Lipid droplets control the negative effect of non-yeast sterols in membranes of Saccharomyces cerevisiae under hypoxic stress
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38866087
DOI
10.1016/j.bbalip.2024.159523
PII: S1388-1981(24)00073-8
Knihovny.cz E-zdroje
- Klíčová slova
- Fatty acid, Lipid droplet, Lipotoxicity, Plasma membrane, Relative membrane potential, Sterol,
- MeSH
- anaerobióza MeSH
- buněčná membrána metabolismus účinky léků MeSH
- cholesterol metabolismus MeSH
- ergosterol metabolismus MeSH
- esterifikace MeSH
- fyziologický stres MeSH
- lipidová tělíska * metabolismus MeSH
- Saccharomyces cerevisiae - proteiny metabolismus genetika MeSH
- Saccharomyces cerevisiae * metabolismus růst a vývoj účinky léků MeSH
- steroly * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cholesterol MeSH
- ergosterol MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- steroly * MeSH
The effectivity of utilization of exogenous sterols in the yeast Saccharomyces cerevisiae exposed to hypoxic stress is dependent on the sterol structure. The highly imported sterols include animal cholesterol or plant sitosterol, while ergosterol, typical of yeasts, is imported to a lesser extent. An elevated utilization of non-yeast sterols is associated with their high esterification and relocalization to lipid droplets (LDs). Here we present data showing that LDs and sterol esterification play a critical role in the regulation of the accumulation of non-yeast sterols in membranes. Failure to form LDs during anaerobic growth in media supplemented with cholesterol or sitosterol resulted in an extremely long lag phase, in contrast to normal growth in media with ergosterol or plant stigmasterol. Moreover, in hem1∆, which mimics anaerobiosis, neither cholesterol nor sitosterol supported the growth in an LD-less background. The incorporation of non-ergosterol sterols into the membranes affected fundamental membrane characteristics such as relative membrane potential, permeability, tolerance to osmotic stress and the formation of membrane domains. Our findings reveal that LDs assume an important role in scenarios wherein cells are dependent on the utilization of exogenous lipids, particularly under anoxia. Given the diverse lipid structures present in yeast niches, LDs fulfil a protective role, mitigating the risk of excessive accumulation of potentially toxic steroids and fatty acids in the membranes. Finally, we present a novel function for sterols in a model eukaryotic cell - alleviation of the lipotoxicity of unsaturated fatty acids.
Citace poskytuje Crossref.org