• This record comes from PubMed

The CssRS two-component system of Bacillus subtilis contributes to teicoplanin and polymyxin B response

. 2025 Feb ; 70 (1) : 83-99. [epub] 20240607

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
B22UZB-035 Belarusian Republican Foundation for Fundamental Research

Links

PubMed 38847924
DOI 10.1007/s12223-024-01179-8
PII: 10.1007/s12223-024-01179-8
Knihovny.cz E-resources

CssRS is a two-component system that plays a pivotal role in mediating the secretion stress response in Bacillus subtilis. This system upregulates the synthesis of membrane-bound HtrA family proteases that cope with misfolded proteins that accumulate within the cell envelope as a result of overexpression or heat shock. Recent studies have shown the induction of CssRS-regulated genes in response to cell envelope stress. We investigated the induction of the CssRS-regulated htrA promoter in the presence of different cell wall- and membrane-active substances and observed induction of the CssRS-controlled genes by glycopeptides (vancomycin and teicoplanin), polymyxins B and E, certain β-lactams, and detergents. Teicoplanin was shown to elicit remarkably stronger induction than vancomycin and polymyxin B. Teicoplanin and polymyxin B induced the spxO gene expression in a CssRS-dependent fashion, resulting in increased activity of Spx, a master regulator of disulfide stress in Bacillus subtilis. The CssRS signaling pathway and Spx activity were demonstrated to be involved in Bacillus subtilis resistance to teicoplanin and polymyxin B.

See more in PubMed

Anagnostopoulos C, Spizizen J (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746. https://doi.org/10.1007/978-1-4939-0554-6_7 PubMed DOI PMC

Bloor AE, Cranenburgh RM (2006) An efficient method of selectable marker gene excision by Xer recombination for gene replacement in bacterial chromosomes. Appl Environ Microbiol 72:2520–2525. https://doi.org/10.1128/AEM.72.4.2520-2525.2006 PubMed DOI PMC

Cao M, Wang T, Ye R, Helmann JD (2002a) Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis sigma(W) and sigma(M) regulons. Mol Microbiol 45:1267–1276. https://doi.org/10.1046/j.1365-2958.2002.03050.x PubMed DOI

Cao M, Kobel PA, Morshedi MM, Wu MF, Paddon C, Helmann JD (2002b) Defining the Bacillus subtilis sigma(W) regulon: a comparative analysis of promoter consensus search, run-off transcription/macroarray analysis (ROMA), and transcriptional profiling approaches. J Mol Biol 316:443–457. https://doi.org/10.1006/jmbi.2001.5372 PubMed DOI

Chambers SP, Prior SE, Barstow DA, Minton NP (1988) The pMTL nic PubMed DOI

Chmara H, Ripa S, Mignini F, Borowski E (1991) Bacteriolytic effect of teicoplanin. J Gen Microbiol 137:913–919. https://doi.org/10.1099/00221287-137-4-913 PubMed DOI

Darmon E, Noone D, Masson A, Bron S, Kuipers OP, Devine KM, van Dijl JM (2002) A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system of Bacillus subtilis. J Bacteriol 184:5661–5671. https://doi.org/10.1128/JB.184.20.5661-5671.2002 PubMed DOI PMC

Delhaye A, Laloux G, Collet J-F (2019) The lipoprotein NlpE is a Cpx sensor that serves as a sentinel for protein sorting and folding defects in the Escherichia coli envelope. J Bacteriol 201:e00611-e618. https://doi.org/10.1128/JB.00611-18 PubMed DOI PMC

Dubrac S, Bisicchia P, Devine KM, Msadek T (2008) A matter of life and death: cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway. Mol Microbiol 70:1307–1322. https://doi.org/10.1111/j.1365-2958.2008.06483.x PubMed DOI

Eiamphungporn W, Helmann JD (2008) The Bacillus subtilis sigma(M) regulon and its contribution to cell envelope stress responses. Mol Microbiol 67:830–848. https://doi.org/10.1111/j.1365-2958.2007.06090.x PubMed DOI PMC

Ezraty B, Henry C, Hérisse M, Denamur E, Barras F (2014) Commercial lysogeny broth culture media and oxidative stress: a cautious tale. Free Radic Biol Med 74:245–251. https://doi.org/10.1016/j.freeradbiomed.2014.07.010 PubMed DOI

Harwood CR, Cutting SM (1990) Genetic analysis. Molecular Biological Methods for Bacillus. John Wiley and Sons, Chichester

Helmann JD (2016) Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope. Curr Opin Microbiol 30:122–132. https://doi.org/10.1016/j.mib.2016.02.002 PubMed DOI PMC

Hyyryläinen HL, Bolhuis A, Darmon E, Muukkonen L, Koski P, Vitikainen M, Sarvas M, Prágai Z, Bron S, van Dijl JM, Kontinen VP (2001) A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress. Mol Microbiol 41:1159–1172. https://doi.org/10.1046/j.1365-2958.2001.02576.x PubMed DOI

Hyyryläinen HL, Sarvas M, Kontinen VP (2005) Transcriptome analysis of the secretion stress response of Bacillus subtilis. Appl Microbiol Biotechnol 67:389–396. https://doi.org/10.1007/s00253-005-1898-1 PubMed DOI

Hyyryläinen HL, Pietiäinen M, Lundén T, Ekman A, Gardemeister M, Murtomäki-Repo S, Antelmann H, Hecker M, Valmu L, Sarvas M, Kontinen VP (2007) The density of negative charge in the cell wall influences two-component signal transduction in Bacillus subtilis. Microbiology 153:2126–2136. https://doi.org/10.1099/mic.0.2007/008680-0 PubMed DOI

Hyyryläinen HL, Marciniak BC, Dahncke K, Pietiäinen M, Courtin P, Vitikainen M, Seppala R, Otto A, Becher D, Chapot-Chartier MP, Kuipers OP, Kontinen VP (2010) Penicillin-binding protein folding is dependent on the PrsA peptidyl-prolyl cis-trans isomerase in Bacillus subtilis. Mol Microbiol 77:108–127. https://doi.org/10.1111/j.1365-2958.2010.07188.x PubMed DOI

Jordan S, Junker A, Helmann JD, Mascher T (2006) Regulation of LiaRS-dependent gene expression in Bacillus subtilis: identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell envelope stress-sensing two-component system. J Bacteriol 188:5153–5166. https://doi.org/10.1128/JB.00310-06 PubMed DOI PMC

Kachan AV, Evtushenkov AN (2021) Acidification of the culture medium by products of glucose metabolism inhibits the synthesis of heterologous extracellular α-amylase by Bacillus subtilis 168. Appl Biochem Microbiol 57:443–451. https://doi.org/10.1134/S0003683821040062 DOI

Kajfasz JK, Mendoza JE, Gaca AO, Miller JH, Koselny KA, Giambiagi-Demarval M, Wellington M, Abranches J, Lemos JA (2012) The Spx regulator modulates stress responses and virulence in Enterococcus faecalis. Infect Immun 80:2265–2275. https://doi.org/10.1128/IAI.00026-12 PubMed DOI PMC

Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130:797–810. https://doi.org/10.1016/j.cell.2007.06.049 PubMed DOI

Mascher T, Margulis NG, Wang T, Ye RW, Helmann JD (2003) Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol Microbio l50:1591–1604. https://doi.org/10.1046/j.1365-2958.2003.03786.x

Mascher T, Zimmer SL, Smith TA, Helmann JD (2004) Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis. Antimicrob Agents Chemother 48:2888–2896. https://doi.org/10.1128/AAC.48.8.2888-2896.2004 PubMed DOI PMC

Murray EJ, Stanley-Wall NR (2010) The sensitivity of Bacillus subtilis to diverse antimicrobial compounds is influenced by Abh. Arch Microbiol 192:1059–1067. https://doi.org/10.1007/s00203-010-0630-4 PubMed DOI

Nakano S, Küster-Schöck E, Grossman AD, Zuber P (2003) Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilis. Proc Natl Acad Sci USA 100:13603–13608. https://doi.org/10.1073/pnas.2235180100 PubMed DOI PMC

Noone D, Howell A, Collery R, Devine KM (2001) YkdA and YvtA, HtrA-like serine proteases in Bacillus subtilis, engage in negative autoregulation and reciprocal cross-regulation of ykdA and yvtA gene expression. J Bacteriol 183:654–663. https://doi.org/10.1128/JB.183.2.654-663.2001 PubMed DOI PMC

Noone D, Botella E, Butler C, Hansen A, Jende I, Devine KM (2012) Signal perception by the secretion stress-responsive CssRS two-component system in Bacillus subtilis. J Bacteriol 194:1800–1814. https://doi.org/10.1128/JB.05767-11 PubMed DOI PMC

Peters JM et al (2016) A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165:1493–1506. https://doi.org/10.1016/j.cell.2016.05.003 PubMed DOI PMC

Radeck J, Fritz G, Mascher T (2017) The cell envelope stress response of Bacillus subtilis: from static signaling devices to dynamic regulatory network. Curr Genet 63:79–90. https://doi.org/10.1007/s00294-016-0624-0 PubMed DOI

Rochat T, Nicolas P, Delumeau O, Rabatinová A, Korelusová J, Leduc A, Bessières P, Dervyn E, Krásny L, Noirot P (2012) Genome-wide identification of genes directly regulated by the pleiotropic transcription factor Spx in Bacillus subtilis. Nucleic Acids Res 40:9571–9583. https://doi.org/10.1093/nar/gks755 PubMed DOI PMC

Rojas-Tapias DF, Helmann JD (2018a) Induction of the Spx regulon by cell wall stress reveals novel regulatory mechanisms in Bacillus subtilis. Mol Microbiol 107:659–674. https://doi.org/10.1111/mmi.13906 PubMed DOI PMC

Rojas-Tapias DF, Helmann JD (2018b) Stabilization of Bacillus subtilis Spx under cell wall stress requires the anti-adaptor protein YirB. PLoS Genet 14:e1007531. https://doi.org/10.1371/journal.pgen.1007531 PubMed DOI PMC

Rukmana A, Morimoto T, Takahashi H, Ogasawara G, Ogasawara N (2009) Assessment of transcriptional responses of Bacillus subtilis cells to the antibiotic enduracidin, which interferes with cell wall synthesis, using a high-density tiling chip. Genes Genet Syst 84:253–267. https://doi.org/10.1266/ggs.84.253 PubMed DOI

Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor, New York

Sampson TR, Liu X, Schroeder MR, Kraft CS, Burd EM, Weiss DS (2012) Rapid killing of Acinetobacter baumannii by polymyxins is mediated by a hydroxyl radical death pathway. Antimicrob Agents Chemother 56:5642–5949. https://doi.org/10.1128/AAC.00756-12 PubMed DOI PMC

Serizawa M, Kodama K, Yamamoto H, Kobayashi K, Ogasawara N, Sekiguchi J (2005) Functional analysis of the YvrGHb two-component system of Bacillus subtilis: identification of the regulated genes by DNA microarray and northern blot analyses. Biosci Biotechnol Biochem 69:2155–2169. https://doi.org/10.1271/bbb.69.2155 PubMed DOI

Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414. https://doi.org/10.1101/cshperspect.a000414 PubMed DOI PMC

Staroń A, Finkeisen DE, Mascher T (2011) Peptide antibiotic sensing and detoxification modules of Bacillus subtilis. Antimicrob Agents Chemother 55:515–525. https://doi.org/10.1128/AAC.00352-10 PubMed DOI

Stubbendieck RM, Straight PD (2017) Linearmycins activate a two-component signaling system involved in bacterial competition and biofilm morphology. J Bacteriol 199:e00186-e217. https://doi.org/10.1128/JB.00186-17 PubMed DOI PMC

Svetitsky S, Leibovici L, Paul M (2009) Comparative efficacy and safety of vancomycin versus teicoplanin: systematic review and meta-analysis. Antimicrob Agents Chemother 53:4069–4079. https://doi.org/10.1128/AAC.00341-09 PubMed DOI PMC

Vega LA, Caparon MG (2012) Cationic antimicrobial peptides disrupt the Streptococcus pyogenes ExPortal. Mol Microbiol 85:1119–1132. https://doi.org/10.1111/j.1365-2958.2012.08163.x PubMed DOI PMC

Wang Y, Hougaard AB, Paulander W, Skibsted LH, Ingmer H, Andersen ML (2015) Catalase expression is modulated by vancomycin and ciprofloxacin and influences the formation of free radicals in Staphylococcus aureus cultures. Appl Environ Microbiol 81:6393–6398. https://doi.org/10.1128/AEM.01199-15 PubMed DOI PMC

Wecke T, Bauer T, Harth H, Mäder U, Mascher T (2011) The rhamnolipid stress response of Bacillus subtilis. FEMS Microbiol Lett 323:113–123. https://doi.org/10.1111/j.1574-6968.2011.02367.x PubMed DOI

Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119. https://doi.org/10.1016/0378-1119(85)90120-9 PubMed DOI

Yim G, Thaker MN, Koteva K, Wright G (2014) Glycopeptide antibiotic biosynthesis. J Antibiot (tokyo) 67:31–41. https://doi.org/10.1038/ja.2013.117 PubMed DOI

Yu Z, Zhu Y, Fu J, Qiu J, Yin J (2019) Enhanced NADH metabolism involves colistin-induced killing of Bacillus subtilis and Paenibacillus polymyxa. Molecules 24:387. https://doi.org/10.3390/molecules24030387 PubMed DOI PMC

Zhao H, Sachla AJ, Helmann JD (2019) Mutations of the Bacillus subtilis YidC1 (SpoIIIJ) insertase alleviate stress associated with σM-dependent membrane protein overproduction. PLoS Genet 15:e1008263. https://doi.org/10.1371/journal.pgen.1008263 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...