A unique human cord blood CD8+CD45RA+CD27+CD161+ T-cell subset identified by flow cytometric data analysis using Seurat

. 2024 Sep ; 173 (1) : 106-124. [epub] 20240526

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38798051

Grantová podpora
APP1104134 National Health and Medical Research Council
Norman Ernest Cummings Bequest

Advances in single-cell level analytical techniques, especially cytometric approaches, have led to profound innovation in biomedical research, particularly in the field of clinical immunology. This has resulted in an expansion of high-dimensional data, posing great challenges for comprehensive and unbiased analysis. Conventional manual analysis is thus becoming untenable to handle these challenges. Furthermore, most newly developed computational methods lack flexibility and interoperability, hampering their accessibility and usability. Here, we adapted Seurat, an R package originally developed for single-cell RNA sequencing (scRNA-seq) analysis, for high-dimensional flow cytometric data analysis. Based on a 20-marker antibody panel and analyses of T-cell profiles in both adult blood and cord blood (CB), we showcased the robust capacity of Seurat in flow cytometric data analysis, which was further validated by Spectre, another high-dimensional cytometric data analysis package, and conventional manual analysis. Importantly, we identified a unique CD8+ T-cell population defined as CD8+CD45RA+CD27+CD161+ T cell that was predominantly present in CB. We characterised its IFN-γ-producing and potential cytotoxic properties using flow cytometry experiments and scRNA-seq analysis from a published dataset. Collectively, we identified a unique human CB CD8+CD45RA+CD27+CD161+ T-cell subset and demonstrated that Seurat, a widely used package for scRNA-seq analysis, possesses great potential to be repurposed for cytometric data analysis. This facilitates an unbiased and thorough interpretation of complicated high-dimensional data using a single analytical pipeline and opens a novel avenue for data-driven investigation in clinical immunology.

Biomedical Center Faculty of Medicine Charles University Pilsen Czech Republic

Charles Perkins Centre The University of Sydney Sydney New South Wales Australia

Department of Microbiology Faculty of Medicine University Hospital in Pilsen Charles University Pilsen Czech Republic

Discipline of Child and Adolescent Health The University of Sydney Sydney New South Wales Australia

Human Cancer and Viral Immunology Laboratory The University of Sydney Sydney New South Wales Australia

Kids Research The Children's Hospital at Westmead Sydney New South Wales Australia

Liver Injury and Cancer Program Centenary Institute Sydney New South Wales Australia

Nepean Clinical School The University of Sydney Sydney New South Wales Australia

Nepean Hospital Nepean Blue Mountains Local Health District Penrith New South Wales Australia

Ramaciotti Facility for Human System Biology The University of Sydney and Centenary Institute Sydney New South Wales Australia

School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia

Sydney Cytometry Core Research Facility Charles Perkins Centre The University of Sydney and Centenary Institute Sydney New South Wales Australia

Sydney Nano The University of Sydney Sydney New South Wales Australia

The University of Sydney Institute for Infectious Diseases The University of Sydney Sydney New South Wales Australia

Viral immunopathology Laboratory Infection Immunity and Inflammation Research Theme School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia

Zobrazit více v PubMed

Ginhoux F, Yalin A, Dutertre CA, Amit I. Single‐cell immunology: past, present, and future. Immunity. 2022;55(3):393–404.

Saeys Y, Van Gassen S, Lambrecht BN. Computational flow cytometry: helping to make sense of high‐dimensional immunology data. Nat Rev Immunol. 2016;16(7):449–462.

Park LM, Lannigan J, Jaimes MC. OMIP‐069: forty‐color full spectrum flow cytometry panel for deep immunophenotyping of major cell subsets in human peripheral blood. Cytometry A. 2020;97(10):1044–1051.

Spitzer MH, Nolan GP. Mass cytometry: single cells, many features. Cell. 2016;165(4):780–791.

Mair F, Hartmann FJ, Mrdjen D, Tosevski V, Krieg C, Becher B. The end of gating? An introduction to automated analysis of high dimensional cytometry data. Eur J Immunol. 2016;46(1):34–43.

van der Maaten L, Hinton G. Visualizing data using t‐SNE. J Mach Learn Res. 2008;9(86):2579–2605.

Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, et al. Dimensionality reduction for visualizing single‐cell data using UMAP. Nat Biotechnol. 2018;37:38–44.

Levine JH, Simonds EF, Bendall SC, Davis KL, Amir ED, Tadmor M, et al. Data‐driven phenotypic dissection of AML reveals progenitor‐like cells that correlate with prognosis. Cell. 2015;162(1):184–197.

Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P, Dhaene T, et al. FlowSOM: using self‐organizing maps for visualization and interpretation of cytometry data. Cytometry A. 2015;87(7):636–645.

Ashhurst TM, Marsh‐Wakefield F, Putri GH, Spiteri AG, Shinko D, Read MN, et al. Integration, exploration, and analysis of high‐dimensional single‐cell cytometry data using Spectre. Cytometry A. 2022;101(3):237–253.

Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H, Chen J, et al. ImmPort, toward repurposing of open access immunological assay data for translational and clinical research. Sci Data. 2018;5:180015.

OMIQ. Flow Cytometry Software, Reimagined [Internet]. Available from: https://www.omiq.ai

Realize R&D Digital Transformation. Realize R&D Digital Transformation [Internet]. Available from: https://www.dotmatics.com/

Kotecha N, Krutzik PO, Irish JM. Web‐based analysis and publication of flow cytometry experiments. Curr Protoc Cytom. 2010;53(1):9.32.1–12.20.40. https://doi.org/10.1002/0471142956.cy1017s53

Rackaityte E, Halkias J. Mechanisms of fetal T cell tolerance and immune regulation. Front Immunol. 2020;11:588. https://doi.org/10.3389/fimmu.2020.00588

Szabolcs P, Park KD, Reese M, Marti L, Broadwater G, Kurtzberg J. Coexistent naive phenotype and higher cycling rate of cord blood T cells as compared to adult peripheral blood. Exp Hematol. 2003;31(8):708–714.

Chen L, Cohen AC, Lewis DB. Impaired allogeneic activation and T‐helper 1 differentiation of human cord blood naive CD4 T cells. Biol Blood Marrow Transplant. 2006;12(2):160–171.

Galindo‐Albarrán AO, López‐Portales OH, Gutiérrez‐Reyna DY, Rodríguez‐Jorge O, Sánchez‐Villanueva JA, Ramírez‐Pliego O, et al. CD8+ T cells from human neonates are biased toward an innate immune response. Cell Rep. 2016;17(8):2151–2160.

Luciano AA, Yu H, Jackson LW, Wolfe LA, Bernstein HB. Preterm labor and chorioamnionitis are associated with neonatal T cell activation. PLoS One. 2011;6(2):e16698.

Ponsonby AL, Collier F, O'Hely M, Tang MLK, Ranganathan S, Gray L, et al. Household size, T regulatory cell development, and early allergic disease: a birth cohort study. Pediatr Allergy Immunol. 2022;33(6):e13810.

Collier F, Ponsonby AL, O'Hely M, Tang MLK, Saffery R, Molloy J, et al. Naïve regulatory T cells in infancy: associations with perinatal factors and development of food allergy. Allergy. 2019;74(9):1760–1768.

Smith M, Tourigny MR, Noakes P, Thornton CA, Tulic MK, Prescott SL. Children with egg allergy have evidence of reduced neonatal CD4+CD25+CD127lo/− regulatory T cell function. J Allergy Clin Immunol. 2008;121(6):1460–1466.e7.

Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single‐cell gene expression data. Nat Biotechnol. 2015;33(5):495–502.

Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single‐cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411–420.

Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. Comprehensive integration of single‐cell data. Cell. 2019;177(7):1888–1902.e21.

Hao Y, Hao S, Andersen‐Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis of multimodal single‐cell data. Cell. 2021;184(13):3573–3587.e29.

Bunis DG, Bronevetsky Y, Krow‐Lucal E, Bhakta NR, Kim CC, Nerella S, et al. Single‐cell mapping of progressive fetal‐to‐adult transition in human naive T cells. Cell Rep. 2021;34(1):108573.

Welch JD, Kozareva V, Ferreira A, Vanderburg C, Martin C, Macosko EZ. Single‐cell multi‐omic integration compares and contrasts features of brain cell identity. Cell. 2019;177(7):1873–1887.e17.

Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16(5):284–287.

Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation. 2021;2(3):100141.

Hamann D, Baars PA, Rep MHG, Hooibrink B, Kerkhof‐Garde SR, Klein MR, et al. Phenotypic and functional separation of memory and effector human CD8+ T cells. J Exp Med. 1997;186(9):1407–1418.

Okada R, Kondo T, Matsuki F, Takata H, Takiguchi M. Phenotypic classification of human CD4+ T cell subsets and their differentiation. Int Immunol. 2008;20(9):1189–1199.

Gorfu G, Rivera‐Nieves J, Ley K. Role of β7 integrins in intestinal lymphocyte homing and retention. Curr Mol Med. 2009;9(7):836–850.

Takahashi T, Dejbakhsh‐Jones S, Strober S. Expression of CD161 (NKR‐P1A) defines subsets of human CD4 and CD8 T cells with different functional activities. J Immunol. 2006;176(1):211–216.

Fergusson J, Fleming V, Klenerman P. CD161‐expressing human T cells. Front Immunol. 2011;2:36. https://doi.org/10.3389/fimmu.2011.00036

de Jesús‐Gil C, Sans‐de SanNicolàs L, García‐Jiménez I, Ferran M, Celada A, Chiriac A, et al. The translational relevance of human circulating memory cutaneous lymphocyte‐associated antigen positive T cells in inflammatory skin disorders. Front Immunol. 2021;12:652613. https://doi.org/10.3389/fimmu.2021.652613

Chevalier N, Jarrossay D, Ho E, Avery DT, Ma CS, Yu D, et al. CXCR5 expressing human central memory CD4 T cells and their relevance for humoral immune responses. J Immunol. 2011;186(10):5556–5568.

Chocarro L, Blanco E, Zuazo M, Arasanz H, Bocanegra A, Fernández‐Rubio L, et al. Understanding LAG‐3 signaling. Int J Mol Sci. 2021;22(10):5282.

Wang J, Lindholt JS, Sukhova GK, Shi MA, Xia M, Chen H, et al. IgE actions on CD4+ T cells, mast cells, and macrophages participate in the pathogenesis of experimental abdominal aortic aneurysms. EMBO Mol Med. 2014;6(7):952–969.

Boisvert M, Gendron S, Chetoui N, Aoudjit F. Alpha2beta1 integrin signaling augments T cell receptor‐dependent production of interferon‐gamma in human T cells. Mol Immunol. 2007;44(15):3732–3740.

Boisvert M, Chetoui N, Gendron S, Aoudjit F. Alpha2beta1 integrin is the major collagen‐binding integrin expressed on human Th17 cells. Eur J Immunol. 2010;40(10):2710–2719.

Palma C, Binaschi M, Bigioni M, Maggi CA, Goso C. CD137 and CD137 ligand constitutively coexpressed on human T and B leukemia cells signal proliferation and survival. Int J Cancer. 2004;108(3):390–398.

Tsuda H, Michimata T, Sakai M, Nagata K, Nakamura M, Saito S. A novel surface molecule of Th2‐ and Tc2‐type cells, CRTH2 expression on human peripheral and decidual CD4+ and CD8+ T cells during the early stage of pregnancy. Clin Exp Immunol. 2001;123(1):105–111.

Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev. 2009;229(1):152–172. https://doi.org/10.1111/j.1600-065X.2009.00782.x

Yeo CJJ, Fearon DT. T‐bet‐mediated differentiation of the activated CD8+ T cell. Eur J Immunol. 2011;41(1):60–66.

Tai TS, Pai SY, Ho IC. GATA‐3 regulates the homeostasis and activation of CD8+ T cells. J Immunol. 2013;190(1):428–437.

Nurieva RI, Chung Y, Martinez GJ, Yang XO, Tanaka S, Matskevitch TD, et al. Bcl6 mediates the development of T follicular helper cells. Science. 2009;325(5943):1001–1005.

Liu Z, Guo Y, Tang S, Zhou L, Huang C, Cao Y, et al. Cutting edge: transcription factor BCL6 is required for the generation, but not maintenance, of memory CD8+ T cells in acute viral infection. J Immunol. 2019;203(2):323–327.

Mayer CT, Floess S, Baru AM, Lahl K, Huehn J, Sparwasser T. CD8+Foxp3+ T cells share developmental and phenotypic features with classical CD4+Foxp3+ regulatory T cells but lack potent suppressive activity. Eur J Immunol. 2011;41(3):716–725.

Liebmann M, Hucke S, Koch K, Eschborn M, Ghelman J, Chasan AI, et al. Nur77 serves as a molecular brake of the metabolic switch during T cell activation to restrict autoimmunity. Proc Natl Acad Sci U S A. 2018;115(34):E8017–E8026.

Carrasco J, Godelaine D, Van Pel A, Boon T, van der Bruggen P. CD45RA on human CD8 T cells is sensitive to the time elapsed since the last antigenic stimulation. Blood. 2006;108(9):2897–2905.

Wong MT, Ong DEH, Lim FSH, Teng KWW, McGovern N, Narayanan S, et al. A high‐dimensional atlas of human T cell diversity reveals tissue‐specific trafficking and cytokine signatures. Immunity. 2016;45(2):442–456.

Staton TL, Habtezion A, Winslow MM, Sato T, Love PE, Butcher EC. CD8+ recent thymic emigrants home to and efficiently repopulate the small intestine epithelium. Nat Immunol. 2006;7(5):482–488.

Hsu PS, Lai CL, Hu M, Santner‐Nanan B, Dahlstrom JE, Lee CH, et al. IL‐2 enhances gut homing potential of human naive regulatory T cells early in life. J Immunol. 2018;200(12):3970–3980.

Nitsche A, Zhang M, Clauss T, Siegert W, Brune K, Pahl A. Cytokine profiles of cord and adult blood leukocytes: differences in expression are due to differences in expression and activation of transcription factors. BMC Immunol. 2007;8(1):18.

Crespo M, Martinez DG, Cerissi A, Rivera‐Reyes B, Bernstein HB, Lederman MM, et al. Neonatal T‐cell maturation and homing receptor responses to toll‐like receptor ligands differ from those of adult naive T cells: relationship to prematurity. Pediatr Res. 2012;71(2):136–143.

Liu DD, Hong WC, Qiu KY, Li XY, Liu Y, Zhu LW, et al. Umbilical cord blood: a promising source for allogeneic CAR‐T cells. Front Oncol. 2022;12:944248. https://doi.org/10.3389/fonc.2022.944248

Fergusson JR, Hühn MH, Swadling L, Walker LJ, Kurioka A, Llibre A, et al. CD161intCD8+ T cells: a novel population of highly functional, memory CD8+ T cells enriched within the gut. Mucosal Immunol. 2016;9(2):401–413.

Walker LJ, Kang YH, Smith MO, Tharmalingham H, Ramamurthy N, Fleming VM, et al. Human MAIT and CD8αα cells develop from a pool of type‐17 precommitted CD8+ T cells. Blood. 2012;119(2):422–433.

Bai Y, Hu M, Chen Z, Wei J, Du H. Single‐cell transcriptome analysis reveals RGS1 as a new marker and promoting factor for T‐cell exhaustion in multiple cancers. Front Immunol. 2021;12:767070.

Sjöstedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori C, et al. An atlas of the protein‐coding genes in the human, pig, and mouse brain. Science. 2020;367(6482):eaay5947.

Zhao HC, Chen CZ, Song HQ, Wang XX, Zhang L, Zhao HL, et al. Single‐cell RNA sequencing analysis reveals new immune disorder complexities in Hypersplenism. Front Immunol. 2022;13:921900.

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biol. 2014;15(12):550.

Fergusson JR, Smith KE, Fleming VM, Rajoriya N, Newell EW, Simmons R, et al. CD161 defines a transcriptional and functional phenotype across distinct human T cell lineages. Cell Rep. 2014;9(3):1075–1088.

Billerbeck E, Kang YH, Walker L, Lockstone H, Grafmueller S, Fleming V, et al. Analysis of CD161 expression on human CD8+ T cells defines a distinct functional subset with tissue‐homing properties. Proc Natl Acad Sci U S A. 2010;107(7):3006–3011.

Yang Y, Liou HC, Sun XH. Id1 potentiates NF‐kappaB activation upon T cell receptor signaling. J Biol Chem. 2006;281(46):34989–34996.

Li Y, Ren P, Dawson A, Vasquez HG, Ageedi W, Zhang C, et al. Single‐cell transcriptome analysis reveals dynamic cell populations and differential gene expression patterns in control and aneurysmal human aortic tissue. Circulation. 2020;142(14):1374–1388.

Gene Ontology Consortium, Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin HJ, et al. The gene ontology knowledgebase in 2023. Genetics. 2023;224(1):iyad031.

Korotkevich G, Sukhov V, Budin N, Shpak B, Artyomov MN, Sergushichev A. Fast gene set enrichment analysis. bioRxiv. 2021. https://doi.org/10.1101/060012

Keyes TJ, Koladiya A, Lo YC, Nolan GP, Davis KL. tidytof: A user‐friendly framework for scalable and reproducible high‐dimensional cytometry data analysis. Bioinform Adv. 2023;3(1):vbad071.

Liu X, Song W, Wong BY, Zhang T, Yu S, Lin GN, et al. A comparison framework and guideline of clustering methods for mass cytometry data. Genome Biol. 2019;20(1):297.

Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate integration of single‐cell data with harmony. Nat Methods. 2019;16(12):1289–1296.

Wang K, Yang Y, Wu F, Song B, Wang X, Wang T. Comparative analysis of dimension reduction methods for cytometry by time‐of‐flight data. Nat Commun. 2023;14(1):1836.

Run CyTOF analysis with Seurat [Internet]. [cited 2023 Jul 25]. Available from: https://tjburns08.github.io/run_cytof_with_seurat.html

Verstegen NJM, Hagen RR, van den Dijssel J, Kuijper LH, Kreher C, Ashhurst T, et al. Immune dynamics in SARS‐CoV‐2 experienced immunosuppressed rheumatoid arthritis or multiple sclerosis patients vaccinated with mRNA‐1273. Elife. 2022;11:e77969.

Büttner M, Hempel F, Ryborz T, Theis FJ, Schultze JL. Pytometry: flow and mass cytometry analytics in Python. bioRxiv. 2022. https://doi.org/10.1101/2022.10.10.511546

Dusseaux M, Martin E, Serriari N, Péguillet I, Premel V, Louis D, et al. Human MAIT cells are xenobiotic‐resistant, tissue‐targeted, CD161hi IL‐17‐secreting T cells. Blood. 2011;117(4):1250–1259.

Halkias J, Rackaityte E, Hillman SL, Aran D, Mendoza VF, Marshall LR, et al. CD161 contributes to prenatal immune suppression of IFN‐γ–producing PLZF+ T cells. J Clin Invest. 2019;129(9):3562–3577.

Reyes JGA, Ni D, Santner‐Nanan B, Pinget GV, Kraftova L, Ashhurst TM, et al. A unique human cord blood CD8+CD45RA+CD27+CD161+ T cell subset identified by flow cytometric data analysis using Seurat. bioRxiv. 2023. https://doi.org/10.1101/2023.08.01.549954

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace