Foldamers controlled by functional triamino acids: structural investigation of α/γ-hybrid oligopeptides

. 2024 May 25 ; 7 (1) : 114. [epub] 20240525

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38796536

Grantová podpora
RVO: 61388963 Academy of Sciences of the Czech Republic | Ústav Organické Chemie a Biochemie, Akademie Věd České Republiky (Institute of Organic Chemistry and Biochemistry, CAS)
RVO: 61388963 Academy of Sciences of the Czech Republic | Ústav Organické Chemie a Biochemie, Akademie Věd České Republiky (Institute of Organic Chemistry and Biochemistry, CAS)
No.CZ.02.1.01/0.0/0.0/16_019/0000729 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)

Odkazy

PubMed 38796536
PubMed Central PMC11128005
DOI 10.1038/s42004-024-01201-7
PII: 10.1038/s42004-024-01201-7
Knihovny.cz E-zdroje

Peptide-like foldamers controlled by normal amide backbone hydrogen bonding have been extensively studied, and their folding patterns largely rely on configurational and conformational constraints induced by the steric properties of backbone substituents at appropriate positions. In contrast, opportunities to influence peptide secondary structure by functional groups forming individual hydrogen bond networks have not received much attention. Here, peptide-like foldamers consisting of alternating α,β,γ-triamino acids 3-amino-4-(aminomethyl)-2-methylpyrrolidine-3-carboxylate (AAMP) and natural amino acids glycine and alanine are reported, which were obtained by solution phase peptide synthesis. They form ordered secondary structures, which are dominated by a three-dimensional bridged triazaspiranoid-like hydrogen bond network involving the non-backbone amino groups, the backbone amide hydrogen bonds, and the relative configuration of the α,β,γ-triamino and α-amino acid building blocks. This additional stabilization leads to folding in both nonpolar organic as well as in aqueous environments. The three-dimensional arrangement of the individual foldamers is supported by X-ray crystallography, NMR spectroscopy, chiroptical methods, and molecular dynamics simulations.

Zobrazit více v PubMed

Gellman SH. Foldamers: a manifesto. Acc. Chem. Res. 1998;31:173–180. doi: 10.1021/ar960298r. DOI

Hill DJ, Mio MJ, Prince RB, Hughes TS, Moore JS. A field guide to foldamers. Chem. Rev. 2001;101:3893–4012. doi: 10.1021/cr990120t. PubMed DOI

Goodman CM, Choi S, Shandler S, DeGrado WF. Foldamers as versatile frameworks for the design and evolution of function. Nat. Chem. Biol. 2007;3:252–262. doi: 10.1038/nchembio876. PubMed DOI PMC

Yashima E, Maeda K, Iida H, Furusho Y, Nagai K. Helical polymers: synthesis, structures, and functions. Chem. Rev. 2009;109:6102–6211. doi: 10.1021/cr900162q. PubMed DOI

Guichard G, Huc I. Synthetic foldamers. Chem. Commun. 2011;47:5933–5941. doi: 10.1039/c1cc11137j. PubMed DOI

Rinaldi S. The diverse world of foldamers: endless possibilities of self-assembly. Molecules. 2020;25:3276. doi: 10.3390/molecules25143276. PubMed DOI PMC

Martinek TA, Fülöp F. Peptidic foldamers: ramping up diversity. Chem. Soc. Rev. 2012;41:687–702. doi: 10.1039/C1CS15097A. PubMed DOI

Checco JW, Gellman SH. Targeting recognition surfaces on natural proteins with peptidic foldamers. Curr. Opin. Struct. Biol. 2016;39:96–105. doi: 10.1016/j.sbi.2016.06.014. PubMed DOI PMC

Yoo SH, Lee H-S. Foldectures: 3D molecular architectures from self-assembly of peptide foldamers. Acc. Chem. Res. 2017;50:832–841. doi: 10.1021/acs.accounts.6b00545. PubMed DOI

Seebach D. A journey from the pool of chiral synthetic building blocks to cell-penetrating peptides, to a novel type of enzyme – and back. CHIMIA. 2013;67:844–850. doi: 10.2533/chimia.2013.844. PubMed DOI

Gopalakrishnan R, Frolov AI, Knerr L, Drury WJ, Valeur E. Therapeutic potential of foldamers: from chemical biology tools to drug candidates? J. Med. Chem. 2016;59:9599–9621. doi: 10.1021/acs.jmedchem.6b00376. PubMed DOI

Oba M. Cell-penetrating peptide foldamers: drug-delivery tools. ChemBioChem. 2019;20:2041–2045. doi: 10.1002/cbic.201900204. PubMed DOI

Yokoo H, Hirano M, Misawa T, Demizu Y. Helical antimicrobial peptide foldamers containing non-proteinogenic amino acids. ChemMedChem. 2021;16:1226–1233. doi: 10.1002/cmdc.202000940. PubMed DOI

Girvin ZC, Gellman SH. Foldamer catalysis. J. Am. Chem. Soc. 2020;142:17211–17223. doi: 10.1021/jacs.0c07347. PubMed DOI

Karle IL, Balaram P. Structural characteristics of .alpha.-helical peptide molecules containing Aib residues. Biochemistry. 1990;29:6747–6756. doi: 10.1021/bi00481a001. PubMed DOI

Yamaguchi H, et al. Effect of α,α-dialkyl amino acids on the protease resistance of peptides. Biosci. Biotechnol. Biochem. 2003;67:2269–2272. doi: 10.1271/bbb.67.2269. PubMed DOI

Crisma M, Formaggio F, Moretto A, Toniolo C. Peptide helices based on α-amino acids. Biopolymers. 2006;84:3–12. doi: 10.1002/bip.20357. PubMed DOI

Cheng RP, Gellman SH, DeGrado WF. β-Peptides: from structure to function. Chem. Rev. 2001;101:3219–3232. doi: 10.1021/cr000045i. PubMed DOI

Seebach D, Gardiner J. β-peptidic peptidomimetics. Acc. Chem. Res. 2008;41:1366–1375. doi: 10.1021/ar700263g. PubMed DOI

Heck T, Geueke B, Kohler H-PE. Bacterial β-aminopeptidases: structural insights and applications for biocatalysis. Chem. Biodivers. 2012;9:2388–2409. doi: 10.1002/cbdv.201200305. PubMed DOI

Wang PSP, Schepartz A. β-peptide bundles: design. build. analyze. biosynthesize. Chem. Commun. 2016;52:7420–7432. doi: 10.1039/C6CC01546H. PubMed DOI

Kiss L, Mándity IM, Fülöp F. Highly functionalized cyclic β-amino acid moieties as promising scaffolds in peptide research and drug design. Amino Acids. 2017;49:1441–1455. doi: 10.1007/s00726-017-2439-9. PubMed DOI

Hanessian S, Luo X, Schaum R, Michnick S. Design of secondary structures in unnatural peptides: stable helical γ-tetra-, hexa-, and octapeptides and consequences of α-substitution. J. Am. Chem. Soc. 1998;120:8569–8570. doi: 10.1021/ja9814671. DOI

Baldauf C, Günther R, Hofmann H-J. Helix formation and folding in γ-peptides and their vinylogues. Helv. Chim. Acta. 2003;86:2573–2588. doi: 10.1002/hlca.200390208. DOI

Seebach D, Beck AK, Bierbaum DJ. The world of beta- and gamma-peptides comprised of homologated proteinogenic amino acids and other components. Chem. Biodivers. 2004;1:1111–1239. doi: 10.1002/cbdv.200490087. PubMed DOI

Seebach D, Hook DF, Glättli A. Helices and other secondary structures of β- and γ-peptides. Biopolymers. 2006;84:23–37. doi: 10.1002/bip.20391. PubMed DOI

Bouillère F, Thétiot-Laurent S, Kouklovsky C, Alezra V. Foldamers containing γ-amino acid residues or their analogues: structural features and applications. Amino Acids. 2011;41:687–707. doi: 10.1007/s00726-011-0893-3. PubMed DOI

Guo L, et al. Characteristic structural parameters for the γ-peptide 14-helix: importance of subunit preorganization. Angew. Chem. Int. Ed. 2011;50:5843–5846. doi: 10.1002/anie.201101301. PubMed DOI PMC

Maillard LT, Legrand B. α,β-unsaturated γ-peptide foldamers. ChemPlusChem. 2021;86:629–645. doi: 10.1002/cplu.202100045. PubMed DOI

Baldauf C, Günther R, Hofmann H-J. Helix formation in α,γ- and β,γ-hybrid peptides:  theoretical insights into mimicry of α- and β-peptides. J. Org. Chem. 2006;71:1200–1208. doi: 10.1021/jo052340e. PubMed DOI

Guo L, et al. Stereospecific synthesis of conformationally constrained γ-amino acids: new foldamer building blocks that support helical secondary structure. J. Am. Chem. Soc. 2009;131:16018–16020. doi: 10.1021/ja907233q. PubMed DOI PMC

Guo L, et al. Helix formation in preorganized β/γ-peptide foldamers: hydrogen-bond analogy to the α-helix without α-amino acid residues. J. Am. Chem. Soc. 2010;132:7868–7869. doi: 10.1021/ja103233a. PubMed DOI PMC

Sawada T, Gellman SH. Structural mimicry of the α-helix in aqueous solution with an isoatomic α/β/γ-peptide backbone. J. Am. Chem. Soc. 2011;133:7336–7339. doi: 10.1021/ja202175a. PubMed DOI PMC

Shin Y-H, Mortenson DE, Satyshur KA, Forest KT, Gellman SH. Differential impact of β and γ residue preorganization on α/β/γ-peptide helix stability in water. J. Am. Chem. Soc. 2013;135:8149–8152. doi: 10.1021/ja403319q. PubMed DOI PMC

Giuliano MW, et al. A γ-amino acid that favors 12/10-helical secondary structure in α/γ-peptides. J. Am. Chem. Soc. 2014;136:15046–15053. doi: 10.1021/ja5076585. PubMed DOI

Wang S, et al. Overall shape constraint of alternating α/β-hybrid peptides containing bicyclic β-proline. Org. Lett. 2019;21:7813–7817. doi: 10.1021/acs.orglett.9b02799. PubMed DOI

Cabrele C, Martinek TA, Reiser O, Berlicki Ł. Peptides containing β-amino acid patterns: challenges and successes in medicinal chemistry. J. Med. Chem. 2014;57:9718–9739. doi: 10.1021/jm5010896. PubMed DOI

Qureshi, M. K. N. & Smith, M. D. Parallel sheet structure in cyclopropane γ-peptides stabilized by C–H⋯O hydrogen bonds. PubMed

Kothari, A., Qureshi, M. K. N., Beck, E. M. & Smith, M. D. Bend-ribbon forming γ-peptides. PubMed

Fisher BF, Guo L, Dolinar BS, Guzei IA, Gellman SH. Heterogeneous H-bonding in a foldamer helix. J. Am. Chem. Soc. 2015;137:6484–6487. doi: 10.1021/jacs.5b03382. PubMed DOI PMC

Fisher BF, Gellman SH. Impact of γ-amino acid residue preorganization on α/γ-peptide foldamer helicity in aqueous solution. J. Am. Chem. Soc. 2016;138:10766–10769. doi: 10.1021/jacs.6b06177. PubMed DOI PMC

Woll MG, et al. Parallel sheet secondary structure in γ-peptides. J. Am. Chem. Soc. 2001;123:11077–11078. doi: 10.1021/ja011719p. PubMed DOI

Fanelli R, et al. Organocatalytic access to a cis-cyclopentyl-γ-amino acid: an intriguing model of selectivity and formation of a stable 10/12-helix from the corresponding γ/α-peptide. J. Am. Chem. Soc. 2020;142:1382–1393. doi: 10.1021/jacs.9b10861. PubMed DOI

Giuliano MW, et al. Evaluation of a cyclopentane-based γ-amino acid for the ability to promote α/γ-peptide secondary structure. J. Org. Chem. 2013;78:12351–12361. doi: 10.1021/jo401501g. PubMed DOI PMC

Song B, Kibler P, Malde A, Kodukula K, Galande AK. Design of short linear peptides that show hydrogen bonding constraints in water. J. Am. Chem. Soc. 2010;132:4508–4509. doi: 10.1021/ja905341p. PubMed DOI

Song B, Bomar MG, Kibler P, Kodukula K, Galande AK. The serine-proline turn: a novel hydrogen-bonded template for designing peptidomimetics. Org. Lett. 2012;14:732–735. doi: 10.1021/ol203272k. PubMed DOI

Motorina IA, et al. Phenylisoserine: a versatile amino acid for the construction of novel β-peptide structures. J. Am. Chem. Soc. 2001;123:8–17. doi: 10.1021/ja002700+. PubMed DOI

Sharma GVM, Reddy KS, Basha SJ, Reddy KR, Sarma AVS. Design and synthesis of trans-3-aminopyran-2-carboxylic acid (APyC) and α/β-peptides with 9/11-helix. Org. Biomol. Chem. 2011;9:8102–8111. doi: 10.1039/c1ob06279d. PubMed DOI

Sharma GVM, Yadav TA, Choudhary M, Kunwar AC. Design of β-amino acid with backbone–side chain interactions: stabilization of 14/15-helix in α/β-peptides. J. Org. Chem. 2012;77:6834–6848. doi: 10.1021/jo300865d. PubMed DOI

Nagel YA, Raschle PS, Wennemers H. Effect of preorganized charge-display on the cell-penetrating properties of cationic peptides. Angew. Chem. Int. Ed. 2017;56:122–126. doi: 10.1002/anie.201607649. PubMed DOI

Farrera-Sinfreu J, et al. A new class of foldamers based on cis-γ-amino-l-proline. J. Am. Chem. Soc. 2004;126:6048–6057. doi: 10.1021/ja0398621. PubMed DOI

Wang X, Espinosa JF, Gellman SH. 12-helix formation in aqueous solution with short β-peptides containing pyrrolidine-based residues. J. Am. Chem. Soc. 2000;122:4821–4822. doi: 10.1021/ja000093k. DOI

Choi S, Shim J, Kang P, Choi SH. Effect of a cis-4-aminopiperidine-3-carboxylic acid (cis-APiC) residue on mixed-helical folding of unnatural peptides. Org. Biomol. Chem. 2022;20:613–618. doi: 10.1039/D1OB02223G. PubMed DOI

Bu, Z. & Callaway, D. J. E. in PubMed

Kamerlin SCL, Warshel A. At the dawn of the 21st century: Is dynamics the missing link for understanding enzyme catalysis? Proteins: Struct., Funct., Bioinform. 2010;78:1339–1375. doi: 10.1002/prot.22654. PubMed DOI PMC

Wright PE, Dyson HJ. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 2015;16:18–29. doi: 10.1038/nrm3920. PubMed DOI PMC

Kapras V, Pohl R, Císařová I, Jahn U. Asymmetric domino aza-michael addition/[3 + 2] cycloaddition reactions as a versatile approach to α,β,γ-triamino acid derivatives. Org. Lett. 2014;16:1088–1091. doi: 10.1021/ol403660w. PubMed DOI

Just, D. et al. Lithium chloride catalyzed asymmetric domino aza-michael addition/[3 + 2] cycloaddition reactions for the synthesis of spiro- and bicyclic α,β,γ-triamino acid derivatives.

Saraogi I, Hamilton AD. Recent advances in the development of aryl-based foldamers. Chem. Soc. Rev. 2009;38:1726–1743. doi: 10.1039/b819597h. PubMed DOI

Salaün A, Potel M, Roisnel T, Gall P, Le Grel P. Crystal structures of aza-β3-peptides, a new class of foldamers relying on a framework of hydrazinoturns. J. Org. Chem. 2005;70:6499–6502. doi: 10.1021/jo050938g. PubMed DOI

Le Grel P, Salaün A, Potel M, Le Grel B, Lassagne F. Aza-β3-cyclohexapeptides: pseudopeptidic macrocycles with interesting conformational and configurational properties slow pyramidal nitrogen inversion in 24-membered rings! J. Org. Chem. 2006;71:5638–5645. doi: 10.1021/jo0608467. PubMed DOI

Imani Z, Guillot R, Declerck V, Aitken DJ. Local versus global control of helical folding in β-peptide segments using hydrazino turns. J. Org. Chem. 2020;85:6165–6171. doi: 10.1021/acs.joc.0c00305. PubMed DOI

Baruah K, et al. Stabilization of azapeptides by Namide···H–Namide hydrogen bonds. Org. Lett. 2021;23:4949–4954. doi: 10.1021/acs.orglett.1c01111. PubMed DOI

Farkas V, Nagy A, Menyhárd DK, Perczel A. Assignment of vibrational circular dichroism cross-referenced electronic circular dichroism spectra of flexible foldamer building blocks: towards assigning pure chiroptical properties of foldamers. Chem. Eur. J. 2019;25:14890–14900. doi: 10.1002/chem.201903023. PubMed DOI PMC

Ragab SS, et al. Cooperative 5- and 10-membered ring interactions in the 10-helix folding of oxetin homo-oligomers. Chem. Commun. 2018;54:1968–1971. doi: 10.1039/C7CC09964A. PubMed DOI

Sarnowski MP, Kang CW, Elbatrawi YM, Wojtas L, Del Valle JR. Peptide N-amination supports β-sheet conformations. Angew. Chem. Int. Ed. 2017;56:2083–2086. doi: 10.1002/anie.201609395. PubMed DOI

Rathman BM, Rowe JL, Del Valle JR. Synthesis and conformation of backbone N-aminated peptides. Methods Enzymol. 2021;656:271–294. doi: 10.1016/bs.mie.2021.04.013. PubMed DOI

Berova, N., Polavarapu, P. L., Nakanishi, K. & Woody, R. W. (eds.). in

Glättli A, Daura X, Seebach D, van Gunsteren WF. Can one derive the conformational preference of a β-peptide from its CD spectrum? J. Am. Chem. Soc. 2002;124:12972–12978. doi: 10.1021/ja020758d. PubMed DOI

Polavarapu PL. Why is it important to simultaneously use more than one chiroptical spectroscopic method for determining the structures of chiral molecules? Chirality. 2008;20:664–672. doi: 10.1002/chir.20475. PubMed DOI

Mándi A, Kurtán T. Applications of OR/ECD/VCD to the structure elucidation of natural products. Nat. Prod. Rep. 2019;36:889–918. doi: 10.1039/C9NP00002J. PubMed DOI

He Y, Wang B, Dukor RK, Nafie LA. Determination of absolute configuration of chiral molecules using vibrational optical activity: a review. Appl. Spectrosc. 2011;65:699–723. doi: 10.1366/11-06321. PubMed DOI

Keiderling TA. Protein and peptide secondary structure and conformational determination with vibrational circular dichroism. Curr. Opin. Chem. Biol. 2002;6:682–688. doi: 10.1016/S1367-5931(02)00369-1. PubMed DOI

Taniguchi T, Hongen T, Monde K. Studying the stereostructures of biomolecules and their analogs by vibrational circular dichroism. Polym. J. 2016;48:925–931. doi: 10.1038/pj.2016.61. DOI

Kapitán J, Baumruk V, Kopecký V, Bouř P. Conformational flexibility of l-alanine zwitterion determines shapes of raman and raman optical activity spectral bands. J. Phys. Chem. A. 2006;110:4689–4696. doi: 10.1021/jp060260o. PubMed DOI

Lal BB, Nafie LA. Vibrational circular dichroism in amino acids and peptides. 7. Amide stretching vibrations in polypeptides. Biopolymers. 1982;21:2161–2183. doi: 10.1002/bip.360211106. PubMed DOI

Grison CM, Robin S, Aitken DJ. 13-Helix folding of a β/γ-peptide manifold designed from a “minimal-constraint” blueprint. Chem. Commun. 2016;52:7802–7805. doi: 10.1039/C6CC02142E. PubMed DOI

Appella DH, et al. Residue-based control of helix shape in β-peptide oligomers. Nature. 1997;387:381–384. doi: 10.1038/387381a0. PubMed DOI

Lee H-S, Syud FA, Wang X, Gellman SH. Diversity in short β-peptide 12-helices: high-resolution structural analysis in aqueous solution of a hexamer containing sulfonylated pyrrolidine residues. J. Am. Chem. Soc. 2001;123:7721–7722. doi: 10.1021/ja010734r. PubMed DOI

Roccatano D, Colombo G, Fioroni M, Mark AE. Mechanism by which 2,2,2-trifluoroethanol/water mixtures stabilize secondary-structure formation in peptides: a molecular dynamics study. Proc. Natl Acad. Sci. 2002;99:12179–12184. doi: 10.1073/pnas.182199699. PubMed DOI PMC

Buck M. Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins. Q. Rev. Biophys. 1998;31:297–355. doi: 10.1017/S003358359800345X. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...