C2-Symmetrical Terphenyl Derivatives as Small Molecule Inhibitors of Programmed Cell Death 1/Programmed Death Ligand 1 Protein-Protein Interaction
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
UMO-2020/37/N/ST4/02691
National Science Center
POIR.04.04.00-00-420F/17-00
Foundation for Polish Science
POIR.04.02.00-00-D001/20
European Union in the framework of the Smart Growth Operational Program, Measure 4.2
Priority Research Area SciMat
Strategic Programme Excellence Initiative at Jagiellonian University
PubMed
38893521
PubMed Central
PMC11173618
DOI
10.3390/molecules29112646
PII: molecules29112646
Knihovny.cz E-zdroje
- Klíčová slova
- C2-symmetrical ligands, PD-L1, cancer, immune checkpoint, small molecule inhibitor,
- MeSH
- antigeny CD274 * antagonisté a inhibitory metabolismus chemie MeSH
- antigeny CD279 * antagonisté a inhibitory metabolismus chemie MeSH
- inhibitory kontrolních bodů chemie farmakologie MeSH
- knihovny malých molekul farmakologie chemie MeSH
- lidé MeSH
- molekulární struktura MeSH
- simulace molekulového dockingu * MeSH
- terfenylové sloučeniny * chemie farmakologie MeSH
- vazba proteinů * MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny CD274 * MeSH
- antigeny CD279 * MeSH
- CD274 protein, human MeSH Prohlížeč
- inhibitory kontrolních bodů MeSH
- knihovny malých molekul MeSH
- PDCD1 protein, human MeSH Prohlížeč
- terfenylové sloučeniny * MeSH
The PD-1/PD-L1 complex is an immune checkpoint responsible for regulating the natural immune response, but also allows tumors to escape immune surveillance. Inhibition of the PD-1/PD-L1 axis positively contributes to the efficacy of cancer treatment. The only available therapeutics targeting PD-1/PD-L1 are monoclonal antibody-based drugs, which have several limitations. Therefore, small molecule compounds are emerging as an attractive alternative that can potentially overcome the drawbacks of mAb-based therapy. In this article, we present a novel class of small molecule compounds based on the terphenyl scaffold that bind to PD-L1. The general architecture of the presented structures is characterized by axial symmetry and consists of three elements: an m-terphenyl core, an additional aromatic ring, and a solubilizing agent. Using molecular docking, we designed a series of final compounds, which were subsequently synthesized and tested in HTRF assay and NMR binding assay to evaluate their activity. In addition, we performed an in-depth analysis of the mutual arrangement of the phenyl rings of the terphenyl core within the binding pocket of PD-L1 and found several correlations between the plane angle values and the affinity of the compounds towards the protein.
Zobrazit více v PubMed
Siegel R.L., Giaquinto A.N., Jemal A. Cancer Statistics, 2024. CA. Cancer J. Clin. 2024;74:12–49. doi: 10.3322/caac.21820. PubMed DOI
Das C.K., Singh S.K. Biomedical Translational Research from Disease Diagnosis to Treatment. Springer Nature; Singapore: 2022. Immune Checkpoint Inhibitors in Cancer Therapy: A Ray of Hope; pp. 393–411. DOI
Sharma P., Goswami S., Raychaudhuri D., Siddiqui B.A., Singh P., Nagarajan A., Liu J., Subudhi S.K., Poon C., Gant K.L., et al. Immune Checkpoint Therapy—Current Perspectives and Future Directions. Cell. 2023;186:1652–1669. doi: 10.1016/j.cell.2023.03.006. PubMed DOI
Ribas A., Wolchok J.D. Cancer Immunotherapy Using Checkpoint Blockade. Science. 2018;359:1350–1355. doi: 10.1126/science.aar4060. PubMed DOI PMC
Wu M., Huang Q., Xie Y., Wu X., Ma H., Zhang Y., Xia Y. Improvement of the Anticancer Efficacy of PD-1/PD-L1 Blockade via Combination Therapy and PD-L1 Regulation. BioMed Cent. 2022;15:24. doi: 10.1186/s13045-022-01242-2. PubMed DOI PMC
Keir M.E., Butte M.J., Freeman G.J., Sharpe A.H. PD-1 and Its Ligands in Tolerance and Immunity. Annu. Rev. Immunol. 2008;26:677–704. doi: 10.1146/annurev.immunol.26.021607.090331. PubMed DOI PMC
Okazaki T., Honjo T. PD-1 and PD-1 Ligands: From Discovery to Clinical Application. Int. Immunol. 2007;19:813–824. doi: 10.1093/intimm/dxm057. PubMed DOI
Sun C., Mezzadra R., Schumacher T.N. Regulation and Function of the PD-L1 Checkpoint. Immunity. 2018;48:434–452. doi: 10.1016/j.immuni.2018.03.014. PubMed DOI PMC
Ishida Y., Agata Y., Shibahara K., Honjo T. Induced Expression of PD-1, a Novel Member of the Immunoglobulin Gene Superfamily, upon Programmed Cell Death. EMBO J. 1992;11:3887–3895. doi: 10.1002/j.1460-2075.1992.tb05481.x. PubMed DOI PMC
Patel S.P., Kurzrock R. PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Mol. Cancer Ther. 2015;14:847–856. doi: 10.1158/1535-7163.MCT-14-0983. PubMed DOI
Jiang X., Wang J., Deng X., Xiong F., Ge J., Xiang B., Wu X., Ma J., Zhou M., Li X., et al. Role of the Tumor Microenvironment in PD-L1/PD-1-Mediated Tumor Immune Escape. Mol. Cancer. 2019;18:10. doi: 10.1186/s12943-018-0928-4. PubMed DOI PMC
Han Y., Liu D., Li L. PD-1/PD-L1 Pathway: Current Researches in Cancer. Am. J. Cancer Res. 2020;10:727–742. PubMed PMC
Zhang J., Zhang Y., Qu B., Yang H., Hu S., Dong X. If Small Molecules Immunotherapy Comes, Can the Prime Be Far Behind? Eur. J. Med. Chem. 2021;218:113356. doi: 10.1016/j.ejmech.2021.113356. PubMed DOI
Lee H.T., Lee S.H., Heo Y.S. Molecular Interactions of Antibody Drugs Targeting PD-1, PD-L1, and CTLA-4 in Immuno-Oncology. Molecules. 2019;24:1190. doi: 10.3390/molecules24061190. PubMed DOI PMC
Wang T., Cai S., Cheng Y., Zhang W., Wang M., Sun H., Guo B., Li Z., Xiao Y., Jiang S. Discovery of Small-Molecule Inhibitors of the PD-1/PD-L1 Axis That Promote PD-L1 Internalization and Degradation. J. Med. Chem. 2022;65:3879–3893. doi: 10.1021/acs.jmedchem.1c01682. PubMed DOI
Martins F., Sofiya L., Sykiotis G.P., Lamine F., Maillard M., Fraga M., Shabafrouz K., Ribi C., Cairoli A., Guex-Crosier Y., et al. Adverse Effects of Immune-Checkpoint Inhibitors: Epidemiology, Management and Surveillance. Nat. Rev. Clin. Oncol. 2019;16:563–580. doi: 10.1038/s41571-019-0218-0. PubMed DOI
Sun X., Roudi R., Dai T., Chen S., Fan B., Li H., Zhou Y., Zhou M., Zhu B., Yin C., et al. Immune-Related Adverse Events Associated with Programmed Cell Death Protein-1 and Programmed Cell Death Ligand 1 Inhibitors for Non-Small Cell Lung Cancer: A PRISMA Systematic Review and Meta-Analysis. BMC Cancer. 2019;19:558. doi: 10.1186/s12885-019-5701-6. PubMed DOI PMC
Imai K., Takaoka A. Comparing Antibody and Small-Molecule Therapies for Cancer. Nat. Rev. Cancer. 2006;6:714–727. doi: 10.1038/nrc1913. PubMed DOI
Zak K.M., Kitel R., Przetocka S., Golik P., Guzik K., Musielak B., Dömling A., Dubin G., Holak T.A. Structure of the Complex of Human Programmed Death 1, PD-1, and Its Ligand PD-L1. Structure. 2015;23:2341–2348. doi: 10.1016/j.str.2015.09.010. PubMed DOI PMC
Chupak L.S., Zheng X. Bistol-Myers Squibb Company Compounds Useful a S Immunomodulatory. WO 2015/034820 A1. 2015 March 12;
Chupak L.S., Ding M., Martin S.W., Zheng X., Hewawasam P., Conolly T.P., Xu N., Yeung K.-S., Zhu J., Langley D.R., et al. Compounds Useful as Immunomodulatory. WO 2015/160641 A2. WO Patent. 2015 October 22;
Liang J., Wang B., Yang Y., Liu B., Jin Y. Approaching the Dimerization Mechanism of Small Molecule Inhibitors Targeting PD-L1 with Molecular Simulation. Int. J. Mol. Sci. 2023;24:1280. doi: 10.3390/ijms24021280. PubMed DOI PMC
Zak K.M., Grudnik P., Guzik K., Zieba B.J., Musielak B., Dömling A., Dubin G., Holak T.A. Structural Basis for Small Molecule Targeting of the Programmed Death Ligand 1 (PD-L1) Oncotarget. 2016;7:30323–30335. doi: 10.18632/oncotarget.8730. PubMed DOI PMC
Perry E., Mills J.J., Zhao B., Wang F., Sun Q., Christov P.P., Tarr J.C., Rietz T.A., Olejniczak E.T., Lee T., et al. Fragment-Based Screening of Programmed Death Ligand 1 (PD-L1) Bioorganic Med. Chem. Lett. 2019;29:786–790. doi: 10.1016/j.bmcl.2019.01.028. PubMed DOI PMC
Wang K., Zhang X., Cheng Y., Qi Z., Ye K., Zhang K., Jiang S., Liu Y., Xiao Y., Wang T. Discovery of Novel PD-L1 Inhibitors That Induce the Dimerization, Internalization, and Degradation of PD-L1 Based on the Fragment Coupling Strategy. J. Med. Chem. 2023;66:16807–16827. doi: 10.1021/acs.jmedchem.3c01534. PubMed DOI
Basu S., Yang J., Xu B., Magiera-Mularz K., Skalniak L., Musielak B., Kholodovych V., Holak T.A., Hu L. Design, Synthesis, Evaluation, and Structural Studies of C2-Symmetric Small Molecule Inhibitors of Programmed Cell Death-1/Programmed Death-Ligand 1 Protein-Protein Interaction. J. Med. Chem. 2019;62:7250–7263. doi: 10.1021/acs.jmedchem.9b00795. PubMed DOI
Kawashita S., Aoyagi K., Yamanaka H., Hantani R., Naruoka S., Tanimoto A., Hori Y., Toyonaga Y., Fukushima K., Miyazaki S., et al. Symmetry-Based Ligand Design and Evaluation of Small Molecule Inhibitors of Programmed Cell Death-1/Programmed Death-Ligand 1 Interaction. Bioorganic Med. Chem. Lett. 2019;29:2464–2467. doi: 10.1016/j.bmcl.2019.07.027. PubMed DOI
Park J.J., Thi E.P., Carpio V.H., Bi Y., Cole A.G., Dorsey B.D., Fan K., Harasym T., Iott C.L., Kadhim S., et al. Checkpoint Inhibition through Small Molecule-Induced Internalization of Programmed Death-Ligand 1. Nat. Commun. 2021;12:1222. doi: 10.1038/s41467-021-21410-1. PubMed DOI PMC
Deng J., Cheng Z., Long J., Dömling A., Tortorella M., Wang Y. Small Molecule Inhibitors of Programmed Cell Death Ligand 1 (PD-L1): A Patent Review (2019–2021) Expert Opin. Ther. Pat. 2022;32:575–589. doi: 10.1080/13543776.2022.2045276. PubMed DOI
Sasikumar P.G., Sudarshan N.S., Adurthi S., Ramachandra R.K., Samiulla D.S., Lakshminarasimhan A., Ramanathan A., Chandrasekhar T., Dhudashiya A.A., Talapati S.R., et al. PD-1 Derived CA-170 Is an Oral Immune Checkpoint Inhibitor That Exhibits Preclinical Anti-Tumor Efficacy. Commun. Biol. 2021;4:699. doi: 10.1038/s42003-021-02191-1. PubMed DOI PMC
Aktoudianakis E., Cho A., Du Z., Graupe M., LAD L.T., Machicao Tello P., Medley J.W., Metobo S., Mukherjee P.K. Gilead Sciences Incorporated PD-1/PD-L1 Inhibitors. WO 2019/160882 A1. WO Patent. 2019 August 22;
Burris H., Kotecki N., Kristeleit R., Pinato D., Sahebjam S. Phase 1 Study of INCB06550, an Oral PD-L1 Inhibitor, in Immune-Chceckpoint Naive Patients with Advanced Solid Tumors. J. Immuno Ther. Cancer. 2021;9:559–560.
Koblish H.K., Wu L., Wang L.C.S., Liu P.C.C., Wynn R., Rios-Doria J., Spitz S., Liu H., Volgina A., Zolotarjova N., et al. Characterization of INCB086550: A Potent and Novel Small-Molecule PD-L1 Inhibitor. Cancer Discov. 2022;12:1482–1499. doi: 10.1158/2159-8290.CD-21-1156. PubMed DOI PMC
Wang Y., Xu Z., Wu T., He M., Zhang N. Aromatic Acetylene or Aromatic Ethylene Compound, Intermediate, Preparation Method, Pharmaceutical Composition and Use Thereof. WO 2018/006795 A1. WO Patent. 2018 January 11;
Zwergel C., Fioravanti R., Mai A. PD-L1 Small-Molecule Modulators: A New Hope in Epigenetic-Based Multidrug Cancer Therapy? Drug Discov. Today. 2023;28:103435. doi: 10.1016/j.drudis.2022.103435. PubMed DOI
Muszak D., Surmiak E., Plewka J., Magiera-Mularz K., Kocik-Krol J., Musielak B., Sala D., Kitel R., Stec M., Weglarczyk K., et al. Terphenyl-Based Small-Molecule Inhibitors of Programmed Cell Death-1/Programmed Death-Ligand 1 Protein-Protein Interaction. J. Med. Chem. 2021;64:11614–11636. doi: 10.1021/acs.jmedchem.1c00957. PubMed DOI PMC
Surmiak E., Ząber J., Plewka J., Wojtanowicz G., Kocik-Krol J., Kruc O., Muszak D., Rodríguez I., Musielak B., Viviano M., et al. Solubilizer Tag Effect on PD-L1/Inhibitor Binding Properties for m-Terphenyl Derivatives. ACS Med. Chem. Lett. 2024;15:36–44. doi: 10.1021/acsmedchemlett.3c00306. PubMed DOI PMC
Wang T., Cai S., Wang M., Zhang W., Zhang K., Chen D., Li Z., Jiang S. Novel Biphenyl Pyridines as Potent Small-Molecule Inhibitors Targeting the Programmed Cell Death-1/Programmed Cell Death-Ligand 1 Interaction. J. Med. Chem. 2021;64:7390–7403. doi: 10.1021/acs.jmedchem.1c00010. PubMed DOI
Wang S., Wang Y., Yan H. Progress on Biphenyl Derivatives as PD-1/PD-L1 Inhibitors. Med. Chem. Res. 2023;32:2089–2115. doi: 10.1007/s00044-023-03127-6. DOI
Konieczny M., Musielak B., Kocik J., Skalniak L., Sala D., Czub M., Magiera-Mularz K., Rodriguez I., Myrcha M., Stec M., et al. Di-Bromo-Based Small-Molecule Inhibitors of the PD-1/PD-L1 Immune Checkpoint. J. Med. Chem. 2020;63:11271–11285. doi: 10.1021/acs.jmedchem.0c01260. PubMed DOI PMC
Kitel R., Rodríguez I., Del Corte X., Atmaj J., Żarnik M., Surmiak E., Muszak D., Magiera-Mularz K., Popowicz G.M., Holak T.A., et al. Exploring the Surface of the Ectodomain of the PD-L1 Immune Checkpoint with Small-Molecule Fragments. ACS Chem. Biol. 2022;17:2655–2663. doi: 10.1021/acschembio.2c00583. PubMed DOI PMC
Verdonk M.L., Cole J.C., Hartshorn M.J., Murray C.W., Taylor R.D. Improved Protein–Ligand Docking Using GOLD Marcel. Proteins. 2003;52:609–623. doi: 10.1002/prot.10465. PubMed DOI
Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC
Adasme M.F., Linnemann K.L., Bolz S.N., Kaiser F., Salentin S., Haupt V.J., Schroeder M. PLIP 2021: Expanding the Scope of the Protein-Ligand Interaction Profiler to DNA and RNA. Nucleic Acids Res. 2021;49:W530–W534. doi: 10.1093/nar/gkab294. PubMed DOI PMC