Exploring Folklore Ecuadorian Medicinal Plants and Their Bioactive Components Focusing on Antidiabetic Potential: An Overview
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
20233105
Czech University of Life Sciences Prague
PubMed
38891245
PubMed Central
PMC11174784
DOI
10.3390/plants13111436
PII: plants13111436
Knihovny.cz E-zdroje
- Klíčová slova
- antidiabetic, antihyperglycemic, bio-active compound, hypoglycemic, medicinal plant,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Diabetes mellitus (DM) is a global health concern characterized by a deficiency in insulin production. Considering the systemic toxicity and limited efficacy associated with current antidiabetic medications, there is the utmost need for natural, plant-based alternatives. Herbal medicines have experienced exponential growth in popularity globally in recent years for their natural origins and minimal side effects. Ecuador has a rich cultural history in ethnobotany that plays a crucial role in its people's lives. This study identifies 27 Ecuadorian medicinal plants that are traditionally used for diabetes treatment and are prepared through infusion, decoction, or juice, or are ingested in their raw forms. Among them, 22 plants have demonstrated hypoglycemic or anti-hyperglycemic properties that are rich with bioactive phytochemicals, which was confirmed in several in vitro and in vivo studies. However, Bryophyllum gastonis-bonnieri, Costus villosissimus, Juglans neotropica, Pithecellobium excelsum, and Myroxylon peruiferum, which were extensively used in traditional medicine preparation in Ecuador for many decades to treat diabetes, are lacking in pharmacological elucidation. The Ecuadorian medicinal plants used to treat diabetes have been found to have several bioactive compounds such as flavonoids, phenolics, fatty acids, aldehydes, and terpenoids that are mainly responsible for reducing blood sugar levels and oxidative stress, regulating intestinal function, improving insulin resistance, inhibiting α-amylase and α-glucosidase, lowering gluconeogenic enzymes, stimulating glucose uptake mechanisms, and playing an important role in glucose and lipid metabolism. However, there is a substantial lack of integrated approaches between the existing ethnomedicinal practices and pharmacological research. Therefore, this review aims to discuss and explore the traditional medicinal plants used in Ecuador for treating DM and their bioactive phytochemicals, which are mainly responsible for their antidiabetic properties. We believe that the use of Ecuadorian herbal medicine in a scientifically sound way can substantially benefit the local economy and industries seeking natural products.
Zobrazit více v PubMed
Chan J.C.N., Lim L.-L., Wareham N.J., Shaw J.E., Orchard T.J., Zhang P., Lau E.S.H., Eliasson B., Kong A.P.S., Ezzati M., et al. The Lancet Commission on Diabetes: Using Data to Transform Diabetes Care and Patient Lives. Lancet. 2020;396:2019–2082. doi: 10.1016/S0140-6736(20)32374-6. PubMed DOI
Ighodaro O.M. Molecular Pathways Associated with Oxidative Stress in Diabetes Mellitus. Biomed. Pharmacother. 2018;108:656–662. doi: 10.1016/j.biopha.2018.09.058. PubMed DOI
Luna R., Talanki Manjunatha R., Bollu B., Jhaveri S., Avanthika C., Reddy N., Saha T., Gandhi F. A Comprehensive Review of Neuronal Changes in Diabetics. Cureus. 2021;13:e19142. doi: 10.7759/cureus.19142. PubMed DOI PMC
Cho N.H., Shaw J.E., Karuranga S., Huang Y., da Rocha Fernandes J.D., Ohlrogge A.W., Malanda B. IDF Diabetes Atlas: Global Estimates of Diabetes Prevalence for 2017 and Projections for 2045. Diabetes Res. Clin. Pract. 2018;138:271–281. doi: 10.1016/j.diabres.2018.02.023. PubMed DOI
Aschner P., Gagliardino J.J., Ilkova H., Lavalle F., Ramachandran A., Mbanya J.C., Shestakova M., Chantelot J.-M., Chan J.C.N. Persistent Poor Glycaemic Control in Individuals with Type 2 Diabetes in Developing Countries: 12 Years of Real-World Evidence of the International Diabetes Management Practices Study (IDMPS) Diabetologia. 2020;63:711–721. doi: 10.1007/s00125-019-05078-3. PubMed DOI PMC
Magliano D.J., Boyko E.J., IDF Diabetes Atlas 10th Edition Scientific Committee . IDF Diabetes Atlas. 10th ed. International Diabetes Federation; Brussels, Belgium: 2021. [(accessed on 28 April 2024)]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK581938/
Sun H., Saeedi P., Karuranga S., Pinkepank M., Ogurtsova K., Duncan B.B., Stein C., Basit A., Chan J.C.N., Mbanya J.C., et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022;183:109119. doi: 10.1016/j.diabres.2021.109119. PubMed DOI PMC
Instituto Nacional de Estadística y Censos (Ecuador), Ecuador, editor. ENSANUT: Encuesta Nacional de Salud y Nutrición. Primera edición. INEC Instituto Nacional de Estadística y Censos; MSP Ministerio de Salud Pública; Quito, Ecuador: 2013.
Lucio R., Villacrés N., Henríquez R. Sistema de salud de Ecuador. Salud Pública México. 2011;53:s177–s187. PubMed
Lee B.-W., Kim J.H., Ko S.-H., Hur K.-Y., Kim N.-H., Rhee S.Y., Kim H.J., Moon M.K., Park S.-O., Choi K.M. Insulin Therapy for Adult Patients with Type 2 Diabetes Mellitus: A Position Statement of the Korean Diabetes Association, 2017. Diabetes Metab. J. 2017;41:367–373. doi: 10.4093/dmj.2017.41.5.367. PubMed DOI PMC
Jeong H.S., Hong S.J., Cho S.-A., Kim J.-H., Cho J.Y., Lee S.H., Joo H.J., Park J.H., Yu C.W., Lim D.-S. Comparison of Ticagrelor versus Prasugrel for Inflammation, Vascular Function, and Circulating Endothelial Progenitor Cells in Diabetic Patients with Non-ST-Segment Elevation Acute Coronary Syndrome Requiring Coronary Stenting: A Prospective, Randomized, Crossover Trial. JACC Cardiovasc. Interv. 2017;10:1646–1658. doi: 10.1016/j.jcin.2017.05.064. PubMed DOI
Rao M.U., Sreenivasulu M., Chengaiah B., Reddy K.J., Chetty C.M. Herbal Medicines for Diabetes Mellitus: A Review. Int. J. PharmTech Res. 2010;2:1883–1892.
Brownlee M. The Pathobiology of Diabetic Complications: A Unifying Mechanism. Diabetes. 2005;54:1615–1625. doi: 10.2337/diabetes.54.6.1615. PubMed DOI
Dey L., Attele A.S., Yuan C.-S. Alternative Therapies for Type 2 Diabetes. Altern. Med. Rev. J. Clin. Ther. 2002;7:45–58. PubMed
Alam F., Islam M.A., Kamal M.A., Gan S.H. Updates on Managing Type 2 Diabetes Mellitus with Natural Products: Towards Antidiabetic Drug Development. Curr. Med. Chem. 2018;25:5395–5431. doi: 10.2174/0929867323666160813222436. PubMed DOI
Hassan Z., Yam M.F., Ahmad M., Yusof A.P.M. Antidiabetic Properties and Mechanism of Action of Gynura procumbens Water Extract in Streptozotocin-Induced Diabetic Rats. Molecules. 2010;15:9008–9023. doi: 10.3390/molecules15129008. PubMed DOI PMC
Jarald E., Joshi S., Jain D. Diabetes and Herbal Medicines. Iran. J. Pharmocol. Ther. 2008;7:97–106.
Eidi A., Eidi M., Esmaeili E. Antidiabetic Effect of Garlic (Allium sativum L.) in Normal and Streptozotocin-Induced Diabetic Rats. Phytomedicine Int. J. Phytother. Phytopharm. 2006;13:624–629. doi: 10.1016/j.phymed.2005.09.010. PubMed DOI
Losso J.N., Holliday D.L., Finley J.W., Martin R.J., Rood J.C., Yu Y., Greenway F.L. Fenugreek Bread: A Treatment for Diabetes Mellitus. J. Med. Food. 2009;12:1046–1049. doi: 10.1089/jmf.2008.0199. PubMed DOI
Maaliah M.S., Haddadin M., Abdalla S. Hypolipidemic and Hypoglycemic Effects of Silybum marianum (L.) Gaertn.(Milk Thistle) Ethanol Seed Extract in Streptozotocin-Induced Diabetes in Rats. Pharmacogn. Mag. 2024 doi: 10.1177/09731296241231104. DOI
Huseini H.F., Darvishzadeh F., Heshmat R., Jafariazar Z., Raza M., Larijani B. The Clinical Investigation of Citrullus colocynthis (L.) Schrad Fruit in Treatment of Type II Diabetic Patients: A Randomized, Double Blind, Placebo-Controlled Clinical Trial. Phytother. Res. PTR. 2009;23:1186–1189. doi: 10.1002/ptr.2754. PubMed DOI
Iranloye B.O., Arikawe A.P., Rotimi G., Sogbade A.O. Anti-Diabetic and Anti-Oxidant Effects of Zingiber officinale on Alloxan-Induced and Insulin-Resistant Diabetic Male Rats. Niger. J. Physiol. Sci. Off. Publ. Physiol. Soc. Niger. 2011;26:89–96. PubMed
Armijos C., Ramirez J., Vidari G. Poorly Investigated Ecuadorian Medicinal Plants. Plants. 2022;11:1590. doi: 10.3390/plants11121590. PubMed DOI PMC
Ojo O.A., Amanze J.C., Oni A.I., Grant S., Iyobhebhe M., Elebiyo T.C., Rotimi D., Asogwa N.T., Oyinloye B.E., Ajiboye B.O., et al. Antidiabetic Activity of Avocado Seeds (Persea americana Mill.) in Diabetic Rats via Activation of PI3K/AKT Signalling Pathway. Sci. Rep. 2022;12:2919. doi: 10.1038/s41598-022-07015-8. PubMed DOI PMC
Al-Snafi A. Glycyrrhiza Glabra: A Phytochemical and Pharmacological Review. IOSR J. Pharm. 2018;8:1–17.
Fierro X.J., Riascos S.O. In vitro hypoglycemic and antioxidant activities of some medicinal plants used in treatment of diabetes in southern Ecuador. AXIOMA. 2018;18:23–36.
Ranilla L.G., Kwon Y.-I., Apostolidis E., Shetty K. Phenolic Compounds, Antioxidant Activity and in Vitro Inhibitory Potential against Key Enzymes Relevant for Hyperglycemia and Hypertension of Commonly Used Medicinal Plants, Herbs and Spices in Latin America. Bioresour. Technol. 2010;101:4676–4689. doi: 10.1016/j.biortech.2010.01.093. PubMed DOI
Afify A.E.-M.M.R., El-Beltagi H.S., Hammama A.A.E.-A., Sidky M.M., Mostafa O.F.A. Distribution of Trans-Anethole and Estragole in Fennel (Foeniculum vulgare Mill) of Callus Induced from Different Seedling Parts and Fruits. Not. Sci. Biol. 2011;3:79–86. doi: 10.15835/nsb315422. DOI
Salehi B., Ata A., Anil Kumar N.V., Sharopov F., Ramírez-Alarcón K., Ruiz-Ortega A., Abdulmajid Ayatollahi S., Valere Tsouh Fokou P., Kobarfard F., Amiruddin Zakaria Z., et al. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules. 2019;9:551. doi: 10.3390/biom9100551. PubMed DOI PMC
Abd-ElGawad A.M., Elshamy A.I., Elgorban A.M., Hassan E.M., Zaghloul N.S., Alamery S.F., El Gendy A.E.-N.G., Elhindi K.M., EI-Amier Y.A. Essential Oil of Ipomoea carnea: Chemical Profile, Chemometric Analysis, Free Radical Scavenging, and Antibacterial Activities. Sustainability. 2022;14:9504. doi: 10.3390/su14159504. DOI
Olasunkanmi A.M., Ogunyemi O. Phytochemical Constituents and Antioxidant Activity of Persea americana Leave. Int. J. Chem. Res. 2023;7:1–4. doi: 10.22159/ijcr.2023v7i3.219. DOI
Herrera-Feijoo R.J., Morocho L., Vinueza D., Lopez-Tobar R., Chicaiza-Ortiz C. Use of Medicinal Plants According to the Ancestral Knowledge of the Indigenous People of the Yacuambi Canton, Zamora Chinchipe-Ecuador. Green World J. 2023;6:63. doi: 10.53313/gwj62063. DOI
WHO Guidelines for Assessing Quality of Herbal Medicines with Reference to Contaminants and Residues. [(accessed on 22 March 2024)]. Available online: https://www.who.int/publications-detail-redirect/9789241594448.
Sánchez L., Kvist Z., Aguirre, Sanchez O., Kvist L., Aguirre Z., Editores M., Moraes R., Øllgaard B., Borchsenius F., et al. Bosques Secos En Ecuador y Sus Plantas Útiles. Botánica Económica Los Andes Cent. 2006:188–204.
Maleki V., Jafari-Vayghan H., Saleh-Ghadimi S., Adibian M., Kheirouri S., Alizadeh M. Effects of Royal Jelly on Metabolic Variables in Diabetes Mellitus: A Systematic Review. Complement. Ther. Med. 2019;43:20–27. doi: 10.1016/j.ctim.2018.12.022. PubMed DOI
Belwal T., Bisht A., Devkota H.P., Ullah H., Khan H., Pandey A., Bhatt I.D., Echeverría J. Phytopharmacology and Clinical Updates of Berberis Species Against Diabetes and Other Metabolic Diseases. Front. Pharmacol. 2020;11:41. doi: 10.3389/fphar.2020.00041. PubMed DOI PMC
Valdés S., Botas P., Delgado E., Alvarez F., Cadórniga F.D. Population-Based Incidence of Type 2 Diabetes in Northern Spain: The Asturias Study. Diabetes Care. 2007;30:2258–2263. doi: 10.2337/dc06-2461. PubMed DOI
Koulis C., Watson A.M.D., Gray S.P., Jandeleit-Dahm K.A. Linking RAGE and Nox in Diabetic Micro- and Macrovascular Complications. Diabetes Metab. 2015;41:272–281. doi: 10.1016/j.diabet.2015.01.006. PubMed DOI
Yeung S., Soliternik J., Mazzola N. Nutritional Supplements for the Prevention of Diabetes Mellitus and Its Complications. J. Nutr. Intermed. Metab. 2018;14:16–21. doi: 10.1016/j.jnim.2018.07.003. DOI
Diabetes. [(accessed on 23 March 2024)]. Available online: https://www.who.int/health-topics/diabetes.
Facts & Figures. [(accessed on 23 March 2024)]. Available online: https://idf.org/about-diabetes/diabetes-facts-figures/
Global Diabetes Cases to Soar from 529 Million to 1.3 Billion by 2050|Institute for Health Metrics and Evaluation. [(accessed on 6 March 2024)]. Available online: https://www.healthdata.org/news-events/newsroom/news-releases/global-diabetes-cases-soar-529-million-13-billion-2050.
Freire W.B., Silva-Jaramillo K.M., Ramírez-Luzuriaga M.J., Belmont P., Waters W.F. The Double Burden of Undernutrition and Excess Body Weight in Ecuador. Am. J. Clin. Nutr. 2014;100:1636S–1643S. doi: 10.3945/ajcn.114.083766. PubMed DOI
Villacres T. IDF2022-0851 Direct Standardized Cost of Diabetes in Ecuador. Diabetes Res. Clin. Pract. 2023;197:110485. doi: 10.1016/j.diabres.2023.110485. DOI
Tripathy D., Schwenke D.C., Banerji M., Bray G.A., Buchanan T.A., Clement S.C., Henry R.R., Kitabchi A.E., Mudaliar S., Ratner R.E., et al. Diabetes Incidence and Glucose Tolerance after Termination of Pioglitazone Therapy: Results from ACT NOW. J. Clin. Endocrinol. Metab. 2016;101:2056–2062. doi: 10.1210/jc.2015-4202. PubMed DOI PMC
Chikhi I., Allali H., Dib M.E.A., Medjdoub H., Tabti B. Antidiabetic Activity of Aqueous Leaf Extract of Atriplex halimus L. (Chenopodiaceae) in Streptozotocin-Induced Diabetic Rats. Asian Pac. J. Trop. Dis. 2014;4:181–184. doi: 10.1016/S2222-1808(14)60501-6. DOI
Modak M., Dixit P., Londhe J., Ghaskadbi S., Devasagayam T.P.A. Indian Herbs and Herbal Drugs Used for the Treatment of Diabetes. J. Clin. Biochem. Nutr. 2007;40:163–173. doi: 10.3164/jcbn.40.163. PubMed DOI PMC
Awasthi A., Parween N., Singh V., Anwar A., Prasad B., Kumar J. Diabetes: Symptoms, Cause and Potential Natural Therapeutic Methods. Adv. Diabetes Metab. 2016;4:10–23. doi: 10.13189/adm.2016.040102. DOI
Bibi T., Ahmad M., Bakhsh Tareen R., Mohammad Tareen N., Jabeen R., Rehman S.-U., Sultana S., Zafar M., Yaseen G. Ethnobotany of Medicinal Plants in District Mastung of Balochistan Province-Pakistan. J. Ethnopharmacol. 2014;157:79–89. doi: 10.1016/j.jep.2014.08.042. PubMed DOI
Pekova L., Ziarovska J., Fernández E. Medicinal Plants with Antidiabetic Activity Used in the Traditional Medicine in Bolivia: A Review. Boletin Latinoam. Caribe Plantas Med. Aromat. 2023;22:417–430. doi: 10.37360/blacpma.23.22.4.31. DOI
Tene V., Malagón O., Finzi P.V., Vidari G., Armijos C., Zaragoza T. An Ethnobotanical Survey of Medicinal Plants Used in Loja and Zamora-Chinchipe, Ecuador. J. Ethnopharmacol. 2007;111:63–81. doi: 10.1016/j.jep.2006.10.032. PubMed DOI
Rante H., Alam G., Irwan M. α –Glucosidase Inhibitory Activity of Breadfruit Leaf Extract (Artocarpus altilis (Parkinson) Fosberg) J. Phys. Conf. Ser. 2019;1341:072015. doi: 10.1088/1742-6596/1341/7/072015. DOI
Hennig L., Malca Garcia G.R., Giannis A., Bussmann R. New Constituents of Baccharis genistelloides (Lam.) Pers. Arch. Org. Chem. 2010;6:74–82. doi: 10.3998/ark.5550190.0012.607. DOI
Nahar L., Nasrin F., Zahan R., Haque A., Haque E., Mosaddik A. Comparative Study of Antidiabetic Activity of Cajanus cajan and Tamarindus indica in Alloxan-Induced Diabetic Mice with a Reference to in Vitro Antioxidant Activity. Pharmacogn. Res. 2014;6:180–187. doi: 10.4103/0974-8490.129043. PubMed DOI PMC
Pino J.A., Terán-Portelles E.C., Hernández I., Rodeiro I., Fernández M.D. Chemical Composition of the Essential Oil from Croton wagneri Müll. Arg. (Euphorbiaceae) Grown in Ecuador. J. Essent. Oil Res. 2018;30:347–352. doi: 10.1080/10412905.2018.1470040. DOI
Jadid N., Widodo A., Ermavitalini D., Sa’adah N., Gunawan S., Nisa C. The Medicinal Umbelliferae Plant Fennel (Foeniculum vulgare Mill.): Cultivation, Traditional Uses, Phytopharmacological Properties, and Application in Animal Husbandry. Arab. J. Chem. 2023;16:104541. doi: 10.1016/j.arabjc.2023.104541. DOI
El-Ouady F., Lahrach N., Ajebli M., Haidani A.E., Eddouks M. Antihyperglycemic Effect of the Aqueous Extract of Foeniculum vulgare in Normal and Streptozotocin-Induced Diabetic Rats. Cardiovasc. Hematol. Disord. Drug Targets. 2020;20:54–63. doi: 10.2174/1871525717666190612121516. PubMed DOI
Kaur R., Kaur H., Dhindsa A.S. Glycyrrhiza glabra: A Phytopharmacological Review. Int. J. Pharm. Sci. Res. 2013;4:2470–2477. doi: 10.13040/IJPSR.0975-8232.4(7).2470-77. DOI
Zambrano-Intriago L.F., Buenaño-Allauca M.P., Mancera-Rodríguez N.J., Jiménez-Romero E. Estudio etnobotánico de plantas medicinales utilizadas por los habitantes del área rural de la Parroquia San Carlos, Quevedo, Ecuador. Univ. Salud. 2015;17:97–111.
Qureshi J.A., Memon Z., Ismail K., Saher F., Motiani V., Mushtaq Z. Anti-Hyperglycemic and Anti-Dyslipidemic Activities of Glycyrrhiza Glabra Root Extract In Diabetic Rats. J. Islam. Int. Med. Coll. JIIMC. 2020;15:98–103.
Dueñas J.F., Jarrett C., Cummins I., Logan–Hines E. Amazonian Guayusa (Ilex guayusa Loes.): A Historical and Ethnobotanical Overview. Econ. Bot. 2016;70:85–91. doi: 10.1007/s12231-016-9334-2. DOI
Khan T., Raina R., Verma P., Sultana M., Jyoti M. Phytochemical Constituents and Antidiabetic Potential of Ipomoea Carnea Jacq Leaves Extracts. J. Exp. Integr. Med. 2014;2014:137–142. doi: 10.5455/jeim.210214.or.096. DOI
Singh O., Khanam Z., Misra N., Srivastava M.K. Chamomile (Matricaria chamomilla L.): An Overview. Pharmacogn. Rev. 2011;5:82–95. doi: 10.4103/0973-7847.79103. PubMed DOI PMC
Fernández Cusimamani E., Espinel Jara V.M., Gordillo Alarcón S., Castillo Andrade R.E., Žiarovská J., Zepeda del Valle J.M. Estudio etnobotánico de plantas medicinales utilizadas en tres cantones de la provincia Imbabura, Ecuador. Agrociencia. 2019;53:797–810.
Cemek M., Kağa S., Simşek N., Büyükokuroğlu M.E., Konuk M. Antihyperglycemic and Antioxidative Potential of Matricaria chamomilla L. in Streptozotocin-Induced Diabetic Rats. J. Nat. Med. 2008;62:284–293. doi: 10.1007/s11418-008-0228-1. PubMed DOI
Vinueza D., Yanza K., Tacchini M., Grandini A., Sacchetti G., Chiurato M.A., Guerrini A. Flavonoids in Ecuadorian Oreocallis grandiflora (Lam.) R. Br.: Perspectives of Use of This Species as a Food Supplement. Evid. Based Complement. Alternat. Med. 2018;2018:e1353129. doi: 10.1155/2018/1353129. PubMed DOI PMC
Ennaifer M., Bouzaiene T., Chouaibi M., Hamdi M. Pelargonium graveolens Aqueous Decoction: A New Water-Soluble Polysaccharide and Antioxidant-Rich Extract. BioMed Res. Int. 2018;2018:e2691513. doi: 10.1155/2018/2691513. PubMed DOI PMC
Ahamad J., Uthirapathy S. Chemical Characterization and Antidiabetic Activity of Essential Oils from Pelargonium graveolens Leaves. ARO-Sci. J. KOYA Univ. 2021;9:109–113. doi: 10.14500/aro.10791. DOI
Abd Elkader A.M., Labib S., Taha T.F., Althobaiti F., Aldhahrani A., Salem H.M., Saad A., Ibrahim F.M. Phytogenic Compounds from Avocado (Persea americana L.) Extracts; Antioxidant Activity, Amylase Inhibitory Activity, Therapeutic Potential of Type 2 Diabetes. Saudi J. Biol. Sci. 2022;29:1428–1433. doi: 10.1016/j.sjbs.2021.11.031. PubMed DOI PMC
Dabas D., Shegog R.M., Ziegler G.R., Lambert J.D. Avocado (Persea americana) Seed as a Source of Bioactive Phytochemicals. Curr. Pharm. Des. 2013;19:6133–6140. doi: 10.2174/1381612811319340007. PubMed DOI
Ezzat S.M., Abdallah H.M.I., Yassen N.N., Radwan R.A., Mostafa E.S., Salama M.M., Salem M.A. Phenolics from Physalis peruviana Fruits Ameliorate Streptozotocin-Induced Diabetes and Diabetic Nephropathy in Rats via Induction of Autophagy and Apoptosis Regression. Biomed. Pharmacother. 2021;142:111948. doi: 10.1016/j.biopha.2021.111948. PubMed DOI
Kasali F.M., Kadima J.N., Mpiana P.T., Ngbolua K.-N., Tshibangu D.S.-T. Assessment of Antidiabetic Activity and Acute Toxicity of Leaf Extracts from Physalis peruviana L. in Guinea-Pig. Asian Pac. J. Trop. Biomed. 2013;3:841–846. doi: 10.1016/S2221-1691(13)60166-5. DOI
Gomes E.N., Krinski D. Piper Crassinervium Kunth Vegetative Propagation: Influence of Substrates and Stem Cuttings Positions. Appl. Res. Agrotechnology. 2018;11:51–59. doi: 10.5935/PAeT.V11.N3.05. DOI
Asgarpanah J., Khoshkam R. Phytochemistry and Pharmacological Properties of Ruta graveolens L. J. Med. Plants Res. 2012;6:3942–3949. doi: 10.5897/JMPR12.040. DOI
Ardeshirlarijani E., Namazi N., Jalili R., Saeedi M., Imanparast S., Adhami H., Faramarzi M., Ayati M., Mahdavi M., Larijani B. Potential Anti-Obesity Effects of Some Medicinal Herb: In Vitro α-Amylase, α-Glucosidase and Lipase Inhibitory Activity. Int. Biol. Biomed. J. 2019;52 doi: 10.1016/B978-0-323-95719-9.00009-4. DOI
Ruiz S., Malagón O., Zaragoza T., Valarezo E. Composition of the Essential Oils of Artemisia sodiroi Hieron., Siparuna eggersii Hieron., Tagetes filifolia Lag. and Clinopodium nubigenum (Kunth) Kuntze from Loja Ecuador. J. Essent. Oil Bear. Plants. 2010;13:676–691. doi: 10.1080/0972060X.2010.10643879. DOI
Tatke P., Waghmare R. Chapter 16—Antidiabetic Plants with Insulin Mimetic Activity. In: Naeem M., Aftab T., editors. Antidiabetic Medicinal Plants. Academic Press; Cambridge, MA, USA: 2024. pp. 491–513.
Samakar B., Mehri S., Hosseinzadeh H. A Review of the Effects of Urtica dioica (Nettle) in Metabolic Syndrome. Iran. J. Basic Med. Sci. 2022;25:543–553. doi: 10.22038/IJBMS.2022.58892.13079. PubMed DOI PMC
Bnouham M., Merhfour F.-Z., Ziyyat A., Mekhfi H., Aziz M., Legssyer A. Antihyperglycemic Activity of the Aqueous Extract of Urtica dioica. Fitoterapia. 2003;74:677–681. doi: 10.1016/s0367-326x(03)00182-5. PubMed DOI
Braga V.F., Mendes G.C., Oliveira R.T.R., Soares C.Q.G., Resende C.F., Pinto L.C., Santana R.d., Viccini L.F., Raposo N.R.B., Peixoto P.H.P. Micropropagation, Antinociceptive and Antioxidant Activities of Extracts of Verbena litoralis Kunth (Verbenaceae) An. Acad. Bras. Ciênc. 2012;84:139–148. doi: 10.1590/S0001-37652012000100014. PubMed DOI
García-Pérez P., Lozano-Milo E., Landin M., Gallego P.P. From Ethnomedicine to Plant Biotechnology and Machine Learning: The Valorization of the Medicinal Plant Bryophyllum sp. Pharmaceuticals. 2020;13:444. doi: 10.3390/ph13120444. PubMed DOI PMC
Gallegos-Zurita M. Las Plantas Medicinales: Principal Alternativa Para El Cuidado de La Salud, En La Población Rural de Babahoyo, Ecuador. An. Fac. Med. 2016;77:327–332. doi: 10.15381/anales.v77i4.12647. DOI
Deka H., Choudhury A., Dey B.K. An Overview on Plant Derived Phenolic Compounds and Their Role in Treatment and Management of Diabetes. J. Pharmacopuncture. 2022;25:199–208. doi: 10.3831/KPI.2022.25.3.199. PubMed DOI PMC
Putta S., Yarla N.S., Kilari E.K., Surekha C., Aliev G., Divakara M.B., Santosh M.S., Ramu R., Zameer F., Mn N.P., et al. Therapeutic Potentials of Triterpenes in Diabetes and Its Associated Complications. Curr. Top. Med. Chem. 2016;16:2532–2542. doi: 10.2174/1568026616666160414123343. PubMed DOI
Savych A., Marchyshyn S., Basaraba R. Determination of Fatty Acid Composition Content in the Herbal Antidiabetic Collections. Pharmacia. 2020;67:153–159. doi: 10.3897/pharmacia.67.e51812. DOI
Abou El-Soud N. Herbal Medicine in Ancient Egypt. J. Med. Plants Res. 2010;4:82–86.
Sharma R., Amin H., Prajapati P. Plant Kingdom Nutraceuticals for Diabetes. J. Ayurvedic Herb. Med. 2016;2:224–228. doi: 10.31254/jahm.2016.2607. DOI
Dai Y.-L., Li Y., Wang Q., Niu F.-J., Li K.-W., Wang Y.-Y., Wang J., Zhou C.-Z., Gao L.-N. Chamomile: A Review of Its Traditional Uses, Chemical Constituents, Pharmacological Activities and Quality Control Studies. Molecules. 2023;28:133. doi: 10.3390/molecules28010133. PubMed DOI PMC
Pal D., Mishra P., Sachan N., Ghosh A.K. Biological Activities and Medicinal Properties of Cajanus cajan (L.) Millsp. J. Adv. Pharm. Technol. Res. 2011;2:207–214. doi: 10.4103/2231-4040.90874. PubMed DOI PMC
Bangar S.P., Dunno K., Dhull S.B., Kumar Siroha A., Changan S., Maqsood S., Rusu A.V. Avocado Seed Discoveries: Chemical Composition, Biological Properties, and Industrial Food Applications. Food Chem. X. 2022;16:100507. doi: 10.1016/j.fochx.2022.100507. PubMed DOI PMC
Rastogi S., Pandey M.M., Rawat A.K.S. Ethnopharmacological Uses, Phytochemistry and Pharmacology of Genus Adiantum: A Comprehensive Review. J. Ethnopharmacol. 2018;215:101–119. doi: 10.1016/j.jep.2017.12.034. PubMed DOI
Puente L.A., Pinto-Muñoz C.A., Castro E.S., Cortés M. Physalis Peruviana Linnaeus, the Multiple Properties of a Highly Functional Fruit: A Review. Food Res. Int. 2011;44:1733–1740. doi: 10.1016/j.foodres.2010.09.034. DOI
Shikov A.N., Narkevich I.A., Akamova A.V., Nemyatykh O.D., Flisyuk E.V., Luzhanin V.G., Povydysh M.N., Mikhailova I.V., Pozharitskaya O.N. Medical Species Used in Russia for the Management of Diabetes and Related Disorders. Front. Pharmacol. 2021;12:697411. doi: 10.3389/fphar.2021.697411. PubMed DOI PMC
Andrade J.M., Lucero Mosquera H., Armijos C. Ethnobotany of Indigenous Saraguros: Medicinal Plants Used by Community Healers “Hampiyachakkuna” in the San Lucas Parish, Southern Ecuador. BioMed Res. Int. 2017;2017:e9343724. doi: 10.1155/2017/9343724. PubMed DOI PMC
Aguirre Mendoza Z., Yaguana Puglla C., Merino B. Plantas medicinales: De la Zona Andina de la Provincia de Loja, Primera ed. Universidad Nacional de Loja; Loja, Ecuador: 2014.
Mehri A., Hasani-Ranjbar S., Larijani B., Abdollahi M. A Systematic Review of Efficacy and Safety of Urtica dioica in the Treatment of Diabetes. Int. J. Pharmacol. 2011;7:161–170. doi: 10.3923/ijp.2011.161.170. DOI
Amalan V., Vijayakumar N., Indumathi D., Ramakrishnan A. Antidiabetic and Antihyperlipidemic Activity of p-Coumaric Acid in Diabetic Rats, Role of Pancreatic GLUT 2: In Vivo Approach. Biomed. Pharmacother. 2016;84:230–236. doi: 10.1016/j.biopha.2016.09.039. PubMed DOI
Barbieri R., Coppo E., Marchese A., Daglia M., Sobarzo-Sánchez E., Nabavi S.F., Nabavi S.M. Phytochemicals for Human Disease: An Update on Plant-Derived Compounds Antibacterial Activity. Microbiol. Res. 2017;196:44–68. doi: 10.1016/j.micres.2016.12.003. PubMed DOI
Bansal A., Priyadarsini C. Natural Drugs from Plants. IntechOpen; London, UK: 2022. Medicinal properties of phytochemicals and their production. DOI
Alqudah A., Athamneh R.Y., Qnais E., Gammoh O., Oqal M., AbuDalo R., Alshaikh H.A., AL-Hashimi N., Alqudah M. The Emerging Importance of Cirsimaritin in Type 2 Diabetes Treatment. Int. J. Mol. Sci. 2023;24:5749. doi: 10.3390/ijms24065749. PubMed DOI PMC
Escandón-Rivera S.M., Andrade-Cetto A., Sánchez-Villaseñor G. Phytochemical Composition and Chronic Hypoglycemic Effect of Bromelia Karatas on STZ-NA-Induced Diabetic Rats. Evid. Based Complement. Alternat. Med. 2019;2019:e9276953. doi: 10.1155/2019/9276953. PubMed DOI PMC
Wang Y., Wang A., Alkhalidy H., Luo J., Moomaw E., Neilson A.P., Liu D. Flavone Hispidulin Stimulates Glucagon-Like Peptide-1 Secretion and Ameliorates Hyperglycemia in Streptozotocin-Induced Diabetic Mice. Mol. Nutr. Food Res. 2020;64:1900978. doi: 10.1002/mnfr.201900978. PubMed DOI PMC
Muhammad A.J., Muhammad M., Yunusa A., Mikail T.A., Dalhatu M.M., Habib I.Y., Sarki S.I., Gwarzo M.S., Muhammad N.A., Mustapha R.K. Determination of Antioxidant and α–Amylase Inhibition Properties of Alligator Pepper (Aframomum melegueta): A Potential Therapeutic Against Diabetes Mellitus. EAS J. Pharm. Pharmacol. 2022;4:43–49. doi: 10.36349/easjpp.2022.v04i03.001. DOI
Ihim S.A., Kaneko Y.K., Yamamoto M., Yamaguchi M., Kimura T., Ishikawa T. Apigenin Alleviates Endoplasmic Reticulum Stress-Mediated Apoptosis in INS-1 β-Cells. Biol. Pharm. Bull. 2023;46:630–635. doi: 10.1248/bpb.b22-00913. PubMed DOI
Villacís-Chiriboga J., García-Ruiz A., Baenas N., Moreno D.A., Meléndez-Martínez A.J., Stinco C.M., Jerves-Andrade L., León-Tamariz F., Ortiz-Ulloa J., Ruales J. Changes in Phytochemical Composition, Bioactivity and in Vitro Digestibility of Guayusa Leaves (Ilex guayusa Loes.) in Different Ripening Stages. J. Sci. Food Agric. 2018;98:1927–1934. doi: 10.1002/jsfa.8675. PubMed DOI
Dzamic A., Soković M., Ristić M., Grujić S., Mileski K., Marin P. Chemical Composition, Antifungal and Antioxidant Activity of Pelargonium graveolens Essential Oil. J. Appl. Pharm. Sci. 2014;4:1–5. doi: 10.7324/JAPS.2014.40301. DOI
Lima R.D., Brondani J.C., Dornelles R.C., Lhamas C.L., Faccin H., Silva C.V., Dalmora S.L., Manfron M.P. Anti-Inflammatory Activity and Identification of the Verbena litoralis Kunth Crude Extract Constituents. Braz. J. Pharm. Sci. 2020;56:e17419. doi: 10.1590/s2175-97902019000417419. DOI
Barrera Núñez M.G., Bueno M., Molina-Montiel M.Á., Reyes-Vaquero L., Ibáñez E., Del Villar-Martínez A.A. Chemical Profile of Cell Cultures of Kalanchoë gastonis-bonnieri Transformed by Agrobacterium Rhizogenes. Agronomy. 2024;14:189. doi: 10.3390/agronomy14010189. DOI
Setyawan H., Sukardi S., Puriwangi C. Phytochemicals Properties of Avocado Seed: A Review. IOP Conf. Ser. Earth Environ. Sci. 2021;733:012090. doi: 10.1088/1755-1315/733/1/012090. DOI
Sikarwar M., Hui B., Subramaniam K., Valeisamy B., Yean L., Balaji K. A Review on Artocarpus altilis (Parkinson) Fosberg (Breadfruit) J. Appl. Pharm. Sci. 2014;4:91–97. doi: 10.7324/JAPS.2014.40818. DOI
Alam S., Sarker M.M.R., Sultana T.N., Chowdhury M.N.R., Rashid M.A., Chaity N.I., Zhao C., Xiao J., Hafez E.E., Khan S.A., et al. Antidiabetic Phytochemicals from Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front. Endocrinol. 2022;13:800714. doi: 10.3389/fendo.2022.800714. PubMed DOI PMC
Narasimhan A., Chinnaiyan M., Karundevi B. Ferulic Acid Regulates Hepatic GLUT2 Gene Expression in High Fat and Fructose-Induced Type-2 Diabetic Adult Male Rat. Eur. J. Pharmacol. 2015;761:391–397. doi: 10.1016/j.ejphar.2015.04.043. PubMed DOI
Jung U.J., Lee M.-K., Park Y.B., Jeon S.-M., Choi M.-S. Antihyperglycemic and Antioxidant Properties of Caffeic Acid in Db/Db Mice. J. Pharmacol. Exp. Ther. 2006;318:476–483. doi: 10.1124/jpet.106.105163. PubMed DOI
Singh B., Kumar A., Singh H., Kaur S., Arora S., Singh B. Protective Effect of Vanillic Acid against Diabetes and Diabetic Nephropathy by Attenuating Oxidative Stress and Upregulation of NF-κB, TNF-α and COX-2 Proteins in Rats. Phytother. Res. 2022;36:1338–1352. doi: 10.1002/ptr.7392. PubMed DOI
Diao W.-R., Hu Q.-P., Zhang H., Xu J.-G. Chemical Composition, Antibacterial Activity and Mechanism of Action of Essential Oil from Seeds of Fennel (Foeniculum vulgare Mill.) Food Control. 2014;35:109–116. doi: 10.1016/j.foodcont.2013.06.056. DOI
El-Saber Batiha G., Magdy Beshbishy A., El-Mleeh A., Abdel-Daim M.M., Prasad Devkota H. Traditional Uses, Bioactive Chemical Constituents, and Pharmacological and Toxicological Activities of Glycyrrhiza glabra L. (Fabaceae) Biomolecules. 2020;10:352. doi: 10.3390/biom10030352. PubMed DOI PMC
Pereira R., Pereira A.L., Ferreira M.M., Fontenelle R.O.S., Saker-Sampaio S., Santos H.S., Bandeira P.N., Vasconcelos M.A., Queiroz J.a.N., Braz-Filho R., et al. Evaluation of the Antimicrobial and Antioxidant Activity of 7-Hydroxy-4′, 6-Dimethoxy-Isoflavone and Essential Oil from Myroxylon peruiferum L.f. An. Acad. Bras. Ciênc. 2019;91:e20180204. doi: 10.1590/0001-3765201920180204. PubMed DOI
Popova V.T., Ivanova T.A., Stoyanova M.A., Mazova N.N., Panayotov N.D., Stoyanova A.S. The Leaves and Stems of Cape Gooseberry (Physalis peruviana L.) as an Alternative Source of Bioactive Substances. IOP Conf. Ser. Mater. Sci. Eng. 2021;1031:012094. doi: 10.1088/1757-899X/1031/1/012094. DOI
Stanojevic L.P., Marjanovic-Balaban Z.R., Kalaba V.D., Stanojevic J.S., Cvetkovic D.J. Chemical Composition, Antioxidant and Antimicrobial Activity of Chamomile Flowers Essential Oil (Matricaria chamomilla L.) J. Essent. Oil Bear. Plants. 2016;19:2017–2028. doi: 10.1080/0972060X.2016.1224689. DOI
Morandim A.D.A., Pin A.R., Pietro N.a.S., Alecio A.C., Kato M.J., Young C.M., Oliveira J.d., Furlan M. Composition and Screening of Antifungal Activity against Cladosporium sphaerospermum and Cladosporium cladosporioides of Essential Oils of Leaves and Fruits of Piper Species. Afr. J. Biotechnol. 2010;9:6135–6139.
Peng W., Li P., Ling R., Wang Z., Feng X., Liu J., Yang Q., Yan J. Diversity of Volatile Compounds in Ten Varieties of Zingiberaceae. Molecules. 2022;27:565. doi: 10.3390/molecules27020565. PubMed DOI PMC
Sen A., Kurkcuoglu M., Senkardes I., Bitis L., Baser K.H.C. Chemical Composition, Antidiabetic, Anti-Inflammatory and Antioxidant Activity of Inula ensifolia L. Essential Oil. J. Essent. Oil Bear. Plants. 2019;22:1048–1057. doi: 10.1080/0972060X.2019.1662333. DOI
Alex E., Augustine Dubo B., Ejiogu D., Iyomo K., Jerome K., Aisha N., Daikwo A., Yahaya J., Osiyemi R. Evaluation of Oral Administration of Lauric Acid Supplement on Fasting Blood Glucose Level and Pancreatic Histomorphological Studies in High Fat Diet/Streptozotocin-Induced Type 2 Diabetic Male Wistar Rats. J. Diabetes Metab. 2022;11:849. doi: 10.35248/2155-6156.20.11.849. DOI
Natta S., Pal K., Kumar Alam B., Mondal D., Kumar Dutta S., Sahana N., Mandal S., Bhowmick N., Sankar Das S., Mondal P., et al. In-Depth Evaluation of Nutritive, Chemical Constituents and Anti-Glycemic Properties of Jackfruit (Artocarpus heterophyllus Lam) Clonal Accessions with Flake Colour Diversity from Eastern Sub-Himalayan Plains of India. Food Chem. 2023;407:135098. doi: 10.1016/j.foodchem.2022.135098. PubMed DOI
Gül S., Demirci B., Başer K.H.C., Akpulat H.A., Aksu P. Chemical Composition and in Vitro Cytotoxic, Genotoxic Effects of Essential Oil from Urtica dioica L. Bull. Environ. Contam. Toxicol. 2012;88:666–671. doi: 10.1007/s00128-012-0535-9. PubMed DOI
Samadi-Noshahr Z., Ebrahimzadeh-Bideskan A., Hadjzadeh M.-A.-R., Shafei M.N., Salmani H., Hosseinian S., Khajavi-Rad A. Trans-Anethole Attenuated Renal Injury and Reduced Expressions of Angiotensin II Receptor (AT1R) and TGF-β in Streptozotocin-Induced Diabetic Rats. Biochimie. 2021;185:117–127. doi: 10.1016/j.biochi.2021.03.011. PubMed DOI
Noor Z.I., Ahmed D., Rehman H.M., Qamar M.T., Froeyen M., Ahmad S., Mirza M.U. In Vitro Antidiabetic, Anti-Obesity and Antioxidant Analysis of Ocimum basilicum Aerial Biomass and in Silico Molecular Docking Simulations with Alpha-Amylase and Lipase Enzymes. Biology. 2019;8:92. doi: 10.3390/biology8040092. PubMed DOI PMC
Yagi S., Mohammed A.B.A., Tzanova T., Schohn H., Abdelgadir H., Stefanucci A., Mollica A., Zengin G. Chemical Profile, Antiproliferative, Antioxidant, and Enzyme Inhibition Activities and Docking Studies of Cymbopogon schoenanthus (L.) Spreng. and Cymbopogon Nervatus (Hochst.) Chiov. from Sudan. J. Food Biochem. 2020;44:e13107. doi: 10.1111/jfbc.13107. PubMed DOI
Mohamed S., Sokkar N., El-Gindi O., Ali Z., Alfishawy I.M. Phytoconstituents Investigation, Anti-Diabetic and Anti-Dyslipidemic Activities of Cotoneaster horizontalis Decne Cultivated in Egypt. Life Sci. J. 2013;10:620–630.
Valverde-Rodríguez J.X., Jumbo-Benítez N.d.C., Fernández-Guarnizo P.V., González Rogel J.B., Iñiguez-Ordoñez D.P., Pucha-Cofrep D.A. Zamora Chinchipe Province, Ecuador: 2020. Chemical Composition of the Wood of Juglans Neotropica Diels., and Its Relationship with the Chemical Properties of the Soil in Valladolid Parish.
Maheri H., Hashemzadeh F., Shakibapour N., Kamelniya E., Malaekeh-nikouei B., Mokabberi P., Chamani J. Glucokinase Activity Enhancement by Cellulose Nanocrystals Isolated from Jujube Seed: A Novel Perspective for Type II Diabetes Mellitus Treatment (in Vitro) J. Mol. Struct. 2022;1269:133803. doi: 10.1016/j.molstruc.2022.133803. DOI
Barapatre A., Aadil K.R., Tiwary B.N., Jha H. In Vitro Antioxidant and Antidiabetic Activities of Biomodified Lignin from Acacia nilotica Wood. Int. J. Biol. Macromol. 2015;75:81–89. doi: 10.1016/j.ijbiomac.2015.01.012. PubMed DOI
Jung H.A., Ali M.Y., Choi J.S. Promising Inhibitory Effects of Anthraquinones, Naphthopyrone, and Naphthalene Glycosides, from Cassia obtusifolia on α-Glucosidase and Human Protein Tyrosine Phosphatases 1B. Mol. J. Synth. Chem. Nat. Prod. Chem. 2016;22:28. doi: 10.3390/molecules22010028. PubMed DOI PMC
Fatima N., Hafizur R.M., Hameed A., Ahmed S., Nisar M., Kabir N. Ellagic Acid in Emblica Officinalis Exerts Anti-Diabetic Activity through the Action on β-Cells of Pancreas. Eur. J. Nutr. 2017;56:591–601. doi: 10.1007/s00394-015-1103-y. PubMed DOI
Bule M., Abdurahman A., Nikfar S., Abdollahi M., Amini M. Antidiabetic Effect of Quercetin: A Systematic Review and Meta-Analysis of Animal Studies. Food Chem. Toxicol. 2019;125:494–502. doi: 10.1016/j.fct.2019.01.037. PubMed DOI
Prasath G.S., Pillai S.I., Subramanian S.P. Fisetin Improves Glucose Homeostasis through the Inhibition of Gluconeogenic Enzymes in Hepatic Tissues of Streptozotocin Induced Diabetic Rats. Eur. J. Pharmacol. 2014;740:248–254. doi: 10.1016/j.ejphar.2014.06.065. PubMed DOI
Birgani G.A., Ahangarpour A., Khorsandi L., Moghaddam H.F. Anti-Diabetic Effect of Betulinic Acid on Streptozotocin-Nicotinamide Induced Diabetic Male Mouse Model. Braz. J. Pharm. Sci. 2018;54:e17171. doi: 10.1590/s2175-97902018000217171. DOI
Lim T.K. Edible Medicinal and Non Medicinal Plants: Volume 9, Modified Stems, Roots, Bulbs. Springer; Dordrecht, The Netherlands: 2015.
Abbasi E., Khodadadi I. Antidiabetic Effects of Genistein: Mechanism of Action. Endocr. Metab. Immune Disord.-Drug Targets Formerly Curr. Drug Targets-Immune Endocr. Metab. Disord. 2023;23:1599–1610. doi: 10.2174/1871530323666230516103420. PubMed DOI
Search for Patents. [(accessed on 23 March 2024)]; Available online: https://www.uspto.gov/patents/search.
Hartini Y.S., Setyaningsih D. a-Amylase and a-Glucosidase Inhibitory Effects of Four Piper Species and GC-MS Analysis of Piper crocatum. Biodiversitas J. Biol. Divers. 2023;24 doi: 10.13057/biodiv/d240274. DOI
Sebai H., Selmi S., Rtibi K., Souli A., Gharbi N., Sakly M. Lavender (Lavandula stoechas L.) Essential Oils Attenuate Hyperglycemia and Protect against Oxidative Stress in Alloxan-Induced Diabetic Rats. Lipids Health Dis. 2013;12:189. doi: 10.1186/1476-511X-12-189. PubMed DOI PMC
Bungau S.G., Vesa C.M., Bustea C., Purza A.L., Tit D.M., Brisc M.C., Radu A.-F. Antioxidant and Hypoglycemic Potential of Essential Oils in Diabetes Mellitus and Its Complications. Int. J. Mol. Sci. 2023;24:16501. doi: 10.3390/ijms242216501. PubMed DOI PMC
Seethalakshmi S., Sarumathi R., Sankaranarayanan C. Effect of Alpha-Phellandrene on Glucose Uptake and Adipogenesis in Insulin Resistant 3T3-L1 Adipocytes: An in Vitro and in Silico Approach. Asian J. Biol. Life Sci. 2023;12:603. doi: 10.5530/ajbls.2023.12.79. DOI
Gunawan I.W.G., Putra A.A.B., Widihati I.a.G. The Response to Oxidative Stress α-Humulene Compounds Hibiscus Manihot L Leaf on The Activity of 8-Hydroxy-2-Deoksiquanosin Levels Pancreatic β-Cells in Diabetic Rats. Biomed. Pharmacol. J. 2016;9:433–441. doi: 10.13005/bpj/956. DOI
Sok Yen F., Shu Qin C., Tan Shi Xuan S., Jia Ying P., Yi Le H., Darmarajan T., Gunasekaran B., Salvamani S. Hypoglycemic Effects of Plant Flavonoids: A Review. Evid.-Based Complement. Altern. Med. ECAM. 2021;2021:2057333. doi: 10.1155/2021/2057333. PubMed DOI PMC
Bahadori M.B., Dinparast L., Zengin G., Sarikurkcu C., Bahadori S., Asghari B., Movahhedin N. Functional Components, Antidiabetic, Anti-Alzheimer’s Disease, and Antioxidant Activities of Salvia syriaca L. Int. J. Food Prop. 2017;20:1761–1772. doi: 10.1080/10942912.2016.1218893. DOI
Nazir N., Zahoor M., Uddin F., Nisar M. Chemical Composition, in Vitro Antioxidant, Anticholinesterase, and Antidiabetic Potential of Essential Oil of Elaeagnus umbellata Thunb. BMC Complement. Med. Ther. 2021;21:73. doi: 10.1186/s12906-021-03228-y. PubMed DOI PMC
Tahir H., Sarfraz R., Ashraf A., Adil S. Chemical Composition and Anti-Diabetic Activity of Essential Oils Obtained from Two Spices (Syzygium aromaticum and Cuminum cyminum) Int. J. Food Prop. 2015;19:2156–2164. doi: 10.1080/10942912.2015.1110166. DOI
Al Kury L.T., Abdoh A., Ikbariah K., Sadek B., Mahgoub M. In Vitro and In Vivo Antidiabetic Potential of Monoterpenoids: An Update. Molecules. 2021;27:182. doi: 10.3390/molecules27010182. PubMed DOI PMC
Maharaj V., Ezeofor C.C., Naidoo Maharaj D., Muller C.J.F., Obonye N.J. Identification of Antidiabetic Compounds from the Aqueous Extract of Sclerocarya Birrea Leaves. Molecules. 2022;27:8095. doi: 10.3390/molecules27228095. PubMed DOI PMC
Kalai F.Z., Boulaaba M., Ferdousi F., Isoda H. Effects of Isorhamnetin on Diabetes and Its Associated Complications: A Review of In Vitro and In Vivo Studies and a Post Hoc Transcriptome Analysis of Involved Molecular Pathways. Int. J. Mol. Sci. 2022;23:704. doi: 10.3390/ijms23020704. PubMed DOI PMC
Eid H.M., Haddad P.S. The Antidiabetic Potential of Quercetin: Underlying Mechanisms. Curr. Med. Chem. 2017;24:355–364. doi: 10.2174/0929867323666160909153707. PubMed DOI
Hashiesh H.M., Meeran M.F.N., Sharma C., Sadek B., Kaabi J.A., Ojha S.K. Therapeutic Potential of β-Caryophyllene: A Dietary Cannabinoid in Diabetes and Associated Complications. Nutrients. 2020;12:2963. doi: 10.3390/nu12102963. PubMed DOI PMC
Wen L., Wu D., Tan X., Zhong M., Xing J., Li W., Li D., Cao F. The Role of Catechins in Regulating Diabetes: An Update Review. Nutrients. 2022;14:4681. doi: 10.3390/nu14214681. PubMed DOI PMC
Elmazar M.M., El-Abhar H.S., Schaalan M.F., Farag N.A. Phytol/Phytanic Acid and Insulin Resistance: Potential Role of Phytanic Acid Proven by Docking Simulation and Modulation of Biochemical Alterations. PLoS ONE. 2013;8:e45638. doi: 10.1371/journal.pone.0045638. PubMed DOI PMC
Hoca M., Becer E., Vatansever H.S. Carvacrol Is Potential Molecule for Diabetes Treatment. Arch. Physiol. Biochem. 2023:1–8. doi: 10.1080/13813455.2023.2288537. PubMed DOI
Bouyahya A., Mechchate H., Benali T., Ghchime R., Charfi S., Balahbib A., Burkov P., Shariati M.A., Lorenzo J.M., Omari N.E. Health Benefits and Pharmacological Properties of Carvone. Biomolecules. 2021;11:1803. doi: 10.3390/biom11121803. PubMed DOI PMC
Bahadori M.B., Maggi F., Zengin G., Asghari B., Eskandani M. Essential Oils of Hedgenettles (Stachys inflata, S. lavandulifolia, and S. byzantina) Have Antioxidant, Anti-Alzheimer, Antidiabetic, and Anti-Obesity Potential: A Comparative Study. Ind. Crops Prod. 2020;145:112089. doi: 10.1016/j.indcrop.2020.112089. DOI
Ojah E., Moronkola D., Ajiboye C., Yusuf T., Adeniyi-Akee M. Chemical Compositions, Antioxidant and Anti-Diabetic Activities of Root Wood and Root Bark Essential Oils from Pterocarpus soyauxii TAUB. J. Essent. Oil Bear. Plants. 2021;24:53–67. doi: 10.1080/0972060X.2020.1864483. DOI