Rupture point is associated with divergent hemodynamics in intracranial aneurysms
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38831781
PubMed Central
PMC11146371
DOI
10.3389/fneur.2024.1364105
Knihovny.cz E-zdroje
- Klíčová slova
- computational fluid dynamics, intracranial aneurysm, particle image velocimetry (PIV), rupture, wall shear stress (WSS),
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Understanding the risk factors leading to intracranial aneurysm (IA) rupture have still not been fully clarified. They are vital for proper medical guidance of patients harboring unruptured IAs. Clarifying the hemodynamics associated with the point of rupture could help could provide useful information about some of the risk factors. Thus far, few studies have studied this issue with often diverging conclusions. METHODS: We identified a point of rupture in patients operated for an IAs during surgery, using a combination of preoperative computed tomography (CT) and computed tomography angiography (CTA). Hemodynamic parameters were calculated both for the aneurysm sac as a whole and the point of rupture. In two cases, the results of CFD were compared with those of the experiment using particle image velocimetry (PIV). RESULTS: We were able to identify 6 aneurysms with a well-demarcated point of rupture. In four aneurysms, the rupture point was near the vortex with low wall shear stress (WSS) and high oscillatory shear index (OSI). In one case, the rupture point was in the flow jet with high WSS. In the last case, the rupture point was in the significant bleb and no specific hemodynamic parameters were found. The CFD results were verified in the PIV part of the study. CONCLUSION: Our study shows that different hemodynamic scenarios are associated with the site of IA rupture. The numerical simulations were confirmed by laboratory models. This study further supports the hypothesis that various pathological pathways may lead to aneurysm wall damage resulting in its rupture.
Department of Anatomy Faculty of Medicine Masaryk University Brno Brno Czechia
Department of Biochemistry Faculty of Medicine Masaryk University Brno Brno Czechia
Department of Neurosurgery Masaryk Hospital J E Purkyne University Ústí nad Labem Czechia
Faculty of Mathematics and Physics Mathematical Institute Charles University Prague Czechia
Faculty of Science and Engineering Bernoulli Institute University of Groningen Groningen Netherlands
Institute of Biophysics of the Czech Academy of Sciences Brno Czechia
Institute of Experimental Medicine of the Czech Academy of Sciences Prague Czechia
International Clinical Research Center St Anne's University Hospital Brno Brno Czechia
Zobrazit více v PubMed
Gabriel RA, Kim H, Sidney S, McCulloch CE, Singh V, Johnston SC, et al. . Ten-year detection rate of brain arteriovenous malformations in a large, multiethnic, defined population. Stroke. (2010) 41:21–6. doi: 10.1161/STROKEAHA.109.566018, PMID: PubMed DOI PMC
Dhar S, Tremmel M, Mocco J, Kim M, Yamamoto J, Siddiqui AH, et al. . Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery. (2008) 63:185–96. doi: 10.1227/01.NEU.0000316847.64140.81, PMID: PubMed DOI PMC
Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J, Hopkins LN, et al. . Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke. (2011) 42:144–52. doi: 10.1161/STROKEAHA.110.592923, PMID: PubMed DOI PMC
Xiang J, Yu J, Choi H, Dolan Fox JM, Snyder KV, Levy EI, et al. . Rupture resemblance score (RRS): toward risk stratification of unruptured intracranial aneurysms using hemodynamic-morphological discriminants. J Neurointerv Surg. (2015) 7:490–5. doi: 10.1136/neurintsurg-2014-011218, PMID: PubMed DOI PMC
Jiang Y, Lu G, Ge L, Huang L, Wan H, Wan J, et al. . Rupture point hemodynamics of intracranial aneurysms: case report and literature review. Ann Vasc Surg. (2021) 1:100022. doi: 10.1016/j.avsurg.2021.100022 DOI
Zhang Y, Jing L, Zhang Y, Liu J, Yang X. Low wall shear stress is associated with the rupture of intracranial aneurysm with known rupture point: case report and literature review. BMC Neurol. (2016) 16:231. doi: 10.1186/s12883-016-0759-0, PMID: PubMed DOI PMC
Meng H, Tutino VM, Xiang J, Siddiqui A. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol. (2014) 35:1254–62. doi: 10.3174/ajnr.A3558, PMID: PubMed DOI PMC
Staarmann B, Smith M, Prestigiacomo CJ. Shear stress and aneurysms: a review. Neurosurg Focus. (2019) 47:E2. doi: 10.3171/2019.4.FOCUS19225 PubMed DOI
Ujiie H, Tamano Y, Sasaki K, Hori T. Is the aspect ratio a reliable index for predicting the rupture of a saccular aneurysm? Neurosurgery. (2001) 48:495–502. doi: 10.1097/00006123-200103000-00007, PMID: PubMed DOI
Berg P, Roloff C, Beuing O, Voss S, Sugiyama S-I, Aristokleous N, et al. . The computational fluid dynamics rupture challenge 2013—phase II: variability of hemodynamic simulations in two intracranial aneurysms. J Biomech Eng. (2015) 137:121008. doi: 10.1115/1.4031794, PMID: PubMed DOI
Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. . User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage. (2006) 31:1116–28. doi: 10.1016/j.neuroimage.2006.01.015, PMID: PubMed DOI
Fang Q, Boas DA. (2009). Tetrahedral mesh generation from volumetric binary and grayscale images. 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Boston, MA: IEEE, 1142–1145
Magjarevic R, Poethke J, Spuler A, Petz C, Hege H-C, Goubergrits L, et al. . (2009). Cerebral aneurysm hemodynamics and a length of parent vessel. Dössel O., Schlegel W. C. World Congress on Medical Physics and Biomedical Engineering. September 7–12, 2009. Munich, Germany. (Berlin: Springer; ), 1608–1611
Chabiniok R, Hron J, Jarolímová A, Málek J, Rajagopal KR, Rajagopal K, et al. . Three-dimensional flows of incompressible Navier–Stokes fluids in tubes containing a sinus, with varying slip conditions at the wall. Int J Eng Sci. (2022) 180:103749. doi: 10.1016/j.ijengsci.2022.103749 DOI
Alnæs M, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, et al. . The FEniCS project version 1.5. Arch Numer Softw. (2015) 3:9–23. doi: 10.11588/ANS.2015.100.20553 DOI
Abhyankar S, Brown J, Constantinescu EM, Ghosh D, Smith BF, Zhang H. (2018). PETSc/TS: a modern scalable ODE/DAE solver library. arXiv. Available at: http://arxiv.org/abs/1806.01437 (Accessed July 19, 2022) [Epub ahead of preprint].
Arnold DN, Brezzi F, Fortin M. A stable finite element for the stokes equations. Calcolo. (1984) 21:337–44. doi: 10.1007/BF02576171 DOI
Axier A, Rexiati N, Wang Z, Cheng X, Su R, Aikeremu R, et al. . Effect of hemodynamic changes on the risk of intracranial aneurysm rupture: a systematic review and meta-analysis. Am J Transl Res. (2022) 14:4638–47. PMID: PubMed PMC
Ayachit U. The ParaView Guide: A Parallel Visualization Application. Clifton Park, NY, USA: Kitware, Inc. (2015).
Schneider CA, Rasband WS, Eliceiri KW, Schindelin J, Arganda-Carreras I, Frise E, et al. . NIH image to ImageJ: 25 years of image analysis. Nat Methods. (2012) 9:671–5. doi: 10.1038/nmeth.2089, PMID: PubMed DOI PMC
Sullivan C, Kaszynski A. PyVista: 3D plotting and mesh analysis through a streamlined interface for the visualization toolkit (VTK). J Open Source Softw. (2019) 4:1450. doi: 10.21105/joss.01450 DOI
Hejčl A, Švihlová H, Sejkorová A, Radovnický T, Adámek D, Hron J, et al. . Computational fluid dynamics of a fatal ruptured anterior communicating artery aneurysm. J Neurol Surg A. (2017) 78:610–6. doi: 10.1055/s-0037-1604286, PMID: PubMed DOI
Cebral JR, Detmer F, Chung BJ, Choque-Velasquez J, Rezai B, Lehto H, et al. . Local hemodynamic conditions associated with focal changes in the intracranial aneurysm wall. AJNR Am J Neuroradiol. (2019) 40:510–6. doi: 10.3174/ajnr.A5970, PMID: PubMed DOI PMC
Kosierkiewicz TA, Factor SM, Dickson DW. Immunocytochemical studies of atherosclerotic lesions of cerebral berry aneurysms. J Neuropathol Exp Neurol. (1994) 53:399–406. doi: 10.1097/00005072-199407000-00012, PMID: PubMed DOI
Levesque MJ, Liepsch D, Moravec S, Nerem RM. Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta. Arteriosclerosis. (1986) 6:220–9. doi: 10.1161/01.ATV.6.2.220, PMID: PubMed DOI
Levesque MJ, Nerem RM. The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng. (1985) 107:341–7. doi: 10.1115/1.3138567 PubMed DOI
Sejkorová A, Švihlová H, Ondra P, Kendall DD, Uthamaraj S, Lanzino G, et al. . Hemodynamic changes in four aneurysms leading to their rupture at follow-up periods. Ces Slov Neurol Neurochir. (2020) 83:621–6. doi: 10.48095/cccsnn2020621 DOI
Cebral JR, Sheridan M, Putman CM. Hemodynamics and bleb formation in intracranial aneurysms. AJNR Am J Neuroradiol. (2010) 31:304–10. doi: 10.3174/ajnr.A1819, PMID: PubMed DOI PMC
Beck J, Rohde S, El Beltagy M, Zimmermann M, Berkefeld J, Seifert V, et al. . Difference in configuration of ruptured and unruptured intracranial aneurysms determined by biplanar digital subtraction angiography. Acta Neurochir. (2003) 145:861–5. doi: 10.1007/s00701-003-0124-0, PMID: PubMed DOI
Suga M, Yamamoto Y, Sunami N, Abe T, Kondo A. Growth of asymptomatic unruptured aneurysms in follow-up study: report of three cases. No Shinkei Geka. (2003) 31:303–8. PMID: PubMed
Tsukahara T, Murakami N, Sakurai Y, Yonekura M, Takahashi T, Inoue T, et al. . Treatment of unruptured cerebral aneurysms; a multi-center study at Japanese national hospitals. Acta Neurochir Suppl. (2005) 94:77–85. doi: 10.1007/3-211-27911-3_12 PubMed DOI
Li B, Liu T, Liu J, Liu Y, Cao B, Zhao X, et al. . Reliability of using generic flow conditions to quantify aneurysmal haemodynamics: a comparison against simulations incorporating boundary conditions measured in vivo. Comput Methods Prog Biomed. (2022) 225:107034. doi: 10.1016/j.cmpb.2022.107034, PMID: PubMed DOI
Bordás R, Seshadhri S, Janiga G, Skalej M, Thévenin D. Experimental validation of numerical simulations on a cerebral aneurysm phantom model. Interv Med Appl Sci. (2012) 4:193–205. doi: 10.1556/imas.4.2012.4.4, PMID: PubMed DOI PMC
Brindise MC, Rothenberger S, Dickerhoff B, Schnell S, Markl M, Saloner D, et al. . Multi-modality cerebral aneurysm haemodynamic analysis: in vivo 4D flow MRI, in vitro volumetric particle velocimetry and in silico computational fluid dynamics. J R Soc Interface. (2019) 16:20190465. doi: 10.1098/rsif.2019.0465, PMID: PubMed DOI PMC
Buchmann NA, Yamamoto M, Jermy M, David T. Particle image velocimetry (PIV) and computational fluid dynamics (CFD) modelling of carotid artery haemodynamics under steady flow: a validation study. J Biomech Sci Eng. (2010) 5:421–36. doi: 10.1299/jbse.5.421 DOI
Li Y, Verrelli DI, Yang W, Qian Y, Chong W. A pilot validation of CFD model results against PIV observations of haemodynamics in intracranial aneurysms treated with flow-diverting stents. J Biomech. (2020) 100:109590. doi: 10.1016/j.jbiomech.2019.109590, PMID: PubMed DOI
Roloff C, Stucht D, Beuing O, Berg P. Comparison of intracranial aneurysm flow quantification techniques: standard PIV vs stereoscopic PIV vs tomographic PIV vs phase-contrast MRI vs CFD. J Neurointerv Surg. (2019) 11:275–82. doi: 10.1136/neurintsurg-2018-013921, PMID: PubMed DOI
Schneiders JJ, Marquering HA, van den Berg R, VanBavel E, Velthuis B, Rinkel GJE, et al. . Rupture-associated changes of cerebral aneurysm geometry: high-resolution 3D imaging before and after rupture. AJNR Am J Neuroradiol. (2014) 35:1358–62. doi: 10.3174/ajnr.A3866, PMID: PubMed DOI PMC