Foldamers controlled by functional triamino acids: structural investigation of α/γ-hybrid oligopeptides
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO: 61388963
Academy of Sciences of the Czech Republic | Ústav Organické Chemie a Biochemie, Akademie Věd České Republiky (Institute of Organic Chemistry and Biochemistry, CAS)
RVO: 61388963
Academy of Sciences of the Czech Republic | Ústav Organické Chemie a Biochemie, Akademie Věd České Republiky (Institute of Organic Chemistry and Biochemistry, CAS)
No.CZ.02.1.01/0.0/0.0/16_019/0000729
EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
PubMed
38796536
PubMed Central
PMC11128005
DOI
10.1038/s42004-024-01201-7
PII: 10.1038/s42004-024-01201-7
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Peptide-like foldamers controlled by normal amide backbone hydrogen bonding have been extensively studied, and their folding patterns largely rely on configurational and conformational constraints induced by the steric properties of backbone substituents at appropriate positions. In contrast, opportunities to influence peptide secondary structure by functional groups forming individual hydrogen bond networks have not received much attention. Here, peptide-like foldamers consisting of alternating α,β,γ-triamino acids 3-amino-4-(aminomethyl)-2-methylpyrrolidine-3-carboxylate (AAMP) and natural amino acids glycine and alanine are reported, which were obtained by solution phase peptide synthesis. They form ordered secondary structures, which are dominated by a three-dimensional bridged triazaspiranoid-like hydrogen bond network involving the non-backbone amino groups, the backbone amide hydrogen bonds, and the relative configuration of the α,β,γ-triamino and α-amino acid building blocks. This additional stabilization leads to folding in both nonpolar organic as well as in aqueous environments. The three-dimensional arrangement of the individual foldamers is supported by X-ray crystallography, NMR spectroscopy, chiroptical methods, and molecular dynamics simulations.
Zobrazit více v PubMed
Gellman SH. Foldamers: a manifesto. Acc. Chem. Res. 1998;31:173–180. doi: 10.1021/ar960298r. DOI
Hill DJ, Mio MJ, Prince RB, Hughes TS, Moore JS. A field guide to foldamers. Chem. Rev. 2001;101:3893–4012. doi: 10.1021/cr990120t. PubMed DOI
Goodman CM, Choi S, Shandler S, DeGrado WF. Foldamers as versatile frameworks for the design and evolution of function. Nat. Chem. Biol. 2007;3:252–262. doi: 10.1038/nchembio876. PubMed DOI PMC
Yashima E, Maeda K, Iida H, Furusho Y, Nagai K. Helical polymers: synthesis, structures, and functions. Chem. Rev. 2009;109:6102–6211. doi: 10.1021/cr900162q. PubMed DOI
Guichard G, Huc I. Synthetic foldamers. Chem. Commun. 2011;47:5933–5941. doi: 10.1039/c1cc11137j. PubMed DOI
Rinaldi S. The diverse world of foldamers: endless possibilities of self-assembly. Molecules. 2020;25:3276. doi: 10.3390/molecules25143276. PubMed DOI PMC
Martinek TA, Fülöp F. Peptidic foldamers: ramping up diversity. Chem. Soc. Rev. 2012;41:687–702. doi: 10.1039/C1CS15097A. PubMed DOI
Checco JW, Gellman SH. Targeting recognition surfaces on natural proteins with peptidic foldamers. Curr. Opin. Struct. Biol. 2016;39:96–105. doi: 10.1016/j.sbi.2016.06.014. PubMed DOI PMC
Yoo SH, Lee H-S. Foldectures: 3D molecular architectures from self-assembly of peptide foldamers. Acc. Chem. Res. 2017;50:832–841. doi: 10.1021/acs.accounts.6b00545. PubMed DOI
Seebach D. A journey from the pool of chiral synthetic building blocks to cell-penetrating peptides, to a novel type of enzyme – and back. CHIMIA. 2013;67:844–850. doi: 10.2533/chimia.2013.844. PubMed DOI
Gopalakrishnan R, Frolov AI, Knerr L, Drury WJ, Valeur E. Therapeutic potential of foldamers: from chemical biology tools to drug candidates? J. Med. Chem. 2016;59:9599–9621. doi: 10.1021/acs.jmedchem.6b00376. PubMed DOI
Oba M. Cell-penetrating peptide foldamers: drug-delivery tools. ChemBioChem. 2019;20:2041–2045. doi: 10.1002/cbic.201900204. PubMed DOI
Yokoo H, Hirano M, Misawa T, Demizu Y. Helical antimicrobial peptide foldamers containing non-proteinogenic amino acids. ChemMedChem. 2021;16:1226–1233. doi: 10.1002/cmdc.202000940. PubMed DOI
Girvin ZC, Gellman SH. Foldamer catalysis. J. Am. Chem. Soc. 2020;142:17211–17223. doi: 10.1021/jacs.0c07347. PubMed DOI
Karle IL, Balaram P. Structural characteristics of .alpha.-helical peptide molecules containing Aib residues. Biochemistry. 1990;29:6747–6756. doi: 10.1021/bi00481a001. PubMed DOI
Yamaguchi H, et al. Effect of α,α-dialkyl amino acids on the protease resistance of peptides. Biosci. Biotechnol. Biochem. 2003;67:2269–2272. doi: 10.1271/bbb.67.2269. PubMed DOI
Crisma M, Formaggio F, Moretto A, Toniolo C. Peptide helices based on α-amino acids. Biopolymers. 2006;84:3–12. doi: 10.1002/bip.20357. PubMed DOI
Cheng RP, Gellman SH, DeGrado WF. β-Peptides: from structure to function. Chem. Rev. 2001;101:3219–3232. doi: 10.1021/cr000045i. PubMed DOI
Seebach D, Gardiner J. β-peptidic peptidomimetics. Acc. Chem. Res. 2008;41:1366–1375. doi: 10.1021/ar700263g. PubMed DOI
Heck T, Geueke B, Kohler H-PE. Bacterial β-aminopeptidases: structural insights and applications for biocatalysis. Chem. Biodivers. 2012;9:2388–2409. doi: 10.1002/cbdv.201200305. PubMed DOI
Wang PSP, Schepartz A. β-peptide bundles: design. build. analyze. biosynthesize. Chem. Commun. 2016;52:7420–7432. doi: 10.1039/C6CC01546H. PubMed DOI
Kiss L, Mándity IM, Fülöp F. Highly functionalized cyclic β-amino acid moieties as promising scaffolds in peptide research and drug design. Amino Acids. 2017;49:1441–1455. doi: 10.1007/s00726-017-2439-9. PubMed DOI
Hanessian S, Luo X, Schaum R, Michnick S. Design of secondary structures in unnatural peptides: stable helical γ-tetra-, hexa-, and octapeptides and consequences of α-substitution. J. Am. Chem. Soc. 1998;120:8569–8570. doi: 10.1021/ja9814671. DOI
Baldauf C, Günther R, Hofmann H-J. Helix formation and folding in γ-peptides and their vinylogues. Helv. Chim. Acta. 2003;86:2573–2588. doi: 10.1002/hlca.200390208. DOI
Seebach D, Beck AK, Bierbaum DJ. The world of beta- and gamma-peptides comprised of homologated proteinogenic amino acids and other components. Chem. Biodivers. 2004;1:1111–1239. doi: 10.1002/cbdv.200490087. PubMed DOI
Seebach D, Hook DF, Glättli A. Helices and other secondary structures of β- and γ-peptides. Biopolymers. 2006;84:23–37. doi: 10.1002/bip.20391. PubMed DOI
Bouillère F, Thétiot-Laurent S, Kouklovsky C, Alezra V. Foldamers containing γ-amino acid residues or their analogues: structural features and applications. Amino Acids. 2011;41:687–707. doi: 10.1007/s00726-011-0893-3. PubMed DOI
Guo L, et al. Characteristic structural parameters for the γ-peptide 14-helix: importance of subunit preorganization. Angew. Chem. Int. Ed. 2011;50:5843–5846. doi: 10.1002/anie.201101301. PubMed DOI PMC
Maillard LT, Legrand B. α,β-unsaturated γ-peptide foldamers. ChemPlusChem. 2021;86:629–645. doi: 10.1002/cplu.202100045. PubMed DOI
Baldauf C, Günther R, Hofmann H-J. Helix formation in α,γ- and β,γ-hybrid peptides: theoretical insights into mimicry of α- and β-peptides. J. Org. Chem. 2006;71:1200–1208. doi: 10.1021/jo052340e. PubMed DOI
Guo L, et al. Stereospecific synthesis of conformationally constrained γ-amino acids: new foldamer building blocks that support helical secondary structure. J. Am. Chem. Soc. 2009;131:16018–16020. doi: 10.1021/ja907233q. PubMed DOI PMC
Guo L, et al. Helix formation in preorganized β/γ-peptide foldamers: hydrogen-bond analogy to the α-helix without α-amino acid residues. J. Am. Chem. Soc. 2010;132:7868–7869. doi: 10.1021/ja103233a. PubMed DOI PMC
Sawada T, Gellman SH. Structural mimicry of the α-helix in aqueous solution with an isoatomic α/β/γ-peptide backbone. J. Am. Chem. Soc. 2011;133:7336–7339. doi: 10.1021/ja202175a. PubMed DOI PMC
Shin Y-H, Mortenson DE, Satyshur KA, Forest KT, Gellman SH. Differential impact of β and γ residue preorganization on α/β/γ-peptide helix stability in water. J. Am. Chem. Soc. 2013;135:8149–8152. doi: 10.1021/ja403319q. PubMed DOI PMC
Giuliano MW, et al. A γ-amino acid that favors 12/10-helical secondary structure in α/γ-peptides. J. Am. Chem. Soc. 2014;136:15046–15053. doi: 10.1021/ja5076585. PubMed DOI
Wang S, et al. Overall shape constraint of alternating α/β-hybrid peptides containing bicyclic β-proline. Org. Lett. 2019;21:7813–7817. doi: 10.1021/acs.orglett.9b02799. PubMed DOI
Cabrele C, Martinek TA, Reiser O, Berlicki Ł. Peptides containing β-amino acid patterns: challenges and successes in medicinal chemistry. J. Med. Chem. 2014;57:9718–9739. doi: 10.1021/jm5010896. PubMed DOI
Qureshi, M. K. N. & Smith, M. D. Parallel sheet structure in cyclopropane γ-peptides stabilized by C–H⋯O hydrogen bonds. PubMed
Kothari, A., Qureshi, M. K. N., Beck, E. M. & Smith, M. D. Bend-ribbon forming γ-peptides. PubMed
Fisher BF, Guo L, Dolinar BS, Guzei IA, Gellman SH. Heterogeneous H-bonding in a foldamer helix. J. Am. Chem. Soc. 2015;137:6484–6487. doi: 10.1021/jacs.5b03382. PubMed DOI PMC
Fisher BF, Gellman SH. Impact of γ-amino acid residue preorganization on α/γ-peptide foldamer helicity in aqueous solution. J. Am. Chem. Soc. 2016;138:10766–10769. doi: 10.1021/jacs.6b06177. PubMed DOI PMC
Woll MG, et al. Parallel sheet secondary structure in γ-peptides. J. Am. Chem. Soc. 2001;123:11077–11078. doi: 10.1021/ja011719p. PubMed DOI
Fanelli R, et al. Organocatalytic access to a cis-cyclopentyl-γ-amino acid: an intriguing model of selectivity and formation of a stable 10/12-helix from the corresponding γ/α-peptide. J. Am. Chem. Soc. 2020;142:1382–1393. doi: 10.1021/jacs.9b10861. PubMed DOI
Giuliano MW, et al. Evaluation of a cyclopentane-based γ-amino acid for the ability to promote α/γ-peptide secondary structure. J. Org. Chem. 2013;78:12351–12361. doi: 10.1021/jo401501g. PubMed DOI PMC
Song B, Kibler P, Malde A, Kodukula K, Galande AK. Design of short linear peptides that show hydrogen bonding constraints in water. J. Am. Chem. Soc. 2010;132:4508–4509. doi: 10.1021/ja905341p. PubMed DOI
Song B, Bomar MG, Kibler P, Kodukula K, Galande AK. The serine-proline turn: a novel hydrogen-bonded template for designing peptidomimetics. Org. Lett. 2012;14:732–735. doi: 10.1021/ol203272k. PubMed DOI
Motorina IA, et al. Phenylisoserine: a versatile amino acid for the construction of novel β-peptide structures. J. Am. Chem. Soc. 2001;123:8–17. doi: 10.1021/ja002700+. PubMed DOI
Sharma GVM, Reddy KS, Basha SJ, Reddy KR, Sarma AVS. Design and synthesis of trans-3-aminopyran-2-carboxylic acid (APyC) and α/β-peptides with 9/11-helix. Org. Biomol. Chem. 2011;9:8102–8111. doi: 10.1039/c1ob06279d. PubMed DOI
Sharma GVM, Yadav TA, Choudhary M, Kunwar AC. Design of β-amino acid with backbone–side chain interactions: stabilization of 14/15-helix in α/β-peptides. J. Org. Chem. 2012;77:6834–6848. doi: 10.1021/jo300865d. PubMed DOI
Nagel YA, Raschle PS, Wennemers H. Effect of preorganized charge-display on the cell-penetrating properties of cationic peptides. Angew. Chem. Int. Ed. 2017;56:122–126. doi: 10.1002/anie.201607649. PubMed DOI
Farrera-Sinfreu J, et al. A new class of foldamers based on cis-γ-amino-l-proline. J. Am. Chem. Soc. 2004;126:6048–6057. doi: 10.1021/ja0398621. PubMed DOI
Wang X, Espinosa JF, Gellman SH. 12-helix formation in aqueous solution with short β-peptides containing pyrrolidine-based residues. J. Am. Chem. Soc. 2000;122:4821–4822. doi: 10.1021/ja000093k. DOI
Choi S, Shim J, Kang P, Choi SH. Effect of a cis-4-aminopiperidine-3-carboxylic acid (cis-APiC) residue on mixed-helical folding of unnatural peptides. Org. Biomol. Chem. 2022;20:613–618. doi: 10.1039/D1OB02223G. PubMed DOI
Bu, Z. & Callaway, D. J. E. in PubMed
Kamerlin SCL, Warshel A. At the dawn of the 21st century: Is dynamics the missing link for understanding enzyme catalysis? Proteins: Struct., Funct., Bioinform. 2010;78:1339–1375. doi: 10.1002/prot.22654. PubMed DOI PMC
Wright PE, Dyson HJ. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 2015;16:18–29. doi: 10.1038/nrm3920. PubMed DOI PMC
Kapras V, Pohl R, Císařová I, Jahn U. Asymmetric domino aza-michael addition/[3 + 2] cycloaddition reactions as a versatile approach to α,β,γ-triamino acid derivatives. Org. Lett. 2014;16:1088–1091. doi: 10.1021/ol403660w. PubMed DOI
Just, D. et al. Lithium chloride catalyzed asymmetric domino aza-michael addition/[3 + 2] cycloaddition reactions for the synthesis of spiro- and bicyclic α,β,γ-triamino acid derivatives.
Saraogi I, Hamilton AD. Recent advances in the development of aryl-based foldamers. Chem. Soc. Rev. 2009;38:1726–1743. doi: 10.1039/b819597h. PubMed DOI
Salaün A, Potel M, Roisnel T, Gall P, Le Grel P. Crystal structures of aza-β3-peptides, a new class of foldamers relying on a framework of hydrazinoturns. J. Org. Chem. 2005;70:6499–6502. doi: 10.1021/jo050938g. PubMed DOI
Le Grel P, Salaün A, Potel M, Le Grel B, Lassagne F. Aza-β3-cyclohexapeptides: pseudopeptidic macrocycles with interesting conformational and configurational properties slow pyramidal nitrogen inversion in 24-membered rings! J. Org. Chem. 2006;71:5638–5645. doi: 10.1021/jo0608467. PubMed DOI
Imani Z, Guillot R, Declerck V, Aitken DJ. Local versus global control of helical folding in β-peptide segments using hydrazino turns. J. Org. Chem. 2020;85:6165–6171. doi: 10.1021/acs.joc.0c00305. PubMed DOI
Baruah K, et al. Stabilization of azapeptides by Namide···H–Namide hydrogen bonds. Org. Lett. 2021;23:4949–4954. doi: 10.1021/acs.orglett.1c01111. PubMed DOI
Farkas V, Nagy A, Menyhárd DK, Perczel A. Assignment of vibrational circular dichroism cross-referenced electronic circular dichroism spectra of flexible foldamer building blocks: towards assigning pure chiroptical properties of foldamers. Chem. Eur. J. 2019;25:14890–14900. doi: 10.1002/chem.201903023. PubMed DOI PMC
Ragab SS, et al. Cooperative 5- and 10-membered ring interactions in the 10-helix folding of oxetin homo-oligomers. Chem. Commun. 2018;54:1968–1971. doi: 10.1039/C7CC09964A. PubMed DOI
Sarnowski MP, Kang CW, Elbatrawi YM, Wojtas L, Del Valle JR. Peptide N-amination supports β-sheet conformations. Angew. Chem. Int. Ed. 2017;56:2083–2086. doi: 10.1002/anie.201609395. PubMed DOI
Rathman BM, Rowe JL, Del Valle JR. Synthesis and conformation of backbone N-aminated peptides. Methods Enzymol. 2021;656:271–294. doi: 10.1016/bs.mie.2021.04.013. PubMed DOI
Berova, N., Polavarapu, P. L., Nakanishi, K. & Woody, R. W. (eds.). in
Glättli A, Daura X, Seebach D, van Gunsteren WF. Can one derive the conformational preference of a β-peptide from its CD spectrum? J. Am. Chem. Soc. 2002;124:12972–12978. doi: 10.1021/ja020758d. PubMed DOI
Polavarapu PL. Why is it important to simultaneously use more than one chiroptical spectroscopic method for determining the structures of chiral molecules? Chirality. 2008;20:664–672. doi: 10.1002/chir.20475. PubMed DOI
Mándi A, Kurtán T. Applications of OR/ECD/VCD to the structure elucidation of natural products. Nat. Prod. Rep. 2019;36:889–918. doi: 10.1039/C9NP00002J. PubMed DOI
He Y, Wang B, Dukor RK, Nafie LA. Determination of absolute configuration of chiral molecules using vibrational optical activity: a review. Appl. Spectrosc. 2011;65:699–723. doi: 10.1366/11-06321. PubMed DOI
Keiderling TA. Protein and peptide secondary structure and conformational determination with vibrational circular dichroism. Curr. Opin. Chem. Biol. 2002;6:682–688. doi: 10.1016/S1367-5931(02)00369-1. PubMed DOI
Taniguchi T, Hongen T, Monde K. Studying the stereostructures of biomolecules and their analogs by vibrational circular dichroism. Polym. J. 2016;48:925–931. doi: 10.1038/pj.2016.61. DOI
Kapitán J, Baumruk V, Kopecký V, Bouř P. Conformational flexibility of l-alanine zwitterion determines shapes of raman and raman optical activity spectral bands. J. Phys. Chem. A. 2006;110:4689–4696. doi: 10.1021/jp060260o. PubMed DOI
Lal BB, Nafie LA. Vibrational circular dichroism in amino acids and peptides. 7. Amide stretching vibrations in polypeptides. Biopolymers. 1982;21:2161–2183. doi: 10.1002/bip.360211106. PubMed DOI
Grison CM, Robin S, Aitken DJ. 13-Helix folding of a β/γ-peptide manifold designed from a “minimal-constraint” blueprint. Chem. Commun. 2016;52:7802–7805. doi: 10.1039/C6CC02142E. PubMed DOI
Appella DH, et al. Residue-based control of helix shape in β-peptide oligomers. Nature. 1997;387:381–384. doi: 10.1038/387381a0. PubMed DOI
Lee H-S, Syud FA, Wang X, Gellman SH. Diversity in short β-peptide 12-helices: high-resolution structural analysis in aqueous solution of a hexamer containing sulfonylated pyrrolidine residues. J. Am. Chem. Soc. 2001;123:7721–7722. doi: 10.1021/ja010734r. PubMed DOI
Roccatano D, Colombo G, Fioroni M, Mark AE. Mechanism by which 2,2,2-trifluoroethanol/water mixtures stabilize secondary-structure formation in peptides: a molecular dynamics study. Proc. Natl Acad. Sci. 2002;99:12179–12184. doi: 10.1073/pnas.182199699. PubMed DOI PMC
Buck M. Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins. Q. Rev. Biophys. 1998;31:297–355. doi: 10.1017/S003358359800345X. PubMed DOI