Marine microalgae Schizochytrium demonstrates strong production of essential fatty acids in various cultivation conditions, advancing dietary self-sufficiency

. 2024 ; 11 () : 1290701. [epub] 20240524

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38854161

INTRODUCTION: Polyunsaturated fatty acids (PUFAs) are essential nutrients that humans obtain from their diet, primarily through fish oil consumption. However, fish oil production is no longer sustainable. An alternative approach is to produce PUFAs through marine microalgae. Despite the potential of algae strains to accumulate high concentrations of PUFAs, including essential fatty acids (EFAs), many aspects of PUFA production by microalgae remain unexplored and their current production outputs are frequently suboptimal. METHODS: In this study, we optimized biomass and selected ω-3 PUFAs production in two strains of algae, Schizochytrium marinum AN-4 and Schizochytrium limacinum CO3H. We examined a broad range of cultivation conditions, including pH, temperature, stirring intensity, nutrient concentrations, and their combinations. RESULTS: We found that both strains grew well at low pH levels (4.5), which could reduce bacterial contamination and facilitate the use of industrial waste products as substrate supplements. Intensive stirring was necessary for rapid biomass accumulation but caused cell disruption during lipid accumulation. Docosahexaenoic acid (DHA) yield was independent of cultivation temperature within a range of 28-34°C. We also achieved high cell densities (up to 9 g/L) and stable DHA production (average around 0.1 g/L/d) under diverse conditions and nutrient concentrations, with minimal nutrients required for stable production including standard sea salt, glucose or glycerol, and yeast extract. DISCUSSION: Our findings demonstrate the potential of Schizochytrium strains to boost industrial-scale PUFA production and make it more economically viable. Additionally, these results may pave the way for smaller-scale production of essential fatty acids in a domestic setting. The development of a new minimal culturing medium with reduced ionic strength and antibacterial pH could further enhance the feasibility of this approach.

Zobrazit více v PubMed

Gupta A, Barrow CJ, Puri M. Omega-3 biotechnology: thraustochytrids as a novel source of omega-3 oils. Biotechnol Adv. (2012) 30:1733–45. doi: 10.1016/j.biotechadv.2012.02.014, PMID: PubMed DOI

Zárate R, Jaber-Vazdekis N, Tejera N, Pérez JA, Rodríguez C. Significance of long chain polyunsaturated fatty acids in human health. Clin Transl Med. (2017) 6:25. doi: 10.1186/s40169-017-0153-6, PMID: PubMed DOI PMC

Lenihan-Geels G, Bishop K, Ferguson L. Alternative Sources of Omega-3 Fats: Can We Find a Sustainable Substitute for Fish? Nutrients. (2013) 5:1301–15. doi: 10.3390/nu5041301, PMID: PubMed DOI PMC

Zeitoun MM, Mehana E-SE. Impact of Water Pollution with Heavy Metals on Fish Health: Overview and Updates. Glob Vet. (2014) 12:219–31. doi: 10.5829/idosi.gv.2014.12.02.82219 DOI

Kang JX. Omega-3: a link between global climate change and human health. Biotechnol Adv. (2011) 29:388–90. doi: 10.1016/j.biotechadv.2011.02.003, PMID: PubMed DOI PMC

Puri M, Thyagarajan T, Gupta A, Barrow CJ. Omega-3 Fatty Acids Produced from Microalgae In: Kim S-K, editor. Hb25_Springer Handbook of Marine Biotechnology. Berlin, Heidelberg: Springer Berlin Heidelberg; (2015). 1043–57.

Chisti Y. Biodiesel from microalgae. Biotechnol Adv. (2007) 25:294–306. doi: 10.1016/j.biotechadv.2007.02.001 PubMed DOI

Yaakob Z, Ali E, Zainal A, Mohamad M, Takriff M. 2016 Biomolecules From Microalgae for Animals. Pdf J Biol Res. (2015) 21:1–10. doi: 10.1186/2241-5793-21-6, PMID: PubMed DOI PMC

Jung J-Y, Lee H, Shin W-S, Sung M-G, Kwon J-H, Yang J-W. Utilization of seawater for cost-effective cultivation and harvesting of Scenedesmus obliquus. Bioprocess Biosyst Eng. (2015) 38:449–55. doi: 10.1007/s00449-014-1284-4, PMID: PubMed DOI

Bailey RB, Dimasi D, Hansen JM, Mirrasoul PJ, Ruecker CM, Veeder GT, et al. . Enhanced production of lipids containing polyenoic fatty acid by very high density cultures of eukaryotic microbes in fermenters. United States patent and trademark office. (2003). Available at: https://patents.google.com/patent/US6607900B2/en.

Menegol T, Romero-Villegas GI, López-Rodríguez M, Navarro-López E, López-Rosales L, Chisti Y, et al. . Mixotrophic production of polyunsaturated fatty acids and carotenoids by the microalga Nannochloropsis gaditana. J Appl Phycol. (2019) 31:2823–32. doi: 10.1007/s10811-019-01828-3 DOI

Thurn A-L, Stock A, Gerwald S, Weuster-Botz D. Simultaneous photoautotrophic production of DHA and EPA by Tisochrysis lutea and Microchloropsis salina in co-culture. Bioresour Bioprocess. (2022) 9:130. doi: 10.1186/s40643-022-00612-5, PMID: PubMed DOI PMC

Man CH, Shimura Y, Suzuki I. Identification of Extracellular Proteases Induced by Nitrogen-Limited Conditions in the Thraustochytrids Schizochytrium aggregatum ATCC 28209. Mar Biotechnol. (2022) 24:243–54. doi: 10.1007/s10126-022-10103-5, PMID: PubMed DOI

Taoka Y, Nagano N, Okita Y, Izumida H, Sugimoto S, Hayashi M. Extracellular Enzymes Produced by Marine Eukaryotes, Thraustochytrids. Biosci Biotechnol Biochem. (2009) 73:180–2. doi: 10.1271/bbb.80416 PubMed DOI

Aasen IM, Ertesvåg H, Heggeset TMB, Liu B, Brautaset T, Vadstein O, et al. . Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Appl Microbiol Biotechnol. (2016) 100:4309–21. doi: 10.1007/s00253-016-7498-4, PMID: PubMed DOI

Kaliyamoorthy K, Chavanich S, Kandasamy K, Ponnuvel M, Kamlangdee N, Taoka Y, et al. . PUFA and carotenoid producing thraustochytrids and their anti-microbial and antioxidant activities. Front Mar Sci. (2023) 10:1126452. doi: 10.3389/fmars.2023.1126452 DOI

Fossier Marchan L, Lee Chang KJ, Nichols PD, Mitchell WJ, Polglase JL, Gutierrez T. Taxonomy, ecology and biotechnological applications of thraustochytrids: a review. Biotechnol Adv. (2018) 36:26–46. doi: 10.1016/j.biotechadv.2017.09.003, PMID: PubMed DOI

Chang G, Gao N, Tian G, Wu Q, Chang M, Wang X. Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. Bioresour Technol. (2013) 142:400–6. doi: 10.1016/j.biortech.2013.04.107, PMID: PubMed DOI

Li J, Liu R, Chang G, Li X, Chang M, Liu Y, et al. . A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Bioresour Technol. (2015) 177:51–7. doi: 10.1016/j.biortech.2014.11.046, PMID: PubMed DOI

Russo GL, Langellotti AL, Sacchi R, Masi P. Techno-economic assessment of DHA-rich Aurantiochytrium sp. production using food industry by-products and waste streams as alternative growth media. Bioresour Technol Rep. (2022) 18:100997. doi: 10.1016/j.biteb.2022.100997 DOI

Russo GL, Langellotti AL, Blasco T, Oliviero M, Sacchi R, Masi P. Production of omega-3 oil by aurantiochytrium mangrovei using spent osmotic solution from candied fruit industry as sole organic carbon source. PRO. (2021) 9, 1–8. doi: 10.3390/pr9101834 DOI

Russo GL, Langellotti AL, Verardo V, Martín-García B, Di Pierro P, Sorrentino A, et al. . Formulation of new media from dairy and brewery wastes for a sustainable production of dha-rich oil by aurantiochytrium mangrovei. Mar Drugs. (2022) 20, 1–16. doi: 10.3390/md20010039, PMID: PubMed DOI PMC

Park WK, Moon M, Shin SE, Cho JM, Suh WI, Chang YK, et al. . Economical DHA (Docosahexaenoic acid) production from Aurantiochytrium sp. KRS101 using orange peel extract and low cost nitrogen sources. Algal Res. (2018) 29:71–9. doi: 10.1016/j.algal.2017.11.017 DOI

Russo GL, Langellotti AL, Martín-García B, Verardo V, Romano R, Sacchi R, et al. . New Biotechnological Production of EPA by Pythium irregulare Using Alternative Sustainable Media Obtained from Food Industry By-Products and Waste. Sustain For. (2023) 15:1147. doi: 10.3390/su15021147 DOI

Lewis TE, Nichols PD, McMeekin TA. The biotechnological potential of thraustochytrids. Mar Biotechnol. (1999) 1:580–7. doi: 10.1007/PL00011813, PMID: PubMed DOI

Humhal T, Kastanek P, Jezkova Z, Cadkova A, Kohoutkova J, Branyik T. Use of saline waste water from demineralization of cheese whey for cultivation of Schizochytrium limacinum PA-968 and Japonochytrium marinum AN-4. Bioprocess Biosyst Eng. (2017) 40:395–402. doi: 10.1007/s00449-016-1707-5, PMID: PubMed DOI

Nedbal L, Trtílek M, Cervený J, Komárek O, Pakrasi HB. A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics. Biotechnol Bioeng. (2008) 100:902–10. doi: 10.1002/bit.21833, PMID: PubMed DOI

Zavřel T, Schoffman H, Lukeš M, Fedorko J, Keren N, Červený J. Monitoring fitness and productivity in cyanobacteria batch cultures. Algal Res. (2021) 56:102328–15. doi: 10.1016/j.algal.2021.102328 DOI

Zavřel T, Sinetova MA, Búzová D, Literáková P, Červený J. Characterization of a model cyanobacterium Synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor. Eng Life Sci. (2015) 15:122–32. doi: 10.1002/elsc.201300165 DOI

Liang Y, Sarkany N, Cui Y, Yesuf J, Trushenski J, Blackburn JW. Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresour Technol. (2010) 101:3623–7. doi: 10.1016/j.biortech.2009.12.087, PMID: PubMed DOI

Lund PA, De Biase D, Liran O, Scheler O, Mira NP, Cetecioglu Z, et al. . Understanding How Microorganisms Respond to Acid pH Is Central to Their Control and Successful Exploitation. Front Microbiol. (2020) 11:556140. doi: 10.3389/fmicb.2020.556140, PMID: PubMed DOI PMC

Zavřel T, Faizi M, Loureiro C, Sinetova M, Zorina A, Poschmann G, et al. . Quantitative insights into the cyanobacterial cell economy. eLife. (2019) 8:1–29. doi: 10.7554/elife.42508, PMID: PubMed DOI PMC

Rodrigues JS, Kovács L, Lukeš M, Höper R, Steuer R, Červený J, et al. . Characterizing isoprene production in cyanobacteria – Insights into the effects of light, temperature, and isoprene on Synechocystis sp. PCC 6803. Bioresour Technol. (2023) 380:129068. doi: 10.1016/j.biortech.2023.129068 PubMed DOI

Zhu L, Zhang X, Ji L, Song X, Kuang C. Changes of lipid content and fatty acid composition of Schizochytrium limacinum in response to different temperatures and salinities. Process Biochem. (2007) 42:210–4. doi: 10.1016/j.procbio.2006.08.002 DOI

Chatdumrong W, Yongmanitchai W, Limtong S, Worawattanamateekul W. Optimization of docosahexaenoic acid (DHA) production and improvement of astaxanthin content in a mutant Schizochytrium limacinum isolated from mangrove forest in Thailand. Kasetsart J Nat Sci. (2007) 41:324–34.

Rebej M, Juřena T, Vondál J, Fuente Herraiz D, Červený J, Jegla Z. Numerical simulations and validation of single- and two-phase flow in a stirred lab-scale photobioreactor. Biosyst Eng. (2023) 230:35–50. doi: 10.1016/j.biosystemseng.2023.04.004 DOI

Wang C, Lan CQ. Effects of shear stress on microalgae – A review. Biotechnol Adv. (2018) 36:986–1002. doi: 10.1016/j.biotechadv.2018.03.001, PMID: PubMed DOI

Chang G, Wu J, Jiang C, Tian G, Wu Q, Chang M, et al. . The relationship of oxygen uptake rate and kLa with rheological properties in high cell density cultivation of docosahexaenoic acid by Schizochytrium sp. S31. Bioresour Technol. (2014) 152:234–40. doi: 10.1016/j.biortech.2013.11.002, PMID: PubMed DOI

Baatout S, Leys N, Hendrickx L, Dams A, Mergeay M. Physiological changes induced in bacteria following pH stress as a model for space research. Acta Astronaut. (2007) 60:451–9. doi: 10.1016/j.actaastro.2006.09.012 DOI

Guan N, Liu L. Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biotechnol. (2020) 104:51–65. doi: 10.1007/s00253-019-10226-1 PubMed DOI PMC

D’Angelo S, Motti ML, Meccariello R. ω-3 and ω-6 Polyunsaturated Fatty Acids, Obesity and Cancer. Nutrients. (2020) 12:2751. doi: 10.3390/nu12092751, PMID: PubMed DOI PMC

COMMISSION IMPLEMENTING REGULATION (EU) 2022/1365 of 4 August 2022 amending Implementing Regulation (EU) 2017/2470 as regards the conditions of use of the novel food Schizochytrium sp. oil rich in DHA and EPA. (2022)1–4. Available at: https://eur-lex.europa.eu/eli/reg_impl/2022/1365/oj

Bates H, Zavafer A, Szabó M, Ralph PJ. The Phenobottle, an open-source photobioreactor platform for environmental simulation. Algal Res. (2020) 52:102105. doi: 10.1016/j.algal.2020.102105 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...