ASP210: a potent oligonucleotide-based inhibitor effective against TKI-resistant CML cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-15-0215
Agentúra na Podporu Výskumu a Vývoja (APVV)
APVV-19-0070
Agentúra na Podporu Výskumu a Vývoja (APVV)
1/0069/20
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV (VEGA)
2/0160/21
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV (VEGA)
2/0116/22
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV (VEGA)
00023736
Ministerstvo Zdravotnictví Ceské Republiky (MZCR)
313021T081
Slovenská Akadémia Vied (SAV)
PubMed
38826137
PubMed Central
PMC11371327
DOI
10.1152/ajpcell.00188.2024
Knihovny.cz E-zdroje
- Klíčová slova
- BCR-ABL1, chronic myelogenous leukemia, oligonucleotide therapeutics, resistance to therapy, tyrosine kinase inhibitors,
- MeSH
- apoptóza * účinky léků MeSH
- bcr-abl fúzní proteiny * genetika antagonisté a inhibitory metabolismus MeSH
- chemorezistence * účinky léků MeSH
- chronická myeloidní leukemie * farmakoterapie genetika patologie MeSH
- dasatinib farmakologie MeSH
- imatinib mesylát * farmakologie terapeutické užití MeSH
- inhibitory proteinkinas * farmakologie MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- oligonukleotidy * farmakologie MeSH
- protinádorové látky farmakologie MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bcr-abl fúzní proteiny * MeSH
- BCR-ABL1 fusion protein, human MeSH Prohlížeč
- dasatinib MeSH
- imatinib mesylát * MeSH
- inhibitory proteinkinas * MeSH
- messenger RNA MeSH
- oligonukleotidy * MeSH
- protinádorové látky MeSH
Clinical experience with tyrosine kinase inhibitors (TKIs) over the past two decades has shown that, despite the apparent therapeutic benefit, nearly 30% of patients with chronic myelogenous leukemia (CML) display primary resistance or intolerance to TKIs, and approximately 25% of those treated are forced to switch TKIs at least once during therapy due to acquired resistance. Safe and effective treatment modalities targeting leukemic clones that escape TKI therapy could hence be game changers in the professional management of these patients. Here, we aimed to investigate the efficacy of a novel therapeutic oligonucleotide of unconventional design, called ASP210, to reduce BCR-ABL1 mRNA levels in TKI-resistant CML cells, with the assumption of inducing their apoptosis. Imatinib- and dasatinib-resistant sublines of BCR-ABL1-positive MOLM-7 and CML-T1 cells were established and exposed to 0.25 and 2.5 µM ASP210 for 10 days. RT-qPCR showed a remarkable reduction of the target mRNA level by >99% after a single application. Cell viability was monitored daily by trypan blue staining. In response to the lack of driver oncoprotein BCR-ABL1, TKI-resistant CML cells underwent apoptosis regardless of the presence of the clinically relevant T315I mutation by day 5 after redosing with ASP210. The effect was selective for cancer cells, indicating a favorable safety profile for this therapeutic modality. Furthermore, the spontaneous uptake and high intracellular concentrations of ASP210 suggest its potential to be effective at relatively low doses. The present findings suggest that ASP210 is a promising therapeutic avenue for patients with CML who fail to respond to TKI therapy.NEW & NOTEWORTHY Effective treatment modalities targeting leukemic clones that escape tyrosine kinase inhibitor (TKI) therapy could be game changers in the professional management of patients displaying primary resistance, intolerance, or acquired resistance to TKIs. Although delivering authentic innovations today is more complex than ever, we developed a highly potent and safe oligonucleotide-based modality against BCR-ABL1 mRNA named ASP210 that effectively induces cell death in BCR-ABL1-positive TKI-resistant cells while sparing BCR-ABL1-negative healthy cells.
Centre for Advanced Materials Application Slovak Academy of Sciences Bratislava Slovakia
Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
Department of Oncohematology Comenius University and National Cancer Institute Bratislava Slovakia
Department of Proteomics Institute of Hematology and Blood Transfusion Prague Czech Republic
Zobrazit více v PubMed
Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood 96: 3343–3356, 2000. doi:10.1182/blood.V96.10.3343. PubMed DOI
Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring. Am J Hematol 95: 691–709, 2020. doi:10.1002/ajh.25792. PubMed DOI
Alves R, Gonçalves AC, Rutella S, Almeida AM, De Las Rivas J, Trougakos IP, Sarmento Ribeiro AB. Resistance to tyrosine kinase inhibitors in chronic myeloid leukemia – from molecular mechanisms to clinical relevance. Cancers (Basel) 13: 4820, 2021. doi:10.3390/cancers13194820. PubMed DOI PMC
Meenakshi Sundaram DN, Jiang X, Brandwein JM, Valencia-Serna J, Remant KC, Uludağ H. Current outlook on drug resistance in chronic myeloid leukemia (CML) and potential therapeutic options. Drug Discov Today 24: 1355–1369, 2019. doi:10.1016/j.drudis.2019.05.007. PubMed DOI
Cortes JE, Kantarjian H, Shah NP, Bixby D, Mauro MJ, Flinn I, O'Hare T, Hu S, Narasimhan NI, Rivera VM, Clackson T, Turner CD, Haluska FG, Druker BJ, Deininger MW, Talpaz M. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med 367: 2075–2088, 2012. doi:10.1056/NEJMoa1205127. PubMed DOI PMC
Scharner J, Aznarez I. Clinical applications of single-stranded oligonucleotides: current landscape of approved and in-development therapeutics. Mol Ther 29: 540–554, 2021. doi:10.1016/j.ymthe.2020.12.022. PubMed DOI PMC
Scherr M, Battmer K, Winkler T, Heidenreich O, Ganser A, Eder M. Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 101: 1566–1569, 2003. doi:10.1182/blood-2002-06-1685. PubMed DOI
Rapozzi V, Xodo LE. Efficient silencing of bcr/abl oncogene by single- and double-stranded siRNAs targeted against b2a2 transcripts. Biochemistry 43: 16134–16141, 2004. doi:10.1021/bi048634w. PubMed DOI
Scherr M, Battmer K, Schultheis B, Ganser A, Eder M. Stable RNA interference (RNAi) as an option for anti-bcr-abl therapy. Gene Ther 12: 12–21, 2005. doi:10.1038/sj.gt.3302328. PubMed DOI
Cong XL, Li B, Yang RC, Feng SZ, Chen SJ, Han ZC. Enhanced growth suppression of Philadephia1 leukemia cells by targeting bcr3/abl2 and VEGF through antisense strategy. Leukemia 19: 1517–1524, 2005. doi:10.1038/sj.leu.2403851. PubMed DOI
Rapozzi V, Cogoi S, Xodo LE. Antisense locked nucleic acids efficiently suppress BCR/ABL and induce cell growth decline and apoptosis in leukemic cells. Mol Cancer Ther 5: 1683–1692, 2006. doi:10.1158/1535-7163.MCT-06-0006. PubMed DOI
Koldehoff M, Kordelas L, Beelen DW, Elmaagacli AH. Small interfering RNA against BCR-ABL transcripts sensitize mutated T315I cells to nilotinib. Haematologica 95: 388–397, 2010. doi:10.3324/haematol.2009.016063. PubMed DOI PMC
Mahmodabady AZ, Javadi HR, Kamali M, Najafi A, Hojati Z. Bcr-abl silencing by specific small-interference RNA expression vector as a potential treatment for chronic myeloid leukemia. Iran Biomed J 14: 1–8, 2010. PubMed PMC
Karaki S, Paris C, Rocchi P. Antisense oligonucleotides, a novel developing targeting therapy. In: Antisense Therapy, edited by Sharad S and Kapur S. London: IntechOpen, 2019, chapt. 2, p. 13–30. doi:10.5772/intechopen.82105. DOI
Rázga F, Némethová V. Selective therapeutic intervention: a challenge against off-target effects. Trends Mol Med 23: 671–674, 2017. doi:10.1016/j.molmed.2017.06.007. PubMed DOI
Némethová V, Rázga F. Chronic myelogenous leukemia on target. Cancer Med 7: 3406–3410, 2018. doi:10.1002/cam4.1604. PubMed DOI PMC
Mahon FX, Deininger MWN, Schultheis B, Chabrol J, Reiffers J, Goldman JM, Melo JV. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood 96: 1070–1079, 2000. PubMed
Smetsers TF, Skorski T, van de Locht LT, Wessels HM, Pennings AH, de Witte T, Calabretta B, Mensink EJ. Antisense BCR-ABL oligonucleotides induce apoptosis in the Philadelphia chromosome-positive cell line BV173. Leukemia 8: 129–140, 1994. PubMed
Koller E, Vincent TM, Chappell A, De S, Manoharan M, Bennett CF. Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes. Nucleic Acids Res 39: 4795–4807, 2011. doi:10.1093/nar/gkr089. PubMed DOI PMC
Pendergraff H, Schmidt S, Vikeså J, Weile C, Øverup C, Lindholm MW, Koch T. Nuclear and cytoplasmatic quantification of unconjugated, label-free locked nucleic acid oligonucleotides. Nucleic Acid Ther 30: 4–13, 2020. doi:10.1089/nat.2019.0810. PubMed DOI PMC
Kapustin AN, Davey P, Longmire D, Matthews C, Linnane E, Rustogi N, Stavrou M, Devine PWA, Bond NJ, Hanson L, Sonzini S, Revenko A, MacLeod AR, Ross S, Chiarparin E, Puri S. Antisense oligonucleotide activity in tumour cells is influenced by intracellular LBPA distribution and extracellular vesicle recycling. Commun Biol 4: 1241, 2021. doi:10.1038/s42003-021-02772-0. PubMed DOI PMC
Nemethova V, Mazancova P, Selc M, Jakic K, Uhelska L, Nemethova B, Poturnayova A, Drgona L, Babelova A, Razga F. Effective reduction of SARS-CoV-2 RNA levels using a tailor-made oligonucleotide-based RNA inhibitor. Viruses 14: 685, 2022. doi:10.3390/v14040685. PubMed DOI PMC
Clark RE. Antisense therapeutics in chronic myeloid leukaemia: the promise, the progress and the problems. Leukemia 14: 347–355, 2000. doi:10.1038/sj.leu.2401677. PubMed DOI