Multiphase electroextraction of malachite green from surface water and its determination using digital imaging and chemometric tools
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
RED-00042-16
Rede Mineira de Ciências Forenses
465768/2014-8
INCTAA/CNPq/FAPESP
2014/50951-4
INCTAA/CNPq/FAPESP
88881.516313/2029-01
PROCAD Segurança Pública e Ciências Forenses
88887.716890/2022-00
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
PubMed
38794968
DOI
10.1002/elps.202400007
Knihovny.cz E-zdroje
- Klíčová slova
- cationic dyes, complex matrices, free liquid membrane, water contaminant,
- MeSH
- chemické látky znečišťující vodu * analýza izolace a purifikace MeSH
- chemometrika metody MeSH
- diskriminační analýza MeSH
- limita detekce MeSH
- lineární modely MeSH
- metoda nejmenších čtverců MeSH
- počítačové zpracování obrazu * metody MeSH
- reprodukovatelnost výsledků MeSH
- rosanilinová barviva * analýza izolace a purifikace MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- malachite green MeSH Prohlížeč
- rosanilinová barviva * MeSH
This study introduces a novel method for the quantification of malachite green (MG), a pervasive cationic dye, in surface water by synergizing multiphase electroextraction (MPEE) with digital image analysis (DIA) and partial least square discriminant analysis. Aimed at addressing the limitations of conventional DIA methods in terms of quantitation limits and selectivity, this study achieves a significant breakthrough in the preconcentration of MG using magnesium silicate as a novel sorbent. Demonstrating exceptional processing efficiency, the method allows for the analysis of 10 samples within 20 min, exhibiting remarkable sensitivity and specificity (over 0.95 and 0.90, respectively) across 156 samples in both training and test sets. Notably, the method detects MG at low concentrations (0.2 µg L-1) in complex matrices, highlighting its potential for broader application in environmental monitoring. This approach not only underscores the method's cost-effectiveness and simplicity but also its precision, making it a valuable tool for the preliminary testing of MG in surface waters. This study underscores the synergy among MPEE, DIA, and chemometric tools, presenting a cost-efficient and reliable alternative for the sensitive detection of water contaminants.
Zobrazit více v PubMed
Rathi BS, Kumar PS, Vo DVN. Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Sci Total Environ. 2021;797:1–22.
Schreiner VC, Link M, Kunz S, Szöcs E, Scharmüller A, Vogler B, et al. Paradise lost? Pesticide pollution in a European region with considerable amount of traditional agriculture. Water Res. 2021;188:1–10.
Jeasen JC, Jensen NJ, Meyer O, Olsen P. Toxicological studies on malachite green: A triphenylmethane dye. Arch Toxicol. 1984;56:43–45.
Tkaczyk A, Mitrowska K, Posyniak A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Sci Total Environ. 2020;717:1–19.
Xu K, Guo M, Huang Y, Li X, Sun J. Rapid and sensitive detection of malachite green in aquaculture water by electrochemical preconcentration and surface‐enhanced Raman scattering. Talanta. 2018;180:383–388.
Shojaei S, Shojaei S, Band SS, Farizhandi AAK, Ghoroqi M, Mosavi A. Application of Taguchi method and response surface methodology into the removal of malachite green and auramine‐O by NaX nanozeolites. Sci Rep. 2021;11(1):16054.
Shojaei S, Shojaei S. Experimental design and modeling of removal of acid green 25 dye by nanoscale zero‐valent iron. Euro‐Mediterr J Environ Integr. 2017;2(1):15.
Yang J, Shojaei S, Shojaei S. Removal of drug and dye from aqueous solutions by graphene oxide: Adsorption studies and chemometrics methods. NPJ Clean Water. 2022;5(1):5.
Pourabadeh A, Baharinikoo L, Shojaei S, Mehdizadeh B, Davoodabadi Farahani M, Shojaei S. Experimental design and modelling of removal of dyes using nano‐zero‐valent iron: A simultaneous model. Int J Environ Anal Chem. 2020;100(15):1707–1719.
Šafařı́k I, Šafařı́ková M. Detection of low concentrations of malachite green and crystal violet in water. Water Res. 2002;6:196–200.
Zhu D, Li Q, Honeychurch KC, Piano M, Chen G. Determination of malachite green in aquaculture water by adsorptive stripping voltammetry. Anal Lett. 2016;49:1436–1451.
Pérez‐Fernández V, Mainero Rocca L, Tomai P, Fanali S, Gentili A. Recent advancements and future trends in environmental analysis: Sample preparation, liquid chromatography, and mass spectrometry. Anal Chim Acta. 2017;983:9–41.
Huang S, Fan M, Wawryk N, Qiu J, Yang X, Zhu F, et al. Recent advances in sampling and sample preparation for effect directed environmental analysis. Trends Anal Chem. 2022;154:1–13.
Zhang Z, Zhou K, Bu Y, Shan Z, Liu J, Wu X, et al. Determination of malachite green and crystal violet in environmental water using temperature‐controlled ionic liquid dispersive liquid–liquid microextraction coupled with high performance liquid chromatography. Anal Methods. 2012;4(2):429–433.
Mitrowska K, Posyniak A, Zmudzki J. Determination of malachite green and leucomalachite green residues in water using liquid chromatography with visible and fluorescence detection and confirmation by tandem mass spectrometry. J Chromatogr A. 2008;1207(1):94–100.
Tkaczyk‐Wlizło A, Mitrowska K, Błądek T. Quantification of twenty pharmacologically active dyes in water samples using UPLC–MS/MS. Heliyon. 2022;8(4):e09331.
Fang X, Yang S, Chingin K, Zhu L, Zhang X, Zhou Z, et al. Quantitative detection of trace malachite green in aquiculture water samples by extractive electrospray ionization mass spectrometry. Int J Environ Res Public Health. 2016;13(8):814.
Shojaei S, Shojaei S, Nouri A, Baharinikoo L. Application of chemometrics for modeling and optimization of ultrasound‐assisted dispersive liquid–liquid microextraction for the simultaneous determination of dyes. NPJ Clean Water. 2021;4(1):23.
Pourabadeh A, Baharinikoo L, Nouri A, Mehdizadeh B, Shojaei S. The optimisation of operating parameters of dye removal: Application of designs of experiments. Int J Environ Anal Chem. 2021;101(9):1320–1329.
Razi‐Asrami M, Ghasemi JB, Amiri N, Sadeghi, SJ. Simultaneous spectrophotometric determination of crystal violet and malachite green in water samples using partial least squares regression and central composite design after preconcentration by dispersive solid‐phase extraction. Environ Monit Assess. 2017;196:189–196.
Sadrabadi MR, Rahmani M. Development of a liquid‐phase micro‐extraction based on the use of deep eutectic solvent for pre‐concentration and measurement of malachite green in water and fish samples. Int J Environ Anal Chem. 2023;1:1–16.
Uzcan F, Erbas Z, Soylak M. Supramolecular solvent‐based liquid phase microextraction of malachite green at trace level from water samples for its UV–vis spectrophotometric detection. Int J Environ Anal Chem. 2019;99:595–605.
Shojaei S, Rahmani M, Khajeh M, Abbasian AR. Ultrasound assisted based solid phase extraction for the preconcentration and spectrophotometric determination of malachite green and methylene blue in water samples. Arab J Chem. 2023;16:104868.
Zhang L, Zhang Y, Tang Y, Li X, Zhang X, Li C, et al. Magnetic solid‐phase extraction based on Fe3O4/graphene oxide nanoparticles for the determination of malachite green and crystal violet in environmental water samples by HPLC. Int J Environ Anal Chem. 2018;98:215–228.
Dil EA, Ghaedi M, Asfaram A, Zare F, Mehrabi F, Sadeghfar F. Comparison between dispersive solid‐phase and dispersive liquid–liquid microextraction combined with spectrophotometric determination of malachite green in water samples based on ultrasound‐assisted and preconcentration under multi‐variable experimental design optimization. Ultrason Sonochem. 2017;39:374–383.
Ghasemi E. Kaykhaii M. Application of micro‐cloud point extraction for spectrophotometric determination of malachite green, crystal violet and rhodamine B in aqueous samples. Spectrochim Acta A Mol Biomol Spectrosc. 2016;164:93–97.
Khan MR, Wabaidur SM, Busquets R, Khan MA, Siddiqui MR, Azam M. Identification of malachite green in industrial wastewater using lignocellulose biomass composite bio‐sorbent and UPLC–MS/MS: A green environmental approach. Process Safe Environ Protect. 2019;126:160–166.
Mirzajani R, Bagheban M. Simultaneous preconcentration and determination of malachite green and fuchsine dyes in seafood and environmental water samples using nano‐alumina‐based molecular imprinted polymer solid‐phase extraction. Int J Environ Anal Chem. 2016;96:576–594.
An L, Deng J, Zhou L, Li H, Chen F, Wang H, et al. Simultaneous spectrophotometric determination of trace amount of malachite green and crystal violet in water after cloud point extraction using partial least squares regression. J Hazard Mater. 2010;175:883–888.
Ferreira B, Duarte LO, Oiye ÉN, Ribeiro MFM, Katayama JMT, Oliva PHB, et al. A simple and fast method to detect freebase cocaine in artificial saliva by square wave voltammetry (SWV) using carbon paste electrode. J Electroche Sci Eng. 2020;10:361–371.
García‐Valverde ML, Soriano ML, Lucena R, Cárdenas S. Cotton fibers functionalized with β‐cyclodextrins as selectivity enhancer for the direct infusion mass spectrometric determination of cocaine and methamphetamine in saliva samples. Anal Chim Acta. 2020;1126:133–143.
Wan L, Gao H, Gao H, Du R, Wang F, Wang Y, et al. Selective extraction and determination of steroidal glycoalkaloids in potato tissues by electromembrane extraction combined with LC–MS/MS. Food Chem. 2022;367:1–7.
Yuan J, Cao H, Du X, Chen T, Ma A, Pan J. Nonaqueous miscible liquid‐liquid electroextraction for fast exhaustive enrichment of ultratrace analytes by an exponential transfer and deceleration mechanism. Food Chem. 2021;93:1458–1465.
Wang J, Yu J, Yu Y, Luo Z, Li G, Lin X. Nanoporous electrode with stable polydimethylsiloxane coating for direct electrochemical analysis of bisphenol A in complex wine media. Food Chem. 2023;405:1–9.
Li J, Zhu R, Shen X, Huang C. Functional materials and chemicals in electromembrane extraction. Trends Anal Chem. 2022;150:1–12.
Wu J, Huang X. Electric field‐reinforced solid phase microextraction based on anion‐exchange monolith for efficient entrapment of anions in aqueous and wine samples. J Chromatogr A. 2022;1676:1–8.
Ahmad SM, Gonçalves OC, Oliveira MN, Neng NR, Nogueira JMF. Application of microextraction‐based techniques for screening‐controlled drugs in forensic context—a review. Molecules. 2021;26:1–32.
Song Y, Zhang Y, Wang L, Hu C, Liu Z‐F, Feng X‐S, et al. Cocaine in different matrices: Recent updates on pretreatment and detection techniques. Crit Rev Anal Chem. 2024;54:529–548.
López‐Cruz R, Sandoval‐Contreras T, Iñiguez‐Moreno M. Plant pigments: Classification, extraction, and challenge of their application in the food industry. Food Bioprocess Tech. 2023;16:2725–2741.
Pedersen‐Bjergaard S, Rasmussen KE. Electrokinetic migration across artificial liquid membranes: New concept for rapid sample preparation of biological fluids. J Chromatogr A. 2006;1109(2):183–190.
Raterink RJ, Lindenburg PW, Vreeken RJ, Hankemeier T. Three‐phase electroextraction: A new (online) sample purification and enrichment method for bioanalysis. Anal Chem. 2013;85:7762–7768.
Kubáň P, Boček P. Micro‐electromembrane extraction across free liquid membranes. Extractions of basic drugs from undiluted biological samples. J Chromatogr A. 2014;1337:32–39.
Šlampová A, Kubáň P. Two‐phase micro‐electromembrane extraction with a floating drop free liquid membrane for the determination of basic drugs in complex samples. Talanta. 2020;206:1–8.
Šlampová A, Kubáň P. Volatile free liquid membranes for electromembrane extraction. Anal Chim Acta. 2021;1182:1–10.
Šlampová A, Kubáň P. Micro‐electromembrane extraction through volatile free liquid membrane for the determination of β‐lactam antibiotics in biological and environmental samples. Talanta. 2023;252:32–39.
Gjelstad A, Rasmussen KE, Pedersen‐Bjergaard S. Simulation of flux during electro‐membrane extraction based on the Nernst–Planck equation. J Chromatogr A. 2007;1174:104–111.
Šlampová A, Kubáň P. Direct analysis of free aqueous and organic operational solutions as a tool for understanding fundamental principles of electromembrane extraction. Anal Chem. 2017;89:12960–12967.
Orlando RM, Nascentes CC, Botelho BG, Moreira JS, Costa KA, De Miranda Boratto VH. Development and evaluation of a 66‐well plate using a porous sorbent in a four‐phase extraction assisted by electric field approach. Anal Chem. 2019;91:6471–6478.
Fernandes GM, Silva WR, Barreto DN, Lamarca RS, Lima Gomes PCF, da S Petruci JF, et al. Novel approaches for colorimetric measurements in analytical chemistry—a review. Anal Chim Acta. 2020;1135:187–203.
Capitán‐Vallvey LF, López‐Ruiz N, Martínez‐Olmos A, Erenas MM, Palma AJ. Recent developments in computer vision‐based analytical chemistry: A tutorial review. Anal Chim Acta. 2015;899:23–56.
Fan Y, Li J, Guo Y, Xie L, Zhang G. Digital image colorimetry on smartphone for chemical analysis: A review. Measurement. 2021;171:10882–108839.
Rezazadeh M, Seidi S, Lid M, Pedersen‐Bjergaard S, Yamini Y. The modern role of smartphones in analytical chemistry. Trends Anal Chem. 2019;118:548–555.
Solana‐Altabella A, Sánchez‐Iranzo MH, Bueso‐Bordils JI, Lahuerta‐Zamora L, Mellado‐Romero AM. Computer vision‐based analytical chemistry applied to determining iron in commercial pharmaceutical formulations. Talanta. 2018;188:349–355.
Apolônio LF, de Oliveira AF, Almeida CA, Neves AA, de Queiroz MELR, Zampier LM. Direct determination of malachite green and leucomalachite green in natural waters by exploiting solid‐phase sorption and digital image. Orbital: Electron J Chem. 2020;12:193–204.
Costa GB, Fernandes DDS, Almeida VE, Araújo TSP, Melo JP, Diniz PHGD, et al. Digital image‐based classification of biodiesel. Talanta. 2015;139:50–55.
Alidoust M, Yamini Y, Baharfar M. Microfluidic paper‐based analytical devices and electromembrane extraction; hyphenation of fields towards effective analytical platforms. Anal Chim Acta. 2022;1216:1–10.
Zarghampour F, Yamini Y, Baharfar M, Javadian G, Faraji M. On‐chip electromembrane extraction followed by sensitive digital image‐based colorimetry for determination of trace amounts of Cr(vi). Anal Chem. 2020;12:483–490.
Sousa DVM, Pereira FV, Boratto VHM, Orlando RM. Multiphase electroextraction as a simple and fast sample preparation alternative for the digital image determination of doxorubicin in saliva. Talanta. 2023;255:1–6.
Zaroudi F, Nasihatkon B, Hosseinzadeh R, Fakhari AR, Seidi S. Miniaturized on‐chip electromembrane extraction with QR code‐based red‐green‐blue analysis using a customized Android application for copper determination in environmental and food samples. Food Chem. 2023;414:135667–135676.
Zarghampour F, Yamini Y, Dil EA, Shokrollahi A, Javadian G. A new microfluidic‐chip device followed by sensitive image analysis of smart phone for simultaneous determination of dyes with different acidic–basic properties. Talanta. 2023;254:124168–124177.
Baharfar M, Yamini Y, Seidi S, Arain MB. Approach for downscaling of electromembrane extraction as a lab on‐a‐chip device followed by sensitive red‐green‐blue detection. Anal Chem. 2018;90:8478–8486.
Khan WA, Arain MB, Bibi H, Tuzen M, Shah N, Zada A. Selective electromembrane extraction and sensitive colorimetric detection of copper(II). Z Phys Chem. 2020;10:1761–1777.
de Souza DM, de Moura Messias PJ, da Silva Santos I, Ramalho ED, Ferrari Júnior E, de Oliveira Morais PA. Scott test associated with multivariate image analysis: A more selective alternative for cocaine research in forensic laboratories. Forensic Sci Int. 2022;335:1–11.
Chevallier S, Bertrand D, Kohler A, Courcoux P. Application of PLS‐DA in multivariate image analysis. J Chemom. 2006;20(5):221–229.
Reaser BC, Wright BW, Synovec RE. Using receiver operating characteristic curves to optimize discovery‐based software with comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry. Anal Chem. 2017;89:3606–3612.
Viana JS, de Freitas MC, Botelho BG, Orlando RM. Large‐volume electric field‐assisted multiphase extraction of malachite green from water samples: A multisample device and method validation. Talanta. 2021;222:1–8.
He H, Garcia EA. Learning from imbalanced data. IEEE Trans Knowl Data Eng. 2009;21:1263–1284.
Wang H–Y, Combination approach of SMOTE and biased‐SVM for imbalanced datasets. In: Proceedings of the International Joint Conference on Neural Networks, IJCNN, part of the IEEE World Congress on Computational Intelligence, WCCI, Hong Kong, China: IEEE; 2008. p.228–231.
Botelho BG, Reis N, Oliveira LS, Sena MM. Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid‐infrared spectroscopy and PLS‐DA. Food Chem. 2015;181:31–37.
López MI, Callao MP, Ruisánchez I. A tutorial on the validation of qualitative methods: From the univariate to the multivariate approach. Anal Chim Acta. 2015;891:62–72.
Adams J, Giam CS. Localized adsorbate‐adsorbent interactions on florisil. J Chromatogr A. 1984;285:81–89.
Seip KF, Faizi M, Vergel C, Gjelstad A, Pedersen‐Bjergaard S. Stability and efficiency of supported liquid membranes in electromembrane extraction—a link to solvent properties. Anal Bioanal Chem. 2014;406:2151–2161.