• This record comes from PubMed

Effects of Oral ALZ-801/Valiltramiprosate on Plasma Biomarkers, Brain Hippocampal Volume, and Cognition: Results of 2-Year Single-Arm, Open-Label, Phase 2 Trial in APOE4 Carriers with Early Alzheimer's Disease

. 2024 Jul ; 84 (7) : 811-823. [epub] 20240620

Language English Country New Zealand Media print-electronic

Document type Journal Article, Clinical Trial, Phase II

Links

PubMed 38902571
PubMed Central PMC11289173
DOI 10.1007/s40265-024-02067-8
PII: 10.1007/s40265-024-02067-8
Knihovny.cz E-resources

INTRODUCTION: ALZ-801/valiltramiprosate is a small-molecule oral inhibitor of beta amyloid (Aβ) aggregation and oligomer formation being studied in a phase 2 trial in APOE4 carriers with early Alzheimer's disease (AD) to evaluate treatment effects on fluid and imaging biomarkers and cognitive assessments. METHODS: The single-arm, open-label phase 2 trial was designed to evaluate the effects of the ALZ-801 265 mg tablet taken twice daily (after 2 weeks once daily) on plasma fluid AD biomarkers, hippocampal volume (HV), and cognition over 104 weeks in APOE4 carriers. The study enrolled subjects aged 50-80 years, with early AD [Mini-Mental State Examination (MMSE) ≥ 22, Clinical Dementia Rating-Global (CDR-G) 0.5 or 1], apolipoprotein E4 (APOE4) genotypes including APOE4/4 and APOE3/4 genotypes, and positive cerebrospinal fluid (CSF) AD biomarkers or prior amyloid scans. The primary outcome was plasma p-tau181, HV evaluated by magnetic resonance imaging (MRI) was the key secondary outcome, and plasma Aβ42 and Aβ40 were the secondary biomarker outcomes. The cognitive outcomes were the Rey Auditory Verbal Learning Test and the Digit Symbol Substitution Test. Safety and tolerability evaluations included treatment-emergent adverse events and amyloid-related imaging abnormalities (ARIA). The study was designed and powered to detect 15% reduction from baseline in plasma p-tau181 at the 104-week endpoint. A sample size of 80 subjects provided adequate power to detect this difference at a significance level of 0.05 using a two-sided paired t-test. RESULTS: The enrolled population of 84 subjects (31 homozygotes and 53 heterozygotes) was 52% females, mean age 69 years, MMSE 25.7 [70% mild cognitive impairment (MCI), 30% mild AD] with 55% on cholinesterase inhibitors. Plasma p-tau181 reduction from baseline was significant (31%, p = 0.045) at 104 weeks and all prior visits; HV atrophy was significantly reduced (p = 0.0014) compared with matched external controls from an observational Early AD study. Memory scores showed minimal decline from baseline over 104 weeks and correlated significantly with decreased HV atrophy (Spearman's 0.44, p = 0.002). Common adverse events were COVID infection and mild nausea, and no drug-related serious adverse events were reported. Of 14 early terminations, 6 were due to nonserious treatment-emergent adverse events and 1 death due to COVID. There was no vasogenic brain edema observed on MRI over 104 weeks. CONCLUSIONS: The effect of ALZ-801 on reducing plasma p-tau181 over 2 years demonstrates target engagement and supports its anti-Aβ oligomer action that leads to a robust decrease in amyloid-induced brain neurodegeneration. The significant correlation between reduced HV atrophy and cognitive stability over 2 years suggests a disease-modifying effect of ALZ-801 treatment in patients with early AD. Together with the favorable safety profile with no events of vasogenic brain edema, these results support further evaluation of ALZ-801 in a broader population of APOE4 carriers, who represent two-thirds of patients with AD. TRIAL REGISTRATION: https://clinicaltrials.gov/study/NCT04693520 .

See more in PubMed

Alzheimer’s Association Facts and Figures. 2024. https://www.alz.org/media/Documents/alzheimers-facts-and-figures.pdf.

Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921–3. 10.1126/science.8346443. 10.1126/science.8346443 PubMed DOI

Roses AD. Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med. 1996;47:387–400. 10.1146/annurev.med.47.1.387. 10.1146/annurev.med.47.1.387 PubMed DOI

Ward A, Crean S, Mercaldi CJ, Collins JM, Boyd D, Cook MN, et al. Prevalence of Apolipoprotein E4 genotype and homozygotes (APOE e4/4) among patients diagnosed with alzheimer’s disease: a systematic review and meta-analysis. Neuroepidemiology. 2012;38:1–17. 10.1159/000334607. 10.1159/000334607 PubMed DOI

van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388:9–21. 10.1056/NEJMoa2212948. 10.1056/NEJMoa2212948 PubMed DOI

Sperling RA, Jack CR Jr, Black SE, Frosch MP, Greenberg SM, Hyman BT, et al. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: Recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimers Dement. 2011;7:367–85. 10.1016/j.jalz.2011.05.2351. 10.1016/j.jalz.2011.05.2351 PubMed DOI PMC

Hampel H, Elhage A, Cho M, Apostolova LG, Nicoll JAR, Atri A. Amyloid-related imaging abnormalities (ARIA): radiological, biological and clinical characteristics. Brain. 2023;146:4414–24. 10.1093/brain/awad188. 10.1093/brain/awad188 PubMed DOI PMC

Barakos J, Purcell D, Suhy J, Chalkias S, Burkett P, Marsica Grassi C, et al. Detection and management of amyloid- related imaging abnormalities in patients with Alzheimer’s disease treated with anti-amyloid beta therapy. J Prev Alzheimers Dis. 2022;9:211–20. 10.14283/jpad.2022.21. 10.14283/jpad.2022.21 PubMed DOI

Wilcock DM, Rojiani A, Rosenthal A, Subbarao S, Freeman MJ, Gordon MN, et al. Passive immunotherapy against Aβ in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage. J Neuroinflamm. 2004;1:24. 10.1186/1742-2094-1-24.10.1186/1742-2094-1-24 PubMed DOI PMC

Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ. Cerebral amyloid angiopathy and Alzheimer disease—one peptide, two pathways. Nat Rev Neurol. 2020;16:30–42. 10.1038/s41582-019-0281-2. 10.1038/s41582-019-0281-2 PubMed DOI PMC

Rannikmäe K, Kalaria RN, Greenberg SM, Chui HC, Schmitt FA, Samarasekera N, et al. APOE associations with severe CAA-associated vasculopathic changes: collaborative meta-analysis. J Neurol Neurosurg Psychiatry. 2014;85:300–5. 10.1136/jnnp-2013-306485. 10.1136/jnnp-2013-306485 PubMed DOI PMC

Jansen WJ, Janssen O, Tijms BM, Vos SJB, Ossenkoppele R, Visser PJ, et al. Prevalence estimates of amyloid abnormality across the Alzheimer disease clinical spectrum. JAMA Neurol. 2022;79:228–43. 10.1001/jamaneurol.2021.5216. 10.1001/jamaneurol.2021.5216 PubMed DOI

Withington CG, Turner RS. Amyloid-related imaging abnormalities with anti- amyloid antibodies for the treatment of dementia due to Alzheimer’s disease. Front Neurol. 2022;13: 862369. 10.3389/fneur.2022.862369. 10.3389/fneur.2022.862369 PubMed DOI PMC

Tolar M, Abushakra S, Hey JA, Porsteinsson A, Sabbagh M. Aducanumab, gantenerumab, BAN2401, and ALZ-801-the first wave of amyloid-targeting drugs for Alzheimer’s disease with potential for near term approval. Alzheimers Res Ther. 2020;12(1):95. 10.1186/s13195-020-00663-w. 10.1186/s13195-020-00663-w PubMed DOI PMC

Tolar M, Hey J, Power A, Abushakra S. Neurotoxic soluble amyloid oligomers drive Alzheimer’s pathogenesis and represent a clinically validated target for slowing disease progression. Int J Mol Sci. 2021;22(12):6355. 10.3390/ijms22126355. 10.3390/ijms22126355 PubMed DOI PMC

Tolar M, Hey JA, Power A, Abushakra S. The single toxin origin of Alzheimer’s disease and other neurodegenerative disorders enables targeted approach to treatment and prevention. Int J Mol Sci. 2024;25(5):2727. 10.3390/ijms25052727. 10.3390/ijms25052727 PubMed DOI PMC

Kocis P, Tolar M, Yu J, Sinko W, Ray S, Blennow K, et al. Elucidating the abeta42 anti-aggregation mechanism of action of tramiprosate in Alzheimer’s disease: integrating molecular analytical Methods, pharmacokinetic and clinical data. CNS Drugs. 2017;31(6):495–509. 10.1007/s40263-017-0434-z. 10.1007/s40263-017-0434-z PubMed DOI PMC

Hey JA, Kocis P, Hort J, Abushakra S, Power A, Vyhnalek M, et al. Discovery and identification of an endogenous metabolite of tramiprosate and its prodrug ALZ-801 that inhibits beta amyloid oligomer formation in the human brain. CNS Drugs. 2018;32(9):849–61. 10.1007/s40263-018-0554-0. 10.1007/s40263-018-0554-0 PubMed DOI PMC

Liang C, Savinov SN, Fejzo J, Eyles SJ, Chen J. Modulation of amyloid-beta42 conformation by small molecules through nonspecific binding. J Chem Theory Comput. 2019;15(10):5169–74. 10.1021/acs.jctc.9b00599. 10.1021/acs.jctc.9b00599 PubMed DOI PMC

Hey JA, Yu JY, Versavel M, Abushakra S, Kocis P, Power A, et al. Clinical pharmacokinetics and safety of ALZ-801, a novel prodrug of tramiprosate in development for the treatment of Alzheimer’s disease. Clin Pharmacokinet. 2018;57(3):315–33. 10.1007/s40262-017-0608-3. 10.1007/s40262-017-0608-3 PubMed DOI PMC

Abushakra S, Porsteinsson A, Vellas B, Cummings J, Gauthier S, Hey JA, et al. Clinical benefits of tramiprosate in Alzheimer’s disease are associated with higher number of APOE4 alleles: the “APOE4 gene-dose effect.” J Prev Alz Dis. 2016;3(4):219–28. 10.14283/jpad.2016.115.10.14283/jpad.2016.115 PubMed DOI

Abushakra S, Porsteinsson A, Scheltens P, Sadowsky C, Vellas B, Cummings J, et al. Clinical effects of tramiprosate in APOE4/4 homozygous patients with mild Alzheimer’s disease suggest disease modification potential. J Prev Alzeimers Dis. 2017;4(3):149–56. 10.14283/jpad.2017.26.10.14283/jpad.2017.26 PubMed DOI

Hashimoto T, Serrano-Pozo A, Hori Y, Adams KW, Takeda S, Banerji AO, et al. Apolipoprotein E, especially apolipoprotein E4, increases the oligomerization of amyloid peptide. J Neurosci. 2012;32:15181–92. 10.1523/JNEUROSCI.1542-12.2012. 10.1523/JNEUROSCI.1542-12.2012 PubMed DOI PMC

Fleisher AS, Chen K, Liu X, Ayutyanont N, Roontiva A, Thiyyagura P, et al. Apolipoprotein E ε4 and age effects on florbetapir positron emission tomography in healthy aging and Alzheimer disease. Neurobiol Aging. 2013;34:1–12. 10.1016/j.neurobiolaging.2012.04.017. 10.1016/j.neurobiolaging.2012.04.017 PubMed DOI

Jansen WJ, Ossenkoppele R, Knol DL, Tijms BM, Scheltens P, Verhey FRJ, et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA. 2015;313:1939–49. 10.1001/jama.2015.4669. 10.1001/jama.2015.4669 PubMed DOI PMC

Fortea J, Pegueroles J, Alcolea D, Belbin O, Dols-Icardo O, Vaque-Alcazar L, et al. APOE4 homozygozity represents a distinct genetic form of Alzheimer’s disease. Nat Med. 2024;30(5):1284–91. 10.1038/s41591-024-02931-w. 10.1038/s41591-024-02931-w PubMed DOI

Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018;14:535–62. 10.1016/j.jalz.2018.02.018. 10.1016/j.jalz.2018.02.018 PubMed DOI PMC

Hansson O, Seibyl J, Stomrud E, Zetterberg H, Trojanowski JQ, Bittner T, et al. CSF biomarkers of Alzheimer’s disease concord with amyloid-β PET and predict clinical progression: a study of fully automated immunoassays in BioFINDER and ADNI cohorts. Alzheimers Dement. 2018;14:1470–81. 10.1016/j.jalz.2018.01.010. 10.1016/j.jalz.2018.01.010 PubMed DOI PMC

Hansson O. Biomarkers for neurodegenerative diseases. Nat Med. 2021;27:954–63. 10.1038/s41591-021-01382-x. 10.1038/s41591-021-01382-x PubMed DOI

Jack CR, et al. Revised criteria for diagnosis and staging of Alzheimer's disease: Alzheimer’s Association Workgroup. 2023. PubMed PMC

Mattsson-Carlgren N, Andersson E, Janelidze S, Ossenkoppele R, Insel P, Strandberg O, et al. Aβ deposition is associated with increases in soluble and phosphorylated tau that precede a positive Tau PET in Alzheimer’s disease. Sci Adv. 2020;6(16):eaaz2387. 10.1126/sciadv.aaz2387. 10.1126/sciadv.aaz2387 PubMed DOI PMC

Moscoso A, Grothe MJ, Ashton NJ, Karikari TK, Lantero Rodríguez J, Snellman A, et al. Longitudinal associations of blood phosphorylated tau181 and neurofilament light chain with neurodegeneration in Alzheimer’s disease. JAMA Neurol. 2021;78(4):396–406. 10.1001/jamaneurol.2020.4986. 10.1001/jamaneurol.2020.4986 PubMed DOI PMC

Karikari TK, Pascoal TA, Ashton NJ, Janelidze S, Benedet AL, Rodriguez JL, et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020;19:422–33. 10.1016/s1474-4422(20)30071-5. 10.1016/s1474-4422(20)30071-5 PubMed DOI

Therriault J, Vermeiren M, Servaes S, Tissot C, Zimmer ER, Benedet AL, et al. Association of phosphorylated tau biomarkers with amyloid-PET vs with tau-PET. JAMA Neurol. 2022;80(2):188–99. 10.1001/jamaneurol.2022.4485.10.1001/jamaneurol.2022.4485 PubMed DOI PMC

Budd Haeberlein S, Aisen PS, Barkhof F, Chalkias S, Chen T, Cohen S, et al. Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J Prev Alzheimers Dis. 2022;9(2):197–210. 10.14283/jpad.2022.30. 10.14283/jpad.2022.30 PubMed DOI

McKhann G, Knopman DS, Chertkow H, Hymann B, Jack CR, Kawas C, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9. 10.1016/j.jalz.2011.03.005. 10.1016/j.jalz.2011.03.005 PubMed DOI PMC

Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:270–9. 10.1016/j.jalz.2011.03.008. 10.1016/j.jalz.2011.03.008 PubMed DOI PMC

Blennow K, Galasko D, Perneczky R, Quevenco FC, van der Flier WM, Akinwonmi A, et al. The potential clinical value of plasma biomarkers in Alzheimer’s disease. Alzheimers Dement. 2023;19:5805–16. 10.1002/alz.13455. 10.1002/alz.13455 PubMed DOI

Abushakra S, Porsteinsson AP, Sabbagh M, Bracoud L, Schaerer J, Power A, et al. APOE ε4/ε4 homozygotes with early Alzheimer’s disease show accelerated hippocampal atrophy and cortical thinning that correlates with cognitive decline. Alzheimers Dement (N Y). 2020;6(1): e12117. 10.1002/trc2.12117. 10.1002/trc2.12117 PubMed DOI PMC

Abushakra S, Mandelbaum R, Barakos J, Scheltens P, Porsteinsson AP, Watson D, et al. Prevalence of amyloid-related imaging abnormalities in APOE4/4 homozygotes with early Alzheimer’s disease (AD): baseline findings from ongoing clinical trials of the oral anti-amyloid agent ALZ-801 (valiltramiprosate) (P5–6.003). Neurology. 2023. 10.1212/WNL.000000000020355.10.1212/WNL.000000000020355 DOI

Wechsler D. Wechsler adult intelligence scale-revised manual. New York: The Psychological Corporation; 1981.

Lezak MD, Howieson DB, Loring DW. Neuropsychological assessment. 4th ed. New York: Oxford University Press; 2004.

Salthouse TA. The role of memory in the age decline in digit-symbol substitution performance. J Gerontol. 1978;33:232–8. 10.1093/geronj/33.2.232. 10.1093/geronj/33.2.232 PubMed DOI

Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98. 10.1016/0022-3956(75)90026-6. 10.1016/0022-3956(75)90026-6 PubMed DOI

Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harveyet DJ, et al. Alzheimer’s disease neuroimaging initiative (ADNI): clinical characterization. Neurology. 2010;74:201–9. 10.1212/WNL.0b013e3181cb3e25. 10.1212/WNL.0b013e3181cb3e25 PubMed DOI PMC

Abushakra S. Effects of oral ALZ-801 on plasma and MRI biomarkers in APOE4 carriers with Early AD: 52-week analysis from Phase 2 biomarker study. San Francisco: Clinical Trials on Alzheimer’s Disease (CTAD); 2022.

O’Bryant SE, Waring SC, Cullum CM, Hall J, Lacritz L, Massman PJ, et al. Staging dementia using Clinical Dementia Rating Scale Sum of Boxes scores: a Texas Alzheimer’s research consortium study. Arch Neurol. 2008;65(8):1091–5. 10.1001/archneur.65.8.1091. 10.1001/archneur.65.8.1091 PubMed DOI PMC

Mungas D, Harvey D, Reed BR, Jagust WJ, DeCarli C, Beckett L, et al. Longitudinal volumetric MRI change and rate of cognitive decline. Neurology. 2005;65:565–71. 10.1212/01.wnl.0000172913.88973.0d. 10.1212/01.wnl.0000172913.88973.0d PubMed DOI PMC

Angioni D, Hansson O, Bateman RJ, Rabe C, Toloue M, Braunstein JB, et al. Can we use blood biomarkers as entry criteria and for monitoring drug treatment effects in clinical trials? A report from the EU/US CTAD Task Force. J Prev Alzheimers Dis. 2023;10:418–25. 10.14283/jpad.2023.68. 10.14283/jpad.2023.68 PubMed DOI

Tarasoff-Conway J, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, et al. Clearance systems in the brain - implications for Alzheimer disease. Nat Rev Neurol. 2015;11(8):457–70. 10.1038/nrneurol.2015.119. 10.1038/nrneurol.2015.119 PubMed DOI PMC

Roher AE, Esh CL, Kokjohn TA, Castaño EM, Van Vickle GD, Kalback WM, et al. Aβ peptides in human plasma and tissues and their significance for Alzheimer’s disease. Alzheimers Dement. 2009;5(1):18–29. 10.1016/j.jalz.2008.10.004. 10.1016/j.jalz.2008.10.004 PubMed DOI PMC

Gervais F, Paquette J, Morissette C, Krzywkowski P, Yu M, Azzi M, et al. Targeting soluble Aβ peptide with Tramiprosate for the treatment of brain amyloidosis. Neurobiol Aging. 2007;28:537–47. 10.1016/j.neurobiolaging.2023.04.003. 10.1016/j.neurobiolaging.2023.04.003 PubMed DOI

Cogswell PM, Lundt ES, Therneau TM, Wiste HJ, Graff-Radford J, Algeciras-Schimnich A, et al. Modeling the temporal evolution of plasma p-tau in relation to amyloid beta and tau PET. Alzheimers Dement. 2024;20(2):1225–38. 10.1002/alz.13539. 10.1002/alz.13539 PubMed DOI PMC

La Joie R, Visani AV, Lesman-Segev OH, Baker SL, Edwards L, Iaccarino L, et al. Association of APOE4 and clinical variability in Alzheimer disease with the pattern of tau- and amyloid-PET. Neurology. 2021;96(5):e650–61. 10.1212/WNL.0000000000011270. 10.1212/WNL.0000000000011270 PubMed DOI PMC

Sims JR, Zimmer JA, Evans CD, Lu M, Ardayfio P, Sparks J, et al. Donanemab in early symptomatic Alzheimer disease: the TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA. 2023;330(6):512–27. 10.1001/jama.2023.13239. 10.1001/jama.2023.13239 PubMed DOI PMC

Cummings JL, Apostolova L, Rabinovici GD, Atri A, Aisen P, Greenberg S, et al. Lecanemab: appropriate use recommendations. J Prev Alzheimers Dis. 2023;10(3):362–77. 10.14283/jpad.2023.30. 10.14283/jpad.2023.30 PubMed DOI PMC

Hey JA, Yu JY, Abushakra S, Schaefer JF, Power A, Kesslak P, et al. Analysis of cerebrospinal fluid, plasma β-amyloid biomarkers and cognition from 2-year phase 2 trial evaluating oral ALZ-801/valiltramiprosate in APOE4 carriers with early Alzheimer’s disease using quantitative systems pharmacology model. Drugs 2024;84. 10.1007/s40265-024-02068-7. PubMed PMC

See more in PubMed

ClinicalTrials.gov
NCT04693520

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...