Environment-induced heritable variations are common in Arabidopsis thaliana

. 2024 May 30 ; 15 (1) : 4615. [epub] 20240530

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38816460

Grantová podpora
32371558 National Natural Science Foundation of China (National Science Foundation of China)
32071485 National Natural Science Foundation of China (National Science Foundation of China)

Odkazy

PubMed 38816460
PubMed Central PMC11139905
DOI 10.1038/s41467-024-49024-3
PII: 10.1038/s41467-024-49024-3
Knihovny.cz E-zdroje

Parental or ancestral environments can induce heritable phenotypic changes, but whether such environment-induced heritable changes are a common phenomenon remains unexplored. Here, we subject 14 genotypes of Arabidopsis thaliana to 10 different environmental treatments and observe phenotypic and genome-wide gene expression changes over four successive generations. We find that all treatments caused heritable phenotypic and gene expression changes, with a substantial proportion stably transmitted over all observed generations. Intriguingly, the susceptibility of a genotype to environmental inductions could be predicted based on the transposon abundance in the genome. Our study thus challenges the classic view that the environment only participates in the selection of heritable variation and suggests that the environment can play a significant role in generating of heritable variations.

Zobrazit více v PubMed

Hoffmann AA, Sgrò CM. Climate change and evolutionary adaptation. Nature. 2011;470:479–485. doi: 10.1038/nature09670. PubMed DOI

Scheffers BR, et al. The broad footprint of climate change from genes to biomes to people. Science. 2016;354:aaf7671. doi: 10.1126/science.aaf7671. PubMed DOI

Futuyma, D. J. & Kirkpatrick, M. Evolution. (Oxford University Press, 2017).

Agrawal AA, Laforsch C, Tollrian R. Transgenerational induction of defences in animals and plants. Nature. 1999;401:60–63. doi: 10.1038/43425. DOI

Klosin A, Casas E, Hidalgo-Carcedo C, Vavouri T, Lehner B. Transgenerational transmission of environmental information in C. elegans. Science. 2017;356:320–323. doi: 10.1126/science.aah6412. PubMed DOI

Rechavi O, et al. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell. 2014;158:277–287. doi: 10.1016/j.cell.2014.06.020. PubMed DOI PMC

Yin J, Zhou M, Lin Z, Li QQ, Zhang Y-Y. Transgenerational effects benefit offspring across diverse environments: a meta-analysis in plants and animals. Ecol. Lett. 2019;22:1976–1986. doi: 10.1111/ele.13373. PubMed DOI

Galloway LF. Parental environmental effects on life history in the herbaceous plant Campanula americana. Ecology. 2001;82:2781–2789. doi: 10.2307/2679960. DOI

Latzel V, et al. Parental environmental effects are common and strong, but unpredictable, in Arabidopsis thaliana. New Phytol. 2023;237:1014–1023. doi: 10.1111/nph.18591. PubMed DOI

Alvarez M, Bleich A, Donohue K. Genotypic variation in the persistence of transgenerational responses to seasonal cues. Evolution. 2020;74:2265–2280. doi: 10.1111/evo.13996. PubMed DOI

Colicchio J. Transgenerational effects alter plant defence and resistance in nature. J. Evol. Biol. 2017;30:664–680. doi: 10.1111/jeb.13042. PubMed DOI PMC

Groot MP, et al. Transgenerational effects of mild heat in Arabidopsis thaliana show strong genotype specificity that is explained by climate at origin. New Phytol. 2017;215:1221–1234. doi: 10.1111/nph.14642. PubMed DOI

Munch SB, et al. A latitudinal gradient in thermal transgenerational plasticity and a test of theory. Proc. Royal Soc. B. 2021;288:20210797. doi: 10.1098/rspb.2021.0797. PubMed DOI PMC

Gaudinier A, Blackman BK. Evolutionary processes from the perspective of flowering time diversity. New Phytol. 2020;225:1883–1898. doi: 10.1111/nph.16205. PubMed DOI

He L, et al. DNA methylation-free Arabidopsis reveals crucial roles of DNA methylation in regulating gene expression and development. Nat. Commun. 2022;13:1335. doi: 10.1038/s41467-022-28940-2. PubMed DOI PMC

Roux F, Touzet P, Cuguen J, Le Corre V. How to be early flowering: an evolutionary perspective. Trends Plant Sci. 2006;11:375–381. doi: 10.1016/j.tplants.2006.06.006. PubMed DOI

Kim DH, Doyle MR, Sung S, Amasino RM. Vernalization: winter and the timing of flowering in plants. Annu. Rev. Cell Dev. Biol. 2009;25:277–299. doi: 10.1146/annurev.cellbio.042308.113411. PubMed DOI

Searle I, et al. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 2006;20:898–912. doi: 10.1101/gad.373506. PubMed DOI PMC

Ratcliffe OJ, Nadzan GC, Reuber TL, Riechmann JL. Regulation of flowering in Arabidopsis by an FLC homologue. Plant Physiol. 2001;126:122–132. doi: 10.1104/pp.126.1.122. PubMed DOI PMC

Morgan HD, Sutherland HGE, Martin DIK, Whitelaw E. Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 1999;23:314–318. doi: 10.1038/15490. PubMed DOI

Ong-Abdullah M, et al. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature. 2015;525:533–537. doi: 10.1038/nature15365. PubMed DOI PMC

Ito H, et al. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature. 2011;472:115–119. doi: 10.1038/nature09861. PubMed DOI

Van’t Hof AE, et al. The industrial melanism mutation in British peppered moths is a transposable element. Nature. 2016;534:102–105. doi: 10.1038/nature17951. PubMed DOI

Schmidt JM, et al. Copy number variation and transposable elements feature in recent, ongoing adaptation at the Cyp6g1 locus. PLoS Genet. 2010;6:e1000998. doi: 10.1371/journal.pgen.1000998. PubMed DOI PMC

Bourque G, et al. Ten things you should know about transposable elements. Genome Biol. 2018;19:199. doi: 10.1186/s13059-018-1577-z. PubMed DOI PMC

Modzelewski AJ, et al. A mouse-specific retrotransposon drives a conserved Cdk2ap1 isoform essential for development. Cell. 2021;184:5541–5558.e5522. doi: 10.1016/j.cell.2021.09.021. PubMed DOI PMC

Kapusta A, et al. Transposable elements are major contributors to the origin, fiversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet. 2013;9:e1003470. doi: 10.1371/journal.pgen.1003470. PubMed DOI PMC

Pastuzyn ED, et al. The neuronal gene Arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer. Cell. 2018;172:275–288.e218. doi: 10.1016/j.cell.2017.12.024. PubMed DOI PMC

McClintock B. The significance of responses of the genome to challenge. Science. 1984;226:792–801. doi: 10.1126/science.15739260. PubMed DOI

Baduel P, et al. Genetic and environmental modulation of transposition shapes the evolutionary potential of Arabidopsis thaliana. Genome Biol. 2021;22:138. doi: 10.1186/s13059-021-02348-5. PubMed DOI PMC

Ho EKH, et al. Engines of change: transposable element mutation rates are high and variable within Daphnia magna. PLoS Genet. 2021;17:e1009827. doi: 10.1371/journal.pgen.1009827. PubMed DOI PMC

Ratner VA, Zabanov SA, Kolesnikova OV, Vasilyeva LA. Induction of the mobile genetic element Dm-412 transpositions in the Drosophila genome by heat shock treatment. Proc. Natl. Acad. Sci. USA. 1992;89:5650–5654. doi: 10.1073/pnas.89.12.5650. PubMed DOI PMC

Strand DJ, McDonald JF. Copia is transcriptionally responsive to environmental stress. Nucleic Acids Res. 1985;13:4401–4410. doi: 10.1093/nar/13.12.4401. PubMed DOI PMC

Aminetzach YT, Macpherson JM, Petrov DA. Pesticide resistance via transposition-mediated adaptive gene truncation in Drosophila. Science. 2005;309:764–767. doi: 10.1126/science.1112699. PubMed DOI

Chung H, et al. Cis-regulatory elements in the Accord retrotransposon result in tissue-specific expression of the Drosophila melanogaster insecticide resistance gene Cyp6g1. Genetics. 2007;175:1071–1077. doi: 10.1534/genetics.106.066597. PubMed DOI PMC

Pimpinelli S, Piacentini L. Environmental change and the evolution of genomes: transposable elements as translators of phenotypic plasticity into genotypic variability. Funct. Ecol. 2020;34:428–441. doi: 10.1111/1365-2435.13497. DOI

Kanazawa A, Liu B, Kong F, Arase S, Abe J. Adaptive evolution involving gene duplication and insertion of a novel Ty1/copia-like retrotransposon in soybean. J. Mol. Evol. 2009;69:164–175. doi: 10.1007/s00239-009-9262-1. PubMed DOI

Liu B, et al. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics. 2008;180:995–1007. doi: 10.1534/genetics.108.092742. PubMed DOI PMC

Thieme M, et al. Experimentally heat-induced transposition increases drought tolerance in Arabidopsis thaliana. New Phytol. 2022;236:182–194. doi: 10.1111/nph.18322. PubMed DOI PMC

Yu A, et al. Roles of Hsp70s in stress responses of microorganisms, plants, and animals. BioMed Res. Int. 2015;2015:510319. doi: 10.1155/2015/510319. PubMed DOI PMC

Berka M, Kopecká R, Berková V, Brzobohatý B, Černý M. Regulation of heat shock proteins 70 and their role in plant immunity. J. Exp. Bot. 2022;73:1894–1909. doi: 10.1093/jxb/erab549. PubMed DOI PMC

Cappucci U, et al. The Hsp70 chaperone is a major player in stress-induced transposable element activation. Proc. Natl. Acad. Sci. USA. 2019;116:17943–17950. doi: 10.1073/pnas.1903936116. PubMed DOI PMC

Piacentini L, et al. Transposons, environmental changes, and heritable induced phenotypic variability. Chromosoma. 2014;123:345–354. doi: 10.1007/s00412-014-0464-y. PubMed DOI PMC

Barrett RDH, Schluter D. Adaptation from standing genetic variation. Trends Ecol. Evol. 2008;23:38–44. doi: 10.1016/j.tree.2007.09.008. PubMed DOI

Bitter MC, Kapsenberg L, Gattuso JP, Pfister CA. Standing genetic variation fuels rapid adaptation to ocean acidification. Nat. Commun. 2019;10:5821. doi: 10.1038/s41467-019-13767-1. PubMed DOI PMC

Weaver ICG, et al. Epigenetic programming by maternal behavior. Nat. Neurosci. 2004;7:847–854. doi: 10.1038/nn1276. PubMed DOI

Wan Q-L, et al. Histone H3K4me3 modification is a transgenerational epigenetic signal for lipid metabolism in Caenorhabditis elegans. Nat. Commun. 2022;13:768. doi: 10.1038/s41467-022-28469-4. PubMed DOI PMC

Fanti L, Piacentini L, Cappucci U, Casale AM, Pimpinelli S. Canalization by selection of de Novo induced mutations. Genetics. 2017;206:1995–2006. doi: 10.1534/genetics.117.201079. PubMed DOI PMC

Feiner, N. Accumulation of transposable elements in Hox gene clusters during adaptive radiation of Anolis lizards. Proc. Biol. Sci. 283, 20161555 (2016). PubMed PMC

Schrader L, et al. Transposable element islands facilitate adaptation to novel environments in an invasive species. Nat. Commun. 2014;5:5495. doi: 10.1038/ncomms6495. PubMed DOI PMC

Pigliucci M. Ecology and evolutionary biology of Arabidopsis. Arabidopsis Book. 2002;1:e0003. doi: 10.1199/tab.0003. PubMed DOI PMC

Durvasula A, et al. African genomes illuminate the early history and transition to selfing in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2017;114:5213–5218. doi: 10.1073/pnas.1616736114. PubMed DOI PMC

Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Fox, J. W., S. An R companion to applied regression. (SAGE, 2019).

Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 2017;82:1–26. doi: 10.18637/jss.v082.i13. DOI

Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom. J. 2008;50:346–363. doi: 10.1002/bimj.200810425. PubMed DOI

Kawakatsu T, et al. Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell. 2016;166:492–505. doi: 10.1016/j.cell.2016.06.044. PubMed DOI PMC

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Pedersen, B. S., Eyring, K. R., De, S., Yang, I. V. & Schwartz, D. A. Fast and accurate alignment of long bisulfite-seq reads. Preprint at arXiv10.48550/arXiv.1401.1129 (2014).

Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Quadrana L, et al. The Arabidopsis thaliana mobilome and its impact at the species level. eLife. 2016;5:e15716. doi: 10.7554/eLife.15716. PubMed DOI PMC

Hadley, W. ggplot2: elegant graphics for data analysis. (Springer Cham, 2016).

Rio DC, Ares M, Jr., Hannon GJ, Nilsen TW. Purification of RNA using TRIzol (TRI reagent) Cold Spring Harb. Protoc. 2010;2010:pdb.prot5439. doi: 10.1101/pdb.prot5439. PubMed DOI

Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC

Pertea G, Pertea M. GFF Utilities: GffRead and GffCompare. F1000Res. 2020;9:304. doi: 10.12688/f1000research.23297.1. PubMed DOI PMC

Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Yu GC, Wang LG, Han YY, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16:284–287. doi: 10.1089/omi.2011.0118. PubMed DOI PMC

Lawrence M, et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 2013;9:e1003118. doi: 10.1371/journal.pcbi.1003118. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...