• This record comes from PubMed

Treponema pallidum subsp. pallidum strains DAL-1 and Philadelphia 1 differ in generation times in vitro as well as during experimental rabbit infection

. 2024 ; 19 (5) : e0304033. [epub] 20240524

Language English Country United States Media electronic-ecollection

Document type Journal Article

In this work, we determined that Treponema pallidum subsp. pallidum (TPA) DAL-1 (belonging to Nichols-like group of TPA strains) grew 1.53 (± 0.08) times faster compared to TPA Philadelphia 1 (SS14-like group) during in vitro cultivations. In longitudinal individual propagation in rabbit testes (n = 12, each TPA strain), infection with DAL-1 manifested clinical symptoms (induration, swelling, and erythema of testes) sooner than Philadelphia 1 infection, which resulted in a significantly shorter period of the experimental passages for DAL-1 (median = 15.0 and 23.5 days, respectively; p < 0.01). To minimize the confounding conditions during rabbit experiments, the growth characteristics of DAL-1 and Philadelphia 1 strains were determined during TPA co-infection of rabbit testes (n = 20, including controls). During two weeks of intratesticular co-infection, DAL-1 overgrew Philadelphia 1 in all twelve testes, regardless of inoculation ratio and dose (median of relative excess DAL-1 multiplication = 84.85×). Moreover, higher DAL-1 to Philadelphia 1 inoculum ratios appeared to increase differences in growth rates, suggesting direct competition between strains for available nutrients during co-infection. These experiments indicate important physiological differences between the two TPA strains and suggest growth differences between Nichols-like and SS14-like strains that are potentially linked to their virulence and pathogenicity.

See more in PubMed

Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, et al.. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One. 2015;10. doi: 10.1371/journal.pone.0143304 PubMed DOI PMC

Peeling RW, Mabey D, Kamb ML, Chen XS, Radolf JD, Benzaken AS. Syphilis. Nat Rev Dis Prim. 2017;3. doi: 10.1038/NRDP.2017.73 PubMed DOI PMC

Turner T, Hollander D. Biology of the treponematoses based on studies carried out at the International Treponematosis Laboratory Center of the Johns Hopkins University under the auspices of the World Health Organization. Monogr Ser World Heal Organ. 1957;35: 3–266. PubMed

Pereira LE, Katz SS, Sun Y, Mills P, Taylor W, Atkins P, et al.. Successful isolation of Treponema pallidum strains from patients’ cryopreserved ulcer exudate using the rabbit model. PLoS One. 2020;15. doi: 10.1371/JOURNAL.PONE.0227769 PubMed DOI PMC

Nechvátal L, Pětrošová H, Grillová L, Pospíšilová P, Mikalová L, Strnadel R, et al.. Syphilis-causing strains belong to separate SS14-like or Nichols-like groups as defined by multilocus analysis of 19 Treponema pallidum strains. Int J Med Microbiol. 2014;304: 645–653. doi: 10.1016/j.ijmm.2014.04.007 PubMed DOI

Pětrošová H, Pospíšilová P, Strouhal M, Čejková D, Zobaníková M, Mikalová L, et al.. Resequencing of Treponema pallidum ssp. pallidum strains Nichols and SS14: correction of sequencing errors resulted in increased separation of syphilis treponeme subclusters. PLoS One. 2013;8. doi: 10.1371/JOURNAL.PONE.0074319 PubMed DOI PMC

Arora N, Schuenemann VJ, Jäger G, Peltzer A, Seitz A, Herbig A, et al.. Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat Microbiol. 2016;2. doi: 10.1038/nmicrobiol.2016.245 PubMed DOI

Šmajs D, Mikalová L, Strouhal M, Grillová L. Why there are two genetically distinct syphilis-causing strains? Forum Immun Dis Ther. 2016;7: 181–190. doi: 10.1615/ForumImmunDisTher.2017020184 DOI

Šmajs D, Strouhal M, Knauf S. Genetics of human and animal uncultivable treponemal pathogens. Infect Genet Evol. 2018;61: 92–107. doi: 10.1016/j.meegid.2018.03.015 PubMed DOI

Edmondson DG, Hu B, Norris SJ. Long-term in vitro culture of the syphilis spirochete Treponema pallidum subsp. pallidum. MBio. 2018;9. doi: 10.1128/mBio.01153-18 PubMed DOI PMC

Edmondson DG, Delay BD, Kowis LE, Norris SJ. P Parameters affecting continuous in vitro culture of Treponema pallidum strains. MBio. 2021;12: 1–21. doi: 10.1128/MBIO.03536-20 PubMed DOI PMC

Wendel G, Sanchez P, Peters M, Harstad T, Potter L, Norgard M. Identification of Treponema pallidum in amniotic fluid and fetal blood from pregnancies complicated by congenital syphilis. Obs Gynecol. 1991;78: 890–895. PubMed

Zobaníková M, Mikolka P, Čejková D, Pospíšilová P, Chen L, Strouhal M, et al.. Complete genome sequence of Treponema pallidum strain DAL-1. Stand Genomic Sci. 2012;7: 12–21. doi: 10.4056/SIGS.2615838 PubMed DOI PMC

Harper KN, Ocampo PS, Steiner BM, George RW, Silverman MS, Bolotin S, et al.. On the origin of the treponematoses: a phylogenetic approach. PLoS Negl Trop Dis. 2008;2. doi: 10.1371/journal.pntd.0000148 PubMed DOI PMC

Grillová L, Oppelt J, Mikalová L, Nováková M, Giacani L, Niesnerová A, et al.. Directly sequenced genomes of contemporary strains of syphilis reveal recombination-driven diversity in genes encoding predicted surface-exposed antigens. Front Microbiol. 2019;10. doi: 10.3389/FMICB.2019.01691 PubMed DOI PMC

Lieberman NAP, Lin MJ, Xie H, Shrestha L, Nguyen T, Huang ML, et al.. Treponema pallidum genome sequencing from six continents reveals variability in vaccine candidate genes and dominance of Nichols clade strains in Madagascar. PLoS Negl Trop Dis. 2021;15. doi: 10.1371/JOURNAL.PNTD.0010063 PubMed DOI PMC

Dubourg G, Edouard S, Prudent E, Fournier PE, Raoult D. Incidental syphilis diagnosed by real-time PCR screening of urine samples. J Clin Microbiol. 2015;53: 3707–3708. doi: 10.1128/JCM.01026-15 PubMed DOI PMC

Lukehart SA, Marra CM. Isolation and laboratory maintenance of Treponema pallidum. Curr Protoc Microbiol. 2007;Chapter 12. doi: 10.1002/9780471729259.MC12A01S7 PubMed DOI

Brinkman MB, McGill MA, Pettersson J, Rogers A, Matějková P, Šmajs D, et al.. A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect Immun. 2008;76: 1848–1857. doi: 10.1128/IAI.01424-07 PubMed DOI PMC

Giacani L, Chattopadhyay S, Centurion-Lara A, Jeffrey BM, Le HT, Molini BJ, et al.. Footprint of positive selection in Treponema pallidum subsp. pallidum genome sequences suggests adaptive microevolution of the syphilis pathogen. PLoS Negl Trop Dis. 2012;6. doi: 10.1371/JOURNAL.PNTD.0001698 PubMed DOI PMC

Edmondson DG, De Lay BD, Hanson BM, Kowis LE, Norris SJ. Clonal isolates of Treponema pallidum subsp. pallidum Nichols provide evidence for the occurrence of microevolution during experimental rabbit infection and in vitro culture. PLoS One. 2023;18. doi: 10.1371/JOURNAL.PONE.0281187 PubMed DOI PMC

Grillová L, Bawa T, Mikalová L, Gayet-Ageron A, Nieselt K, Strouhal M, et al.. Molecular characterization of Treponema pallidum subsp. pallidum in Switzerland and France with a new multilocus sequence typing scheme. PLoS One. 2018;13. doi: 10.1371/JOURNAL.PONE.0200773 PubMed DOI PMC

Strouhal M, Mikalová L, Havlíčková P, Tenti P, Čejková D, Rychlík I, et al.. Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Ghana, Africa: Identical genome sequences in samples isolated more than 7 years apart. PLoS Negl Trop Dis. 2017;11. doi: 10.1371/JOURNAL.PNTD.0005894 PubMed DOI PMC

Pospíšilová P, Grange PA, Grillová L, Mikalová L, Martinet P, Janier M, et al.. Multi-locus sequence typing of Treponema pallidum subsp. pallidum present in clinical samples from France: Infecting treponemes are genetically diverse and belong to 18 allelic profiles. PLoS One. 2018;13. doi: 10.1371/JOURNAL.PONE.0201068 PubMed DOI PMC

Taouk ML, Taiaroa G, Pasricha S, Herman S, Chow EPF, Azzatto F, et al.. Characterisation of Treponema pallidum lineages within the contemporary syphilis outbreak in Australia: a genomic epidemiological analysis. The Lancet Microbe. 2022;3: e417–e426. doi: 10.1016/S2666-5247(22)00035-0 PubMed DOI

Beale MA, Marks M, Cole MJ, Lee MK, Pitt R, Ruis C, et al.. Global phylogeny of Treponema pallidum lineages reveals recent expansion and spread of contemporary syphilis. Nat Microbiol. 2021;6: 1549–1560. doi: 10.1038/S41564-021-01000-Z PubMed DOI PMC

Beale MA, Thorn L, Cole MJ, Pitt R, Charles H, Ewens M, et al.. Genomic epidemiology of syphilis in England: a population-based study. The Lancet Microbe. 2023;4: e770–e780. doi: 10.1016/S2666-5247(23)00154-4 PubMed DOI PMC

Grillová L, Noda AA, Lienhard R, Blanco O, Rodríguez I, Šmajs D. Multilocus sequence typing of Treponema pallidum subsp. pallidum in Cuba from 2012 to 2017. J Infect Dis. 2019;219: 1138–1145. doi: 10.1093/INFDIS/JIY604 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...