Diversity and antimicrobial susceptibility patterns of clinical and environmental Salmonella enterica serovars in Western Saudi Arabia
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38767834
DOI
10.1007/s12223-024-01172-1
PII: 10.1007/s12223-024-01172-1
Knihovny.cz E-zdroje
- Klíčová slova
- Salmonella, 16S rDNA, Antimicrobial resistance, Clinical, Environmental,
- MeSH
- antibakteriální látky * farmakologie MeSH
- DNA bakterií genetika MeSH
- fylogeneze MeSH
- lidé MeSH
- mikrobiální testy citlivosti * MeSH
- mikrobiologie životního prostředí MeSH
- mnohočetná bakteriální léková rezistence * MeSH
- prevalence MeSH
- RNA ribozomální 16S * genetika MeSH
- Salmonella enterica * účinky léků genetika izolace a purifikace klasifikace MeSH
- salmonelóza * mikrobiologie epidemiologie MeSH
- séroskupina * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Saudská Arábie epidemiologie MeSH
- Názvy látek
- antibakteriální látky * MeSH
- DNA bakterií MeSH
- RNA ribozomální 16S * MeSH
The diverse environmental distribution of Salmonella makes it a global source of human gastrointestinal infections. This study aimed to detect Salmonella spp. and explore their diversity and antimicrobial susceptibility patterns in clinical and environmental samples. Pre-enrichment, selective enrichment, and selective plating techniques were adopted for the Salmonella detection whereas the API 20E test and Vitek Compact 2 system were used to confirm the identity of isolates. Salmonella serovars were subjected to molecular confirmation by 16S rDNA gene sequencing. Disc diffusion method and Vitek 2 Compact system determined the antibiotic susceptibility of Salmonella serovars. Multiple antibiotic resistance index (MARI) was calculated to explore whether Salmonella serovars originate from areas with heavy antibiotic usage. Results depicted low Salmonella prevalence in clinical and environmental samples (3.5%). The main detected serovars included Salmonella Typhimurium, S. enteritidis, S. Infantis, S. Newlands, S. Heidelberg, S. Indian, S. Reading, and S. paratyphi C. All the detected Salmonella serovars (27) exhibited multidrug resistance to three or more antimicrobial classes. The study concludes that the overall Salmonella serovars prevalence was found to be low in environmental and clinical samples of Western Saudi Arabia (Makkah and Jeddah). However, antimicrobial susceptibility patterns of human and environmental Salmonella serovars revealed that all isolates exhibited multidrug-resistance (MDR) patterns to frequently used antibiotics, which might reflect antibiotic overuse in clinical and veterinary medicine. It would be suitable to apply and enforce rules and regulations from the One Health approach, which aim to prevent antibiotic resistance infections, enhance food safety, and improve human and animal health, given that all Salmonella spp. detected in this investigation were exhibiting MDR patterns.
Department of Agricultural Microbiology Faculty of Agriculture Fayoum University Fayoum Egypt
Department of Biology College of Science University of Jeddah Jeddah Saudi Arabia
Department of Biology Faculty of Science Umm Al Qura University Makkah 21955 Saudi Arabia
King Abdulaziz Hospital Ministry of Health Makkah Saudi Arabia
Research Laboratories Unit Faculty of Science Umm Al Qura University Makkah 21955 Saudi Arabia
Zobrazit více v PubMed
Abd El Ghany M, Alsomali M, Almasri M, Padron Regaldo E, Naeem R, Tukestani A, Asiri A, Hill-Cawthorne GA, Pain A, Memish ZA (2017) Enteric infections circulating during Hajj seasons, 2011–2013. Emerg Infect Dis 23:1640–1649. https://doi.org/10.3201/eid2310.161642 PubMed DOI PMC
Abdalrahim S, Zohri AA, Khider M, Kamal El-Dean AM, Abulreesh HH, Ahmad I, Elbanna K (2019) Phenotypic and genotypic characterization of exopolysaccharide producing bacteria isolated from fermented fruits, vegetables and dairy products. J Pure Appl Microbiol 13:1349–1362. https://doi.org/10.22207/JPAM.13.3.06 DOI
Abulreesh HH (2011) Free living rock pigeon (Columba livia) as an environmental reservoir of enteric bacterial pathogens resistant to antimicrobial drugs in Saudi Arabia. Curr Res Bacteriol 4:28–33. https://doi.org/10.3923/crb.2011.28.33 DOI
Abulreesh HH (2012) Salmonellae in the environment. In: Annous BA, Gurtler JB (eds) Salmonella: distribution, adaptation, control measures and molecular technologies. InTech, Rijeka, Croatia, pp 19–50. https://doi.org/10.5772/28201 DOI
Abulreesh HH, Goulder R, Scott GW (2007) Wild birds and human pathogens in the context of ringing and migration. Ring Migr 23:193–200. https://doi.org/10.1080/03078698.2007.9674363 DOI
Abulreesh HH, Paget TA, Goulder R (2004) Waterfowl and the bacteriological quality of amenity ponds. J Water Health 2:183–189. https://doi.org/10.2166/wh.2004.0016 PubMed DOI
Abulreesh HH, Paget TA, Goulder R (2014) A pre-enrichment step is essential for detection of Campylobacter sp. from turbid pond water. Trop Biomed 31:320–326 PubMed
Akil L, Anwar Ahmad H, Reddy RS (2014) Effects of climate change on Salmonella infections. Foodborne Pathog Dis 11:974–980. https://doi.org/10.1089/fpd.2014.1802 PubMed DOI PMC
Alghoribi MF, Design TS, Alswaji AA, Al Alwan BH, Alzayer M, Okdah L, Al-Johani S, Balkhy HH, Doumith M (2020) OXA-48 carbapenemase-producing Salmonella enterica serovar Kentucky ST198 isolated from Saudi Arabia. J Antimicrob Chemother 75:2006–2008. https://doi.org/10.1093/jac/dkaa077 PubMed DOI
Al-Hindi RR, Alharbi MG, Alotibi IA, Azhari SA, Ahmad A, Alseghater MS, Teklemariam AD, Almaneea AM (2023) MALDI-TOS MS-based identification and antibiotics profiling of Salmonella species isolated from retail chilled chicken in Saudi Arabia. J King Saud University – Sci 35:102684. https://doi.org/10.1016/j.jksus.2023.102684 DOI
Al-Humam NA, Mohammed AF (2022) Monitoring of Escherichia coli, Salmonella spp. staphylococci in poultry meat-based fast food in Saudi Arabia. Adv Microbiol 12:159–176. https://doi.org/10.4236/aim.2022.123013 DOI
Al-Mazrou YY (2004) Food poisoning in Saudi Arabia: potential for prevention? Saudi Med J 25:11–14 PubMed
Al-Nakhli HM, Al-Ogaily ZH, Nassar TJ (1999) Representative Salmonella serovars isolates from poultry and poultry environments in Saudi Arabia. Rev Sci Tech 18:700–709. https://doi.org/10.20506/rst.18.3.1185 PubMed DOI
Alsayeqh AF (2020) Salmonellosis in Saudi Arabia; an underestimated disease? Alex J Vet Sci 67:30–38. https://doi.org/10.5455/ajvs.136155 DOI
Al-Tawfiq JA (2007) Antimicrobial susceptibility of Salmonella typhi and non-typhi in a hospital in eastern Saudi Arabia. J Chemother 19:62–65. https://doi.org/10.1179/joc.2007.19.1.62 PubMed DOI
Apun K, Chong YL, Abdullah M, Micky V (2008) Antimicrobial susceptibilities of Escherichia coli isolates from food animals and wildlife animals in Sarawak, Malaysia. Asian J Anim Vet Adv 3:409–416. https://doi.org/10.3923/ajava.2008.409.416 DOI
Barbour EE, Nabbut NH (1982) Isolation of Salmonella and some other potential pathogens from two chicken breeding farms in Saudi Arabia. Avian Dis 26:234–244 PubMed DOI
Cevallos-Cevallos JM, Danyluk MD, Gu G, Vallad GE, van Bruggen AHC (2012) Dispersal of Salmonella Typhimurium by rain splash onto tomato plants. J Food Prot 75:472–479. https://doi.org/10.4315/0362-028X.JFP-11-399 PubMed DOI
Cizek A, Literak I, Hejlicek K, Treml F, Smola J (1994) Salmonella contamination of the environment and its incidence in wild birds. J Vet Med B 41:320–327. https://doi.org/10.1111/j.1439-0450.1994.tb00234 DOI
Clinical and Laboratory Standard Institute (2023) Performance standards for antimicrobial susceptibility testing, 33
Corrier DE, Byrd JA, Hargis BM, Hume ME, Baily RH, Stanker LH (1999) Presence of Salmonella in the crop and ceca of broiler chickens before and after preslaughter feed withdrawal. Poult Sci 78:45–49. https://doi.org/10.1093/ps/78.1.45 PubMed DOI
Deak E, Hindler JA, Skov R, Sjolund-Karlsson M, Sokovic A, Humphries RM (2015) Performance of Etest and disk diffusion for detection of ciprofloxacin and levofloxacin resistance in Salmonella enterica. J Clin Microbiol 53:298–301. https://doi.org/10.1128/JCM.02715-14 PubMed DOI
Dunkley KD, Callaway TR, Chalova VI, McReynolds HME, Dunkley CS, Kubena LF, Nisbet DJ, Ricke SC (2009) Foodborne Salmonella ecology in the avian gastrointestinal tract. Anaerobe 15:26–35. https://doi.org/10.1016/j.anaerobe.2008.05.007 PubMed DOI
Elhadi N, Aljindan R, Aljeldah M (2013) Prevalence of non-typhoidal Salmonella serogroups and their antimicrobial resistance patterns in a university teaching hospital in Eastern province of Saudi Arabia. Infect Drug Resist 6:199–205. https://doi.org/10.2147/IDR.S51184 PubMed DOI PMC
El-Tayeb MA, Ibrahim ASS, Almaary KS, Elbadawi YB (2017) Prevalence, serotyping and antimicrobials resistance mechanisms of Salmonella enterica isolated from clinical and environmental samples in Saudi Arabia. Braz J Microbiol 48:499–508 PubMed DOI PMC
Eng SK, Pusparajah P, Ab Mutalib NS, Ser HL, Chan KG, Lee LH (2015) Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance. Front Life Sci 8:284–293. https://doi.org/10.1080/21553769.2015.1051243 DOI
Ferns PN, Mudge GP (2000) Abundance, diet and Salmonella contamination of gulls feeding at sewage outfalls. Water Res 34:2653–2660. https://doi.org/10.1016/0043-1354(99)00472-3 DOI
Gut AM, Vasiljevic T, Yeager T, Donker ON (2018) Salmonella infection – prevention and treatment by antibiotics and probiotic yeasts: a review. Microbiol 164:1327–1344. https://doi.org/10.1099/mic.0.000709 DOI
Harris CS, Tertuliano M, Rajeev S, Vellidis G, Levy K (2018) Impact of storm runoff on Salmonella and Escherichia coli prevalence in irrigation ponds of fresh produce farms in southern Georgia. J Appl Microbiol 124:910–921. https://doi.org/10.1111/jam.13689 PubMed DOI PMC
Heinrich R, Laukova A, Strompfova V, Revajova V, Levkut M, Pistl J (2004) Optimization of Salmonella detection in chickens’ caecum using PCR method. Arch Anim Breed 47:85–91. https://doi.org/10.5194/aab-47-85-2004 DOI
Khan HA, Almalki MHK, Felemban R, Elbanna K, Abulreesh HH (2022) Antibiotic resistant salmonellae in pet reptiles in Saudi Arabia. Microbiol Indep Res J 9:31–36. https://doi.org/10.18527/2500-2236-2022-9-1-31-36 DOI
Khan HA, Neyaz LA, Organji SR, Elbanna K, Abulreesh HH (2023) First report of Salmonella enterica subsp. enterica serovar Typhimurium in pet reptiles in private household of Makkah, Saudi Arabia. J Umm Al-Qura University Appl Sci: https://doi.org/10.1007/s43994-023-00107-9 DOI
Kinde H, Read DH, Ardans A, Breitmeyer RE, Willoughby D, Little HE, Kerr D, Gireesh R, Nagaraja KV (1996) Sewage effluent: likely source of Salmonella enteritidis, phage type 4 infection in a commercial chicken layer flock in southern California. Avian Dis 40:672–676 PubMed DOI
Levantesi C, Bonadonna L, Briancesco R, Grohmann E, Toze S, Tandoi V (2012) Salmonella in surface and drinking water: occurrence and water-mediated transmission. Food Res Int 45:587–602. https://doi.org/10.1016/j.foodres.2011.06.037 DOI
Li J, Ding M, Han Z, Ma J (2018) Persistence of Salmonella Typhimurium in well waters from rural area of Changchun city. China Int J Public Health 15:1090. https://doi.org/10.3390/ijerph.1506.1090 DOI
Maddocks S, Olma T, Chen S (2002) Comparison of CHROMagar Salmonella medium and xylose-lysine-deoxycholate and salmonella-shigella agars for isolation of Salmonella strains from stool samples. J Clin Microbiol 40:2999–3003. https://doi.org/10.1128/JCM.408.2999-3003.2002 PubMed DOI PMC
Malik GM, Al-Wabel AA, Bagir Khalafalla Ahmed E, MM, Bilal NE, Shenoy A, Abdlla M, Mekki TE, (1993) Salmonella infections in Asir region, southern Saudi Arabia: expatriated implications. Ann Saudi Med 13:242–245. https://doi.org/10.5144/0256-4947.1993.242 PubMed DOI
Ministry of Health (2019) Ministry of Health Statistical Year Book. Ministry of Health, Riyadh, Sudi Arabia
Ministry of Health (2020) Ministry of Health Statistical Year Book. Ministry of Health, Riyadh, Sudi Arabia
Ministry of Health (2021) Ministry of Health Statistical Year Book. Ministry of Health, Riyadh, Sudi Arabia
Monter YMF, Chaves A, Arellano-Reynoso B, Lopez-Perez AM, Suzan-Azpiri H, Suzan G (2021) Edaphoclimatic seasonal trends and variations of the Salmonella spp. infection in Northwestern Mexico. Infect Dis Model 6:805–819. https://doi.org/10.1016/j.idm.2021.05.002 DOI
Morgado ME, Jiang C, Zambrana J, Upperman CR, Boyle M, Sapkota AR, Sapkota A (2021) Climate change, extreme events, and increased risk of salmonellosis: foodborne diseases active surveillance network (FoodNet), 2004–2014. Environ Health 20:105. https://doi.org/10.1186/s12940-021-00787-y PubMed DOI PMC
Moussa IM, Gassem MA, Al-Doss AA, Sadik MWA, Abdel Mawgood AL (2010) Using molecular techniques for rapid detection of Salmonella serovars in frozen chicken and chicken products collected from Riyadh, Saudi Arabia. Afr J Biotechnol 9:612–619. https://doi.org/10.5887/AJB09.1761 DOI
Moussa IM, Ashgan MH, Mahmoud MH, Al-Doss AA (2011) Rapid detection of Salmonella enterica in food of animal origins collected from Riyadh, King Saudi Arabia. Afr J Microbiol Res 5:2173–2178. https://doi.org/10.5897/AJMR11.426 DOI
Nabbut NH, Barbour EK, Al-Nakhli HM (1982) Salmonella species and serotypes isolated from farm animals, animal feed, sewage, and sludge in Saudi Arabia. Bull World Health Organ 60:803–807 PubMed PMC
Nair A, Balasaravanan T, Malik SVS, Mohan V, Kumar M, Vergis J, Rawool DB (2015) Isolation and identification of Salmonella from diarrheagenic infants and young animals, sewage waste and fresh vegetables. Vet World 8:669–673. https://doi.org/10.14202/vetworld.2015.669-673 PubMed DOI PMC
Nair DVT, Venkitanarayanan K, Johny AK (2018) Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods 7:167. https://doi.org/10.3390/foods7100167 DOI
Oloya J, This M, Doetkott D, Dyer N, Gibbs P, Khaitsa ML (2007) Evaluation of Salmonella occurrence in domestic animals and humans in North Dakota (2000–2005). Foodborne Pathog Dis 4:551–563. https://doi.org/10.1089/fpd.2007.0014 PubMed DOI
Oxoid, (1998) The Oxoid Manual, 8th edn. Oxoid, Basingstoke, UK
Pinedo LC, Franz E, van den Beld M, van Goethem N, Mattheus W, Veldman K, Bosch T, Mughini-Gras L, Pijnacker R (2022) Changing epidemiology of Salmonella Enteritidis human infections in the Netherlands and Belgium, 2006 to 2019: a registry-based population study. Euro Surveill 27:pii=2101174. https://doi.org/10.2807/1560-7917.ES.2022.27.38.2101174 DOI
Popa GL, Papa MI (2021) Salmonella spp. infection – a continuous threat worldwide. Germs 11:88–96. https://doi.org/10.18683/germs.2021.144 PubMed DOI PMC
Rajagopal R, Mini M (2013) Outbreaks of salmonellosis in three different poultry farms of Kerala, India. Asian Pac J Trop Biomed 3:496–500 PubMed DOI PMC
Raji MA, Kazeem HM, Magyigbe KA, Ahmed AO, Lawal DN, Raufu IA (2021) Salmonella serovars, antibiotic resistance, and virulence factors isolates from intestinal content of slaughtered chickens and ready-to-eat chicken gizzards in the Iiorin metropolis, Kwara State. Nigeria. Int J Food Sci 2021:8872137. https://doi.org/10.1155/2021/8872137 PubMed DOI
Rall VLM, Rall R, Aragon LC, da Silva MG (2005) Evaluation of three enrichment broths and five plating media for Salmonella detection in poultry. Braz J Microbiol 36:147–150. https://doi.org/10.1590/S1517-83822005000200009 DOI
Rodrigues A, Pangloli P, Richards HA, Mount JR, Ann Draughon F (2006) Prevalence of Salmonella in diverse environmental farm samples. J Food Prot 69:2576–2580 DOI
Rubini S, Ravaioli C, Previato S, D’Incau M, Tassinari M, Guidi E, Lupi S, Merialdi G, Bergamini M (2016) Prevalence of Salmonella strains in wild animals from a highly populated area of north-eastern Italy. Ann Ist Super Sanita 52:277–280. https://doi.org/10.4415/ANN_16_02_21 PubMed DOI
Rui Y, Fu D, Minh HD, Radhakrishnan M, Zevenbergrgen C, Pathirana A (2018) Urban surface water quality, flood water quality and human health impacts in Chinese cities. What do we know? Water 10:240. https://doi.org/10.3390/w10030240 DOI
Sahlstrom L, de Jong B, Aspan A (2006) Salmonella isolated in sewage sludge traced back to human cases of salmonellosis. Lett Appl Microbiol 43:46–52. https://doi.org/10.1111/j.1472-765X.2006.01911.x PubMed DOI
Salmon-Rousseau A, Piednoir E, Cattoir V, deLa BA (2016) Hajj-associated infections. Med Mal Infect 46:346–354. https://doi.org/10.1016/j.medmal.2016.04.002 PubMed DOI PMC
Sambaza SS, Naicker N (2023) Contribution of wastewater to antimicrobial resistance: a review article. J Glob Antimicrob Resist 34:23–29. https://doi.org/10.1016/j.jgar.2023.05.010 PubMed DOI
Samreen AI, Malak HA, Abulreesh HH (2021) Environmental antimicrobial resistance and its drivers: a potential threat to public health. J Glob Antimicrob Resist 27:101–111. https://doi.org/10.1016/j.jgar.2021.08.001 PubMed DOI
Santiago P, Jimenez-Belenguer A, Garcia-Hernandez J, Estelles RM, Perez MH, Lopez MAC, Ferrus MA, Moreno Y (2018) High prevalence of Salmonella spp. in wastewater reused for irrigation assessed by molecular methods. Int J Hyg Environ Health 221:95–202. https://doi.org/10.1016/j.ijheh.2017.10.007 PubMed DOI
Simpson RB, Zhou B, Naumova EN (2020) Seasonal synchronization of foodborne outbreaks in the United States, 1996–2017. Sci Rep 10:17500. https://doi.org/10.1038/s41598-020-74435-9 PubMed DOI PMC
Singh S, Agarwal RK, Tiwari SC, Singh H (2012) Antibiotic resistance pattern among the Salmonella isolated from human, animal and meat in India. Trop Anim Health Prod 44:665–674. https://doi.org/10.1007/s11250-011-9953-7 PubMed DOI
Somily AM, Sayyed SB, Habib HA, Al-Khattaf AS, Al-Otabi FE, Shakoor Z, Kambal AM (2012) Salmonella isolates’ serotypes and susceptibility to commonly used drugs at a tertiary care hospital in Riyadh, Saudi Arabia. J Infect Dev Ctries 6:478–482 PubMed DOI
Sow D, Dogue F, Edouard S, Drali T, Prades S, Battery E, Yezli S, Alotaibi B, Sokhna C, Raoult D, Parola P, Gautret P (2018) Acquisition of enteric pathogens by pilgrims during the 2016 Hajj pilgrimage: a prospective cohort study. Travel Med Infect Dis 25:26–30. https://doi.org/10.1016/j.tmaid.2018.05.017 PubMed DOI
Talukder H, Roky SA, Denath K, Sharma B, Ahmed J, Roy S (2023) Prevalence and antimicrobial resistance profile of Salmonella isolated from human, animal and environment samples in south Asia: a 10-year meta-analysis. J Epidemiol Glob Health 13:637–652. https://doi.org/10.1007/s44197-023-00160-x PubMed DOI PMC
Teklemariam AD, Al-Hindi RR, Albiheyri RS, Alharbi MG, Alghamdi MA, Filimban AAR, Al Mutiri AS, Al-Alyani AM, Alseghayer MS, Almaneea AM, Albar AH, Khormi MA, Bhunia AK (2023) Human salmonellosis: a continuous global threat in the farm-to-fork food safety continuum. Foods 12:1756. https://doi.org/10.3390/ffods12091756 PubMed DOI PMC
Thenmazhi S, Rajeswari P, Kumar BS, Saipiryanga V, Kalpana M (2014) Multi-drug resistance patterns of biofilm-forming Aeromonas hydrophila from urine samples. Int J Pharm Sci Re 5:2908–2918
Threlfall EJ (2002) Antimicrobial drug resistance in Salmonella: problems and perspectives in food-and water-borne infections. FEMS Microbiol Rev 26:141–148. https://doi.org/10.1111/j.1574-6976.2002.tb00606.x PubMed DOI
Tizard I (2004) Salmonellosis in wild birds. Sem Avian Exot Pet Med 13:50–66. https://doi.org/10.1053/j.saep.2004.01.008 DOI
Vandeplas S, Dubois Dauphin R, Beckers Y, Thonart P, Thewis A (2010) Salmonella in chicken: current and developing strategies to reduce contamination at farm level. J Food Prot 73:774–785. https://doi.org/10.4315/0362-028X-73.4.774 PubMed DOI
Yanagimoto K, Yamagami T, Uematsu K, Haramoto E (2020) Characterization of Salmonella isolates from wastewater treatment plant influents to estimate unreported cases and infection sources of Salmonellosis. Pathogens 9:52. https://doi.org/10.3390/pathogens9010052 PubMed DOI PMC
Yulistiani R, Praseptiangga D, Supani S (2019) Occurrence of Salmonella spp. and Escherichia coli in chicken meat, intestinal contents and rinse water at slaughtering place from traditional market in Surabaya, Indonesia. IOP Conference Series: Mater Sci Eng 633:012007. https://doi.org/10.1088/1757-899X/633/1/012007 DOI