Removing 65 Years of Approximation in Rotating Ring Disk Electrode Theory with Physics-Informed Neural Networks
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38856185
PubMed Central
PMC11194821
DOI
10.1021/acs.jpclett.4c01258
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The rotating Ring Disk Electrode (RRDE), since its introduction in 1959 by Frumkin and Nekrasov, has become indispensable with diverse applications in electrochemistry, catalysis, and material science. The collection efficiency (N) is an important parameter extracted from the ring and disk currents of the RRDE, providing valuable information about reaction mechanism, kinetics, and pathways. The theoretical prediction of N is a challenging task: requiring solution of the complete convective diffusion mass transport equation with complex velocity profiles. Previous efforts, including by Albery and Bruckenstein who developed the most widely used analytical equations, heavily relied on approximations by removing radial diffusion and using approximate velocity profiles. 65 years after the introduction of RRDE, we employ a physics-informed neural network to solve the complete convective diffusion mass transport equation, to reveal the formerly neglected edge effects and velocity corrections on N, and to provide a guideline where conventional approximation is applicable.
Department of Computing Imperial College London Exhibition Road London SW7 2AZ United Kingdom
Department of Engineering Science University of Oxford Parks Road Oxford OX1 3PJ United Kingdom
Independent Researcher Offenbach am Main 63067 Germany
St John's College University of Oxford St Giles' Oxford OX1 3JP Great Britain
Zobrazit více v PubMed
Frumkin A.; Nekrasov L. On the ring-disk electrode. Dok. Akad. Nauk SSSR 1959, 126, 115.
Frumkin A.; Nekrasov L.; Levich B.; Ivanov J. Die anwendung der rotierenden scheibenelektrode mit einem ringe zur untersuchung von zwischenprodukten elektrochemischer reaktionen. J. Electroanal. Chem. 1959, 1 (1), 84–90. 10.1016/0022-0728(59)80012-7. DOI
Ivanov Y. B.Some questions of the theory of convective diffusion in liquids ;Moscow Engineering Physics Institute: Moscow, Russia, 1958.
Ivanov I.; Levich V. Investigation of unstable intermediary products of electrode reactions by means of a rotating disc electrode. Doklady Akademii Nauk SSSR 1959, 126 (5), 1029–1032.
Paulus U. A.; Schmidt T. J.; Gasteiger H. A.; Behm R. J. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J. Electroanal. Chem. 2001, 495 (2), 134–145. 10.1016/S0022-0728(00)00407-1. DOI
Hossen M. M.; Hasan M. S.; Sardar M. R. I.; Haider J. b.; Mottakin; Tammeveski K.; Atanassov P. State-of-the-art and developmental trends in platinum group metal-free cathode catalyst for anion exchange membrane fuel cell (AEMFC). Applied Catalysis B: Environmental 2023, 325, 12173310.1016/j.apcatb.2022.121733. DOI
Scholz J.; Risch M.; Stoerzinger K. A.; Wartner G.; Shao-Horn Y.; Jooss C. Rotating Ring–Disk Electrode Study of Oxygen Evolution at a Perovskite Surface: Correlating Activity to Manganese Concentration. J. Phys. Chem. C 2016, 120 (49), 27746–27756. 10.1021/acs.jpcc.6b07654. DOI
Hessami S.; Tobias C. W. In-situ measurement of interfacial pH using a rotating ring-disk electrode. AIChE journal 1993, 39 (1), 149–162. 10.1002/aic.690390115. DOI
Lu Y.-C.; He Q.; Gasteiger H. A. Probing the Lithium–Sulfur Redox Reactions: A Rotating-Ring Disk Electrode Study. J. Phys. Chem. C 2014, 118 (11), 5733–5741. 10.1021/jp500382s. DOI
Karman T. V. Uber laminare und turbulente Reibung. Z. Angew. Math. Mech. 1921, 1, 233–252. 10.1002/zamm.19210010401. DOI
Cochran W.The flow due to a rotating disc. In Mathematical proceedings of the Cambridge philosophical society ;Cambridge University Press, 1934; Vol. 30, pp 365–375.
Albery W.; Bruckenstein S. Ring-disc electrodes. Part 2.—Theoretical and experimental collection effciencies. Trans. Faraday Soc. 1966, 62, 1920–1931. 10.1039/TF9666201920. DOI
Bruckenstein S.; Feldman G. A. Radial transport times at rotating ring-disk electrodes. Limitations on the detection of electrode intermediates undergoing homogeneous chemical reacti. Journal of Electroanalytical Chemistry (1959) 1965, 9 (5), 395–399. 10.1016/0022-0728(65)85037-9. DOI
Smyrl W. H.; Newman J. Limiting current on a rotating disk with radial diffusion. J. Electrochem. Soc. 1971, 118 (7), 1079.10.1149/1.2408250. DOI
Chen H.; Kätelhön E.; Compton R. G. Rotating Disk Electrodes beyond the Levich Approximation: Physics-Informed Neural Networks Reveal and Quantify Edge Effects. Anal. Chem. 2023, 95 (34), 12826–12834. 10.1021/acs.analchem.3c01936. PubMed DOI PMC
Prater K. B.; Bard A. J. Rotating Ring-Disk Electrodes: I. Fundamentals of the Digital Simulation Approach. Disk and Ring Transients and Collection Efficiencies. J. Electrochem. Soc. 1970, 117 (2), 207.10.1149/1.2407466. DOI
Feldberg S. W.; Bowers M. L.; Anson F. C. Hopscotch-finite-difference simulation of the rotating ring-disc electrode. J. Electroanal. Chem. Interfacial Electrochem. 1986, 215 (1–2), 11–28. 10.1016/0022-0728(86)87002-4. DOI
Britz D.; Østerby O.; Strutwolf J. Minimum grid digital simulation of chronoamperometry at a disk electrode. Electrochim. Acta 2012, 78, 365–376. 10.1016/j.electacta.2012.06.009. DOI
Vesztergom S.; Barankai N.; Kovács N.; Ujvári M.; Siegenthaler H.; Broekmann P.; Láng G. G. Electrical cross-talk in four-electrode experiments. J. Solid State Electrochem. 2016, 20 (11), 3165–3177. 10.1007/s10008-016-3294-4. DOI
Raissi M.; Perdikaris P.; Karniadakis G. E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. 10.1016/j.jcp.2018.10.045. DOI
Cai S.; Mao Z.; Wang Z.; Yin M.; Karniadakis G. E. Physics-informed neural networks (PINNs) for fluid mechanics: A review. Acta Mech. Sin. 2021, 37 (12), 1727–1738. 10.1007/s10409-021-01148-1. DOI
Xu S.; Sun Z.; Huang R.; Guo D.; Yang G.; Ju S. A practical approach to flow field reconstruction with sparse or incomplete data through physics informed neural network. Acta Mech. Sin. 2023, 39 (3), 322302.10.1007/s10409-022-22302-x. DOI
Zhou T.; Jiang S.; Han T.; Zhu S.-P.; Cai Y. A physically consistent framework for fatigue life prediction using probabilistic physics-informed neural network. Int. J. Fatigue 2023, 166, 10723410.1016/j.ijfatigue.2022.107234. DOI
Bai J.; Rabczuk T.; Gupta A.; Alzubaidi L.; Gu Y. A physics-informed neural network technique based on a modified loss function for computational 2D and 3D solid mechanics. Computational Mechanics 2023, 71 (3), 543–562. 10.1007/s00466-022-02252-0. DOI
Sel K.; Mohammadi A.; Pettigrew R. I.; Jafari R. Physics-informed neural networks for modeling physiological time series for cuffless blood pressure estimation. NPJ. Digital Medicine 2023, 6 (1), 110.10.1038/s41746-023-00853-4. PubMed DOI PMC
Zhang X.; Mao B.; Che Y.; Kang J.; Luo M.; Qiao A.; Liu Y.; Anzai H.; Ohta M.; Guo Y.; et al. Physics-informed neural networks (PINNs) for 4D hemodynamics prediction: An investigation of optimal framework based on vascular morphology. Comput. Biol. Med. 2023, 164, 107287.10.1016/j.compbiomed.2023.107287. PubMed DOI
Chen H.; Kätelhön E.; Compton R. G. The application of physics-informed neural networks to hydrodynamic voltammetry. Analyst 2022, 147, 1881–1891. 10.1039/D2AN00456A. PubMed DOI
Kim D.; Lee J. A Review of Physics Informed Neural Networks for Multiscale Analysis and Inverse Problems. Multiscale Science and Engineering 2024, 6, 1.10.1007/s42493-024-00106-w. DOI
Chen H.; Yang M.; Smetana B.; Novák V.; Matějka V.; Compton R. G. Discovering Electrochemistry with an Electrochemistry-Informed Neural Network (ECINN). Angew. Chem., Int. Ed. 2024, 63, e20231593710.1002/anie.202315937. PubMed DOI
Kingma D. P.; Ba J.. Adam: A method for stochastic optimization. arXiv 2014.10.48550/arXiv.1412.6980 DOI
Albery W. J.; Hitchman M. L.; Ulstrup J. Ring-disc electrodes. Part 10.—Application to second-order kinetics. Trans. Faraday Soc. 1969, 65 (0), 1101–1112. 10.1039/TF9696501101. DOI