Environment-induced heritable variations are common in Arabidopsis thaliana
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
32371558
National Natural Science Foundation of China (National Science Foundation of China)
32071485
National Natural Science Foundation of China (National Science Foundation of China)
PubMed
38816460
PubMed Central
PMC11139905
DOI
10.1038/s41467-024-49024-3
PII: 10.1038/s41467-024-49024-3
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis * genetika MeSH
- fenotyp * MeSH
- genetická variace MeSH
- genom rostlinný MeSH
- genotyp * MeSH
- interakce genů a prostředí MeSH
- regulace genové exprese u rostlin * MeSH
- transpozibilní elementy DNA * genetika MeSH
- životní prostředí MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- transpozibilní elementy DNA * MeSH
Parental or ancestral environments can induce heritable phenotypic changes, but whether such environment-induced heritable changes are a common phenomenon remains unexplored. Here, we subject 14 genotypes of Arabidopsis thaliana to 10 different environmental treatments and observe phenotypic and genome-wide gene expression changes over four successive generations. We find that all treatments caused heritable phenotypic and gene expression changes, with a substantial proportion stably transmitted over all observed generations. Intriguingly, the susceptibility of a genotype to environmental inductions could be predicted based on the transposon abundance in the genome. Our study thus challenges the classic view that the environment only participates in the selection of heritable variation and suggests that the environment can play a significant role in generating of heritable variations.
Biomedical Sciences College of Dental Medicine Western University of Health Sciences Pomona CA USA
Institute of Botany of the CAS Zamek 1 252 43 Pruhonice Czech Republic
Zobrazit více v PubMed
Hoffmann AA, Sgrò CM. Climate change and evolutionary adaptation. Nature. 2011;470:479–485. doi: 10.1038/nature09670. PubMed DOI
Scheffers BR, et al. The broad footprint of climate change from genes to biomes to people. Science. 2016;354:aaf7671. doi: 10.1126/science.aaf7671. PubMed DOI
Futuyma, D. J. & Kirkpatrick, M. Evolution. (Oxford University Press, 2017).
Agrawal AA, Laforsch C, Tollrian R. Transgenerational induction of defences in animals and plants. Nature. 1999;401:60–63. doi: 10.1038/43425. DOI
Klosin A, Casas E, Hidalgo-Carcedo C, Vavouri T, Lehner B. Transgenerational transmission of environmental information in C. elegans. Science. 2017;356:320–323. doi: 10.1126/science.aah6412. PubMed DOI
Rechavi O, et al. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell. 2014;158:277–287. doi: 10.1016/j.cell.2014.06.020. PubMed DOI PMC
Yin J, Zhou M, Lin Z, Li QQ, Zhang Y-Y. Transgenerational effects benefit offspring across diverse environments: a meta-analysis in plants and animals. Ecol. Lett. 2019;22:1976–1986. doi: 10.1111/ele.13373. PubMed DOI
Galloway LF. Parental environmental effects on life history in the herbaceous plant Campanula americana. Ecology. 2001;82:2781–2789. doi: 10.2307/2679960. DOI
Latzel V, et al. Parental environmental effects are common and strong, but unpredictable, in Arabidopsis thaliana. New Phytol. 2023;237:1014–1023. doi: 10.1111/nph.18591. PubMed DOI
Alvarez M, Bleich A, Donohue K. Genotypic variation in the persistence of transgenerational responses to seasonal cues. Evolution. 2020;74:2265–2280. doi: 10.1111/evo.13996. PubMed DOI
Colicchio J. Transgenerational effects alter plant defence and resistance in nature. J. Evol. Biol. 2017;30:664–680. doi: 10.1111/jeb.13042. PubMed DOI PMC
Groot MP, et al. Transgenerational effects of mild heat in Arabidopsis thaliana show strong genotype specificity that is explained by climate at origin. New Phytol. 2017;215:1221–1234. doi: 10.1111/nph.14642. PubMed DOI
Munch SB, et al. A latitudinal gradient in thermal transgenerational plasticity and a test of theory. Proc. Royal Soc. B. 2021;288:20210797. doi: 10.1098/rspb.2021.0797. PubMed DOI PMC
Gaudinier A, Blackman BK. Evolutionary processes from the perspective of flowering time diversity. New Phytol. 2020;225:1883–1898. doi: 10.1111/nph.16205. PubMed DOI
He L, et al. DNA methylation-free Arabidopsis reveals crucial roles of DNA methylation in regulating gene expression and development. Nat. Commun. 2022;13:1335. doi: 10.1038/s41467-022-28940-2. PubMed DOI PMC
Roux F, Touzet P, Cuguen J, Le Corre V. How to be early flowering: an evolutionary perspective. Trends Plant Sci. 2006;11:375–381. doi: 10.1016/j.tplants.2006.06.006. PubMed DOI
Kim DH, Doyle MR, Sung S, Amasino RM. Vernalization: winter and the timing of flowering in plants. Annu. Rev. Cell Dev. Biol. 2009;25:277–299. doi: 10.1146/annurev.cellbio.042308.113411. PubMed DOI
Searle I, et al. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 2006;20:898–912. doi: 10.1101/gad.373506. PubMed DOI PMC
Ratcliffe OJ, Nadzan GC, Reuber TL, Riechmann JL. Regulation of flowering in Arabidopsis by an FLC homologue. Plant Physiol. 2001;126:122–132. doi: 10.1104/pp.126.1.122. PubMed DOI PMC
Morgan HD, Sutherland HGE, Martin DIK, Whitelaw E. Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 1999;23:314–318. doi: 10.1038/15490. PubMed DOI
Ong-Abdullah M, et al. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature. 2015;525:533–537. doi: 10.1038/nature15365. PubMed DOI PMC
Ito H, et al. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature. 2011;472:115–119. doi: 10.1038/nature09861. PubMed DOI
Van’t Hof AE, et al. The industrial melanism mutation in British peppered moths is a transposable element. Nature. 2016;534:102–105. doi: 10.1038/nature17951. PubMed DOI
Schmidt JM, et al. Copy number variation and transposable elements feature in recent, ongoing adaptation at the Cyp6g1 locus. PLoS Genet. 2010;6:e1000998. doi: 10.1371/journal.pgen.1000998. PubMed DOI PMC
Bourque G, et al. Ten things you should know about transposable elements. Genome Biol. 2018;19:199. doi: 10.1186/s13059-018-1577-z. PubMed DOI PMC
Modzelewski AJ, et al. A mouse-specific retrotransposon drives a conserved Cdk2ap1 isoform essential for development. Cell. 2021;184:5541–5558.e5522. doi: 10.1016/j.cell.2021.09.021. PubMed DOI PMC
Kapusta A, et al. Transposable elements are major contributors to the origin, fiversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet. 2013;9:e1003470. doi: 10.1371/journal.pgen.1003470. PubMed DOI PMC
Pastuzyn ED, et al. The neuronal gene Arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer. Cell. 2018;172:275–288.e218. doi: 10.1016/j.cell.2017.12.024. PubMed DOI PMC
McClintock B. The significance of responses of the genome to challenge. Science. 1984;226:792–801. doi: 10.1126/science.15739260. PubMed DOI
Baduel P, et al. Genetic and environmental modulation of transposition shapes the evolutionary potential of Arabidopsis thaliana. Genome Biol. 2021;22:138. doi: 10.1186/s13059-021-02348-5. PubMed DOI PMC
Ho EKH, et al. Engines of change: transposable element mutation rates are high and variable within Daphnia magna. PLoS Genet. 2021;17:e1009827. doi: 10.1371/journal.pgen.1009827. PubMed DOI PMC
Ratner VA, Zabanov SA, Kolesnikova OV, Vasilyeva LA. Induction of the mobile genetic element Dm-412 transpositions in the Drosophila genome by heat shock treatment. Proc. Natl. Acad. Sci. USA. 1992;89:5650–5654. doi: 10.1073/pnas.89.12.5650. PubMed DOI PMC
Strand DJ, McDonald JF. Copia is transcriptionally responsive to environmental stress. Nucleic Acids Res. 1985;13:4401–4410. doi: 10.1093/nar/13.12.4401. PubMed DOI PMC
Aminetzach YT, Macpherson JM, Petrov DA. Pesticide resistance via transposition-mediated adaptive gene truncation in Drosophila. Science. 2005;309:764–767. doi: 10.1126/science.1112699. PubMed DOI
Chung H, et al. Cis-regulatory elements in the Accord retrotransposon result in tissue-specific expression of the Drosophila melanogaster insecticide resistance gene Cyp6g1. Genetics. 2007;175:1071–1077. doi: 10.1534/genetics.106.066597. PubMed DOI PMC
Pimpinelli S, Piacentini L. Environmental change and the evolution of genomes: transposable elements as translators of phenotypic plasticity into genotypic variability. Funct. Ecol. 2020;34:428–441. doi: 10.1111/1365-2435.13497. DOI
Kanazawa A, Liu B, Kong F, Arase S, Abe J. Adaptive evolution involving gene duplication and insertion of a novel Ty1/copia-like retrotransposon in soybean. J. Mol. Evol. 2009;69:164–175. doi: 10.1007/s00239-009-9262-1. PubMed DOI
Liu B, et al. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics. 2008;180:995–1007. doi: 10.1534/genetics.108.092742. PubMed DOI PMC
Thieme M, et al. Experimentally heat-induced transposition increases drought tolerance in Arabidopsis thaliana. New Phytol. 2022;236:182–194. doi: 10.1111/nph.18322. PubMed DOI PMC
Yu A, et al. Roles of Hsp70s in stress responses of microorganisms, plants, and animals. BioMed Res. Int. 2015;2015:510319. doi: 10.1155/2015/510319. PubMed DOI PMC
Berka M, Kopecká R, Berková V, Brzobohatý B, Černý M. Regulation of heat shock proteins 70 and their role in plant immunity. J. Exp. Bot. 2022;73:1894–1909. doi: 10.1093/jxb/erab549. PubMed DOI PMC
Cappucci U, et al. The Hsp70 chaperone is a major player in stress-induced transposable element activation. Proc. Natl. Acad. Sci. USA. 2019;116:17943–17950. doi: 10.1073/pnas.1903936116. PubMed DOI PMC
Piacentini L, et al. Transposons, environmental changes, and heritable induced phenotypic variability. Chromosoma. 2014;123:345–354. doi: 10.1007/s00412-014-0464-y. PubMed DOI PMC
Barrett RDH, Schluter D. Adaptation from standing genetic variation. Trends Ecol. Evol. 2008;23:38–44. doi: 10.1016/j.tree.2007.09.008. PubMed DOI
Bitter MC, Kapsenberg L, Gattuso JP, Pfister CA. Standing genetic variation fuels rapid adaptation to ocean acidification. Nat. Commun. 2019;10:5821. doi: 10.1038/s41467-019-13767-1. PubMed DOI PMC
Weaver ICG, et al. Epigenetic programming by maternal behavior. Nat. Neurosci. 2004;7:847–854. doi: 10.1038/nn1276. PubMed DOI
Wan Q-L, et al. Histone H3K4me3 modification is a transgenerational epigenetic signal for lipid metabolism in Caenorhabditis elegans. Nat. Commun. 2022;13:768. doi: 10.1038/s41467-022-28469-4. PubMed DOI PMC
Fanti L, Piacentini L, Cappucci U, Casale AM, Pimpinelli S. Canalization by selection of de Novo induced mutations. Genetics. 2017;206:1995–2006. doi: 10.1534/genetics.117.201079. PubMed DOI PMC
Feiner, N. Accumulation of transposable elements in Hox gene clusters during adaptive radiation of Anolis lizards. Proc. Biol. Sci. 283, 20161555 (2016). PubMed PMC
Schrader L, et al. Transposable element islands facilitate adaptation to novel environments in an invasive species. Nat. Commun. 2014;5:5495. doi: 10.1038/ncomms6495. PubMed DOI PMC
Pigliucci M. Ecology and evolutionary biology of Arabidopsis. Arabidopsis Book. 2002;1:e0003. doi: 10.1199/tab.0003. PubMed DOI PMC
Durvasula A, et al. African genomes illuminate the early history and transition to selfing in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2017;114:5213–5218. doi: 10.1073/pnas.1616736114. PubMed DOI PMC
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
Fox, J. W., S. An R companion to applied regression. (SAGE, 2019).
Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 2017;82:1–26. doi: 10.18637/jss.v082.i13. DOI
Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom. J. 2008;50:346–363. doi: 10.1002/bimj.200810425. PubMed DOI
Kawakatsu T, et al. Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell. 2016;166:492–505. doi: 10.1016/j.cell.2016.06.044. PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Pedersen, B. S., Eyring, K. R., De, S., Yang, I. V. & Schwartz, D. A. Fast and accurate alignment of long bisulfite-seq reads. Preprint at arXiv10.48550/arXiv.1401.1129 (2014).
Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Quadrana L, et al. The Arabidopsis thaliana mobilome and its impact at the species level. eLife. 2016;5:e15716. doi: 10.7554/eLife.15716. PubMed DOI PMC
Hadley, W. ggplot2: elegant graphics for data analysis. (Springer Cham, 2016).
Rio DC, Ares M, Jr., Hannon GJ, Nilsen TW. Purification of RNA using TRIzol (TRI reagent) Cold Spring Harb. Protoc. 2010;2010:pdb.prot5439. doi: 10.1101/pdb.prot5439. PubMed DOI
Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Pertea G, Pertea M. GFF Utilities: GffRead and GffCompare. F1000Res. 2020;9:304. doi: 10.12688/f1000research.23297.1. PubMed DOI PMC
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Yu GC, Wang LG, Han YY, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16:284–287. doi: 10.1089/omi.2011.0118. PubMed DOI PMC
Lawrence M, et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 2013;9:e1003118. doi: 10.1371/journal.pcbi.1003118. PubMed DOI PMC