D.C. The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions. Stat. Methods Med. Res. 2015;24(1):9–26. PubMed
Litvan I., Goldman J.G., Tröster A.I., Schmand B.A., Weintraub D., Petersen R.C., Mollenhauer B., et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: movement disorder society task force guidelines. Mov. Disord. 2012;27(3):349–356. doi: 10.1002/mds.24893. PubMed DOI PMC
Lopez F.V., Kenney L.E., Ratajska A., Jacobson C.E., Bowers D. What does the dementia rating scale-2 measure? The relationship of neuropsychological measures to DRS-2 total and subscale scores in non-demented individuals with Parkinson’s disease. Clin. Neuropsychol. 2023;37(1):174–193. doi: 10.1080/13854046.2021.1999505. PubMed DOI PMC
Maheshwary A., Mohite D., Omole J.A., Bhatti K.S., Khan S. Is deep brain stimulation associated with detrimental effects on cognitive functions in patients of Parkinson’s disease? A systematic review. Cureus. 2020;12(8) PubMed PMC
Mehanna R., Jankovic J. Young-onset Parkinson’s disease: Its unique features and their impact on quality of life. Parkinsonism Relat. Disord. 2019;65(srpen):39–48. doi: 10.1016/j.parkreldis.2019.06.001. PubMed DOI
Pan C., Li Y., Ren J., Li L., Huang P., Pingyi Xu., Zhang L.i., et al. Characterizing mild cognitive impairment in prodromal Parkinson’s disease: a community-based study in China. CNS Neurosci. Ther. 2022;28(2):259–268. doi: 10.1111/cns.13766. PubMed DOI PMC
Postuma R.B., Berg D., Stern M., Werner Poewe C., Olanow W., Oertel W., Obeso J., Marek K., Litvan I., Lang A.E. MDS clinical diagnostic criteria for Parkinson’s disease“. Mov. Disord. 2015;30(12):1591–1601. PubMed
Rački V., Hero M., Rožmarić G., Papić E., Raguž M., Chudy D., Vuletić V. Cognitive impact of deep brain stimulation in Parkinson’s disease patients: a systematic review. Front. Hum. Neurosci. 2022;16 PubMed PMC
Reich M.M., Hsu J., Ferguson M., Schaper F.L., Joutsa J., Roothans J., Nickl R.C., Frankemolle-Gilbert A., Alberts J., Volkmann J. A brain network for deep brain stimulation induced cognitive decline in Parkinson’s disease. Brain. 2022;145(4):1410–1421. PubMed PMC
Schönecker T., Kupsch A., Kühn A.A., Schneider G.-H., Hoffmann K.-T. Automated optimization of subcortical cerebral MR imaging- atlas coregistration for improved postoperative electrode localization in deep brain stimulation. Am. J. Neuroradiol. 2009;30(10):1914–1921. PubMed PMC
Simon D.K., Tanner C.M., Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin. Geriatr. Med. 2020;36(1):1–12. PubMed PMC
Smeding H.MM., Speelman J.D., Huizenga H.M., Richard Schuurman P., Schmand B. Predictors of cognitive and psychosocial outcome after STN DBS in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry. 2011;82(7):754–760. PubMed
Solstrand L.D., Linda O.L., Doyon J. Cerebellar contribution to motor and non-motor functions in Parkinson’s disease: a meta-analysis of fMRI findings. Front. Neurol. 2020:11. doi: 10.3389/fneur.2020.00127. PubMed DOI PMC
Vasques X., Cif L., Hess O., Gavarini S., Mennessier G., Coubes P. Stereotactic model of the electrical distribution within the internal globus pallidus during deep brain stimulation. J. Comput. Neurosci. 2009;26(1):109. PubMed
Veraart J., Fieremans E., Novikov D.S. Diffusion MRI noise mapping using random matrix theory. Magn. Reson. Med. 2016;76(5):1582–1593. PubMed PMC
Weiskopf N., Mohammadi S., Lutti A., Callaghan M.F. Advances in MRI-based computational neuroanatomy: from morphometry to in-vivo histology. Curr. Opin. Neurol. 2015;28(4):313–322. PubMed
Winkler A.M., Ridgway G.R., Webster M.A., Smith S.M., Nichols T.E. Permutation inference for the general linear model. Neuroimage. 2014;92(květen):381–397. doi: 10.1016/j.neuroimage.2014.01.060. PubMed DOI PMC
Witt K., Daniels C., Krack P., Volkmann J., Pinsker M.O., Kloss M., Tronnier V., et al. Negative impact of borderline global cognitive scores on quality of life after subthalamic nucleus stimulation in Parkinson’s disease. J. Neurol. Sci. 2011;310(1–2):261–266. doi: 10.1016/j.jns.2011.06.028. PubMed DOI
Witt K., Granert O., Daniels C., Volkmann J., Falk D., van Eimeren T., Deuschl G. Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson’s disease: results from a randomized trial. Brain. 2013;136(7):2109–2119. PubMed
Xie, Y., Meng, X., Xiao, J., Zhang, J., Zhang, J., 2016. Cognitive changes following bilateral deep brain stimulation of subthalamic nucleus in Parkinson’s disease: a meta-analysis. BioMed Res. Int.. PubMed PMC