Germline pathogenic variants in the MRE11, RAD50, and NBN (MRN) genes in cancer predisposition: A systematic review and meta-analysis
Language English Country United States Media print-electronic
Document type Systematic Review, Meta-Analysis, Journal Article
Grant support
LX22NPO05102
Ministerstvo Školství, Mládeže a Tělovýchovy
NU20-03-00283
Ministerstvo Zdravotnictví České Republiky
RVO-VFN 00064165
Ministerstvo Zdravotnictví České Republiky
SVV260631
Grantová Agentura, Univerzita Karlova
UNCE/24/MED/022
Grantová Agentura, Univerzita Karlova
COOPERATIO
Grantová Agentura, Univerzita Karlova
PubMed
38924040
DOI
10.1002/ijc.35066
Knihovny.cz E-resources
- Keywords
- MRE11, NBN, RAD50, germline variants, meta‐analysis,
- MeSH
- DNA-Binding Proteins genetics MeSH
- DNA Repair Enzymes genetics MeSH
- Genetic Predisposition to Disease * MeSH
- MRE11 Homologue Protein * genetics MeSH
- Acid Anhydride Hydrolases * genetics MeSH
- Nuclear Proteins * genetics MeSH
- Humans MeSH
- Neoplasms * genetics MeSH
- Cell Cycle Proteins * genetics MeSH
- Germ-Line Mutation * MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Meta-Analysis MeSH
- Systematic Review MeSH
- Names of Substances
- DNA-Binding Proteins MeSH
- DNA Repair Enzymes MeSH
- MRE11 Homologue Protein * MeSH
- Acid Anhydride Hydrolases * MeSH
- Nuclear Proteins * MeSH
- MRE11 protein, human MeSH Browser
- NBN protein, human MeSH Browser
- Cell Cycle Proteins * MeSH
- RAD50 protein, human MeSH Browser
The MRE11, RAD50, and NBN genes encode the MRN complex sensing DNA breaks and directing their repair. While carriers of biallelic germline pathogenic variants (gPV) develop rare chromosomal instability syndromes, the cancer risk in heterozygotes remains controversial. We performed a systematic review and meta-analysis of 53 studies in patients with different cancer diagnoses to better understand the cancer risk. We found an increased risk (odds ratio, 95% confidence interval) for gPV carriers in NBN for melanoma (7.14; 3.30-15.43), pancreatic cancer (4.03; 2.14-7.58), hematological tumors (3.42; 1.14-10.22), and prostate cancer (2.44, 1.84-3.24), but a low risk for breast cancer (1.29; 1.00-1.66) and an insignificant risk for ovarian cancer (1.53; 0.76-3.09). We found no increased breast cancer risk in carriers of gPV in RAD50 (0.93; 0.74-1.16; except of c.687del carriers) and MRE11 (0.87; 0.66-1.13). The secondary burden analysis compared the frequencies of gPV in MRN genes in patients from 150 studies with those in the gnomAD database. In NBN gPV carriers, this analysis additionally showed a high risk for brain tumors (5.06; 2.39-9.52), a low risk for colorectal (1.64; 1.26-2.10) and hepatobiliary (2.16; 1.02-4.06) cancers, and no risk for endometrial, and gastric cancer. The secondary burden analysis showed also a moderate risk for ovarian cancer (3.00; 1.27-6.08) in MRE11 gPV carriers, and no risk for ovarian and hepatobiliary cancers in RAD50 gPV carriers. These findings provide a robust clinical evidence of cancer risks to guide personalized clinical management in heterozygous carriers of gPV in the MRE11, RAD50, and NBN genes.
Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
Department of Genetics and Microbiology Faculty of Science Charles University Prague Czech Republic
See more in PubMed
Otahalova B, Volkova Z, Soukupova J, et al. Importance of germline and somatic alterations in human MRE11, RAD50, and NBN genes coding for MRN complex. Int J Mol Sci. 2023;24(6):1‐22.
Qiu S, Huang J. MRN complex is an essential effector of DNA damage repair. J Zhejiang Univ Sci B. 2021;22(1):31‐37.
Varon R, Vissinga C, Platzer M, et al. Nibrin, a novel DNA double‐strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell. 1998;93(3):467‐476.
Ragamin A, Yigit G, Bousset K, et al. Human RAD50 deficiency: confirmation of a distinctive phenotype. Am J Med Genet A. 2020;182(6):1378‐1386.
Mahale RR, Reddy N, Mathuranth P, Mailankody P, Padmanabha H, Retnaswami CS. A rare case of ataxia‐telangiectasia‐like disorder with MRE11 mutation. J Pediatr Neurosci. 2020;15(3):283‐285.
Chrzanowska KH, Seemanova E, Varon R, et al. The NBN founder mutation‐evidence for a country specific difference in age at cancer manifestation. Cancer Rep (Hoboken, NJ). 2023;6(2):e1700.
Bakhoum SF, Cantley LC. The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell. 2018;174(6):1347‐1360.
Heikkinen K, Rapakko K, Karppinen SM, et al. RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability. Carcinogenesis. 2006;27(8):1593‐1599.
Górski B, Debniak T, Masojć B, et al. Germline 657del5 mutation in the NBS1 gene in breast cancer patients. Int J Cancer. 2003;106(3):379‐381.
Fu F, Zhang D, Hu L, et al. Association between 15 known or potential breast cancer susceptibility genes and breast cancer risks in Chinese women. Cancer Biol Med. 2021;19(2):253‐262.
Lhotova K, Stolarova L, Zemankova P, et al. Multigene panel germline testing of 1333 Czech patients with ovarian cancer. Cancer. 2020;12(4):1‐14.
Steffen J, Varon R, Mosor M, et al. Increased cancer risk of heterozygotes with NBS1 germline mutations in Poland. Int J Cancer. 2004;111(1):67‐71.
Borecka M, Zemankova P, Lhota F, et al. The c.657del5 variant in the NBN gene predisposes to pancreatic cancer. Gene. 2016;587(2):169‐172.
Ciara E, Piekutowska‐Abramczuk D, Popowska E, et al. Heterozygous germ‐line mutations in the NBN gene predispose to medulloblastoma in pediatric patients. Acta Neuropathol. 2010;119(3):325‐334.
Cybulski C, Górski B, Debniak T, et al. NBS1 is a prostate cancer susceptibility gene. Cancer Res. 2004;64(4):1215‐1219.
Resnick IB, Kondratenko I, Pashanov E, et al. 657del5 mutation in the gene for Nijmegen breakage syndrome (NBS1) in a cohort of Russian children with lymphoid tissue malignancies and controls. Am J Med Genet A. 2003;120a(2):174‐179.
Elkholi IE, Foulkes WD, Rivera B. MRN complex and cancer risk: old bottles, new wine. Clin Cancer Res. 2021;27(20):5465‐5471.
Tommiska J, Seal S, Renwick A, et al. Evaluation of RAD50 in familial breast cancer predisposition. Int J Cancer. 2006;118(11):2911‐2916.
Reid S, Pal T. Update on multi‐gene panel testing and communication of genetic test results. Breast J. 2020;26(8):1513‐1519.
National Comprehensive Cancer Network. Genetic/familial high‐risk assessment: breast, ovarian, and pancreatic (Version 3.2024). 2024 https://www.nccn.org/professionals/physician_gls/pdf/genetics_bop.pdf Accessed February 12, 2024.
Kurian AW, Hughes E, Handorf EA, et al. Breast and ovarian cancer penetrance estimates derived from germline multiple‐gene sequencing results in women. JCO Precis Oncol. 2017;1:1‐12.
Balduzzi S, Rücker G, Schwarzer G. How to perform a meta‐analysis with R: a practical tutorial. Evid Based Ment Health. 2019;22:153‐160.
Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta‐analysis detected by a simple, graphical test. BMJ (Clinical Research Ed). 1997;315(7109):629‐634.
Jung SH. Stratified Fisher's exact test and its sample size calculation. Biom J Biom Z. 2014;56(1):129‐140.
Girard E, Eon‐Marchais S, Olaso R, et al. Familial breast cancer and DNA repair genes: insights into known and novel susceptibility genes from the GENESIS study, and implications for multigene panel testing. Int J Cancer. 2019;144(8):1962‐1974.
Lhota F, Zemankova P, Kleiblova P, et al. Hereditary truncating mutations of DNA repair and other genes in BRCA1/BRCA2/PALB2‐negatively tested breast cancer patients. Clin Genet. 2016;90(4):324‐333.
Akcay IM, Celik E, Agaoglu NB, et al. Germline pathogenic variant spectrum in 25 cancer susceptibility genes in Turkish breast and colorectal cancer patients and elderly controls. Int J Cancer. 2021;148(2):285‐295.
Hauke J, Horvath J, Groß E, et al. Gene panel testing of 5589 BRCA1/2‐negative index patients with breast cancer in a routine diagnostic setting: results of the German Consortium for Hereditary Breast and Ovarian Cancer. Cancer Med. 2018;7(4):1349‐1358.
Thompson ER, Rowley SM, Li N, et al. Panel testing for familial breast cancer: calibrating the tension between research and clinical care. J Clin Oncol. 2016;34(13):1455‐1459.
Dorling L, Carvalho S, Allen J, et al. Breast cancer risk genes—association analysis in more than 113,000 women. N Engl J Med. 2021;384(5):428‐439.
Hu C, Hart SN, Gnanaolivu R, et al. A population‐based study of genes previously implicated in breast cancer. N Engl J Med. 2021;384(5):440‐451.
Roznowski K, Januszkiewicz‐Lewandowska D, Mosor M, Pernak M, Litwiniuk M, Nowak J. I171V germline mutation in the NBS1 gene significantly increases risk of breast cancer. Breast Cancer Res Treat. 2008;110(2):343‐348.
Couch FJ, Shimelis H, Hu C, et al. Associations between cancer predisposition testing panel genes and breast cancer. JAMA Oncol. 2017;3(9):1190‐1196.
Shimelis H, LaDuca H, Hu C, et al. Triple‐negative breast cancer risk genes identified by multigene hereditary cancer panel testing. J Natl Cancer Inst. 2018;110(8):855‐862.
Mateju M, Kleiblova P, Kleibl Z, et al. Germline mutations 657del5 and 643C>T (R215W) in NBN are not likely to be associated with increased risk of breast cancer in Czech women. Breast Cancer Res Treat. 2012;133(2):809‐811.
Carlomagno F, Chang‐Claude J, Dunning AM, Ponder BA. Determination of the frequency of the common 657Del5 Nijmegen breakage syndrome mutation in the German population: no association with risk of breast cancer. Genes Chromosomes Cancer. 1999;25(4):393‐395.
van Veen EM, Evans DG, Harkness EF, et al. Extended gene panel testing in lobular breast cancer. Fam Cancer. 2022;21(2):129‐136.
Rusak B, Kluźniak W, Wokołorczyk D, et al. Allelic modification of breast cancer risk in women with an NBN mutation. Breast Cancer Res Treat. 2019;178(2):427‐431.
Felix GES, Guindalini RSC, Zheng Y, et al. Mutational spectrum of breast cancer susceptibility genes among women ascertained in a cancer risk clinic in Northeast Brazil. Breast Cancer Res Treat. 2022;193(2):485‐494.
Buslov KG, Iyevleva AG, Chekmariova EV, et al. NBS1 657del5 mutation may contribute only to a limited fraction of breast cancer cases in Russia. Int J Cancer. 2005;114(4):585‐589.
Bogdanova N, Feshchenko S, Schürmann P, et al. Nijmegen Breakage Syndrome mutations and risk of breast cancer. Int J Cancer. 2008;122(4):802‐806.
Kostovska IM, Jakimovska M, Kubelka‐Sabit K, et al. Clinical relevance of CHEK2 and NBN mutations in the macedonian population. Balk J Med Genet. 2015;18(1):47‐54.
Zeng C, Guo X, Wen W, et al. Evaluation of pathogenetic mutations in breast cancer predisposition genes in population‐based studies conducted among Chinese women. Breast Cancer Res Treat. 2020;181(2):465‐473.
Steffen J, Nowakowska D, Niwińska A, et al. Germline mutations 657del5 of the NBS1 gene contribute significantly to the incidence of breast cancer in Central Poland. Int J Cancer. 2006;119(2):472‐475.
Kanka C, Brozek I, Skalska B, Siemiatkowska A, Limon J. Germline NBS1 mutations in families with aggregation of breast and/or ovarian cancer from north‐east Poland. Anticancer Res. 2007;27(4c):3015‐3018.
Arvai KJ, Roberts ME, Torene RI, et al. Age‐adjusted association of homologous recombination genes with ovarian cancer using clinical exomes as controls. Hered Cancer Clin Pract. 2019;17:19.
Ramus SJ, Song H, Dicks E, et al. Germline mutations in the BRIP1, BARD1, PALB2, and NBN genes in women with ovarian cancer. J Natl Cancer Inst. 2015;107(11):1‐8.
Abele A, Vjaters E, Irmejs A, Trofimovičs G, Miklaševičs E, Gardovskis J. Epidemiologic, clinical, and molecular characteristics of hereditary prostate cancer in Latvia. Medicina (Kaunas). 2011;47(10):579‐585.
Cybulski C, Wokołorczyk D, Kluźniak W, et al. An inherited NBN mutation is associated with poor prognosis prostate cancer. Br J Cancer. 2013;108(2):461‐468.
Hebbring SJ, Fredriksson H, White KA, et al. Role of the Nijmegen breakage syndrome 1 gene in familial and sporadic prostate cancer. Cancer Epidemiol Biomarkers Prev. 2006;15(5):935‐938.
Heise M, Jarzemski P, Nowak D, et al. Clinical significance of gene mutations and polymorphic variants and their association with prostate cancer risk in polish men. Cancer Control. 2022;29:10732748211062342.
Momozawa Y, Iwasaki Y, Hirata M, et al. Germline pathogenic variants in 7636 Japanese patients with prostate cancer and 12 366 controls. J Natl Cancer Inst. 2020;112(4):369‐376.
Nguyen‐Dumont T, Dowty JG, MacInnis RJ, et al. Rare germline pathogenic variants identified by multigene panel testing and the risk of aggressive prostate cancer. Cancer. 2021;13(7):1‐12.
Rusak B, Kluźniak W, Wokołorczykv D, et al. Inherited NBN mutations and prostate cancer risk and survival. Cancer Res Treat. 2019;51(3):1180‐1187.
Wokołorczyk D, Kluźniak W, Huzarski T, et al. Mutations in ATM, NBN and BRCA2 predispose to aggressive prostate cancer in Poland. Int J Cancer. 2020;147(10):2793‐2800.
Leongamornlert DA, Saunders EJ, Wakerell S, et al. Germline DNA repair gene mutations in young‐onset prostate cancer cases in the UK: evidence for a more extensive genetic panel. Eur Urol. 2019;76(3):329‐337.
Lener MR, Scott RJ, Kluźniak W, et al. Do founder mutations characteristic of some cancer sites also predispose to pancreatic cancer? Int J Cancer. 2016;139(3):601‐606.
Mizukami K, Iwasaki Y, Kawakami E, et al. Genetic characterization of pancreatic cancer patients and prediction of carrier status of germline pathogenic variants in cancer‐predisposing genes. EBioMedicine. 2020;60:103033.
Wieme G, Kral J, Rosseel T, et al. Prevalence of germline pathogenic variants in cancer predisposing genes in Czech and Belgian pancreatic cancer patients. Cancer. 2021;13(17):1‐15.
Debniak T, Górski B, Cybulski C, et al. Germline 657del5 mutation in the NBS1 gene in patients with malignant melanoma of the skin. Melanoma Res. 2003;13(4):365‐370.
Stolarova L, Jelinkova S, Storchova R, et al. Identification of germline mutations in melanoma patients with early onset, double primary tumors, or family cancer history by NGS analysis of 217 genes. Biomedicine. 2020;8(10):1‐19.
Pastorczak A, Górniak P, Sherborne A, et al. Role of 657del5 NBN mutation and 7p12.2 (IKZF1), 9p21 (CDKN2A), 10q21.2 (ARID5B) and 14q11.2 (CEBPE) variation and risk of childhood ALL in the polish population. Leuk Res. 2011;35(11):1534‐1536.
Soucek P, Gut I, Trneny M, et al. Multiplex single‐tube screening for mutations in the Nijmegen breakage syndrome (NBS1) gene in Hodgkin's and non‐Hodgkin's lymphoma patients of Slavic origin. Eur J Med Genet. 2003;11(5):416‐419.
Varon R, Seemanova E, Chrzanowska K, et al. Clinical ascertainment of Nijmegen breakage syndrome (NBS) and prevalence of the major mutation, 657del5, in three Slav populations. Eur J Med Genet. 2000;8(11):900‐902.
Aloraifi F, McDevitt T, Martiniano R, et al. Detection of novel germline mutations for breast cancer in non‐BRCA1/2 families. FEBS J. 2015;282(17):3424‐3437.
Fan C, Zhang J, Ouyang T, et al. RAD50 germline mutations are associated with poor survival in BRCA1/2‐negative breast cancer patients. Int J Cancer. 2018;143(8):1935‐1942.
Sepahi I, Faust U, Sturm M, et al. Investigating the effects of additional truncating variants in DNA‐repair genes on breast cancer risk in BRCA1‐positive women. BMC Cancer. 2019;19(1):787.
Elkholi IE, Di Iorio M, Fahiminiya S, et al. Investigating the causal role of MRE11A p.E506* in breast and ovarian cancer. Sci Rep. 2021;11(1):2409.
Laurent Francioli GT, Karczewski K, Solomonson M, Watts N. gnomAD v2.1. 2018 https://gnomad.broadinstitute.org/news/2018-10-gnomad-v2-1/
Suszynska M, Klonowska K, Jasinska AJ, Kozlowski P. Large‐scale meta‐analysis of mutations identified in panels of breast/ovarian cancer‐related genes—providing evidence of cancer predisposition genes. Gynecol Oncol. 2019;153(2):452‐462.
Belhadj S, Khurram A, Bandlamudi C, et al. NBN pathogenic germline variants are associated with pan‐cancer susceptibility and in vitro DNA damage response defects. Clin Cancer Res. 2023;29(2):422‐431.
Li S, Silvestri V, Leslie G, et al. Cancer risks associated with BRCA1 and BRCA2 pathogenic variants. J Clin Oncol. 2022;40(14):1529‐1541.
Darst BF, Saunders E, Dadaev T, et al. Germline sequencing analysis to inform clinical gene panel testing for aggressive prostate cancer. JAMA Oncol. 2023;9(11):1514‐1524.
Mijuskovic M, Saunders EJ, Leongamornlert DA, et al. Rare germline variants in DNA repair genes and the angiogenesis pathway predispose prostate cancer patients to develop metastatic disease. Br J Cancer. 2018;119(1):96‐104.
Shi Z, Lu L, Resurreccion WK, et al. Association of germline rare pathogenic mutations in guideline‐recommended genes with prostate cancer progression: a meta‐analysis. Prostate. 2022;82(1):107‐119.
Hu C, Hart SN, Polley EC, et al. Association between inherited germline mutations in cancer predisposition genes and risk of pancreatic cancer. JAMA. 2018;319(23):2401‐2409.
Yang X, Leslie G, Doroszuk A, et al. Cancer risks associated with germline PALB2 pathogenic variants: an international study of 524 families. J Clin Oncol. 2020;38(7):674‐685.
Aslanian HR, Lee JH, Canto MI. AGA clinical practice update on pancreas cancer screening in high‐risk individuals: expert review. Gastroenterology. 2020;159(1):358‐362.
Raimondi S, Suppa M, Gandini S. Melanoma epidemiology and sun exposure. Acta Derm Venereol. 2020;100(11):adv00136.
Tomasik B, Pastorczak A, Fendler W, et al. Heterozygous carriers of germline c.657_661del5 founder mutation in NBN gene are at risk of central nervous system relapse of B‐cell precursor acute lymphoblastic leukemia. Haematologica. 2018;103(5):e200‐e203.
Seemanová E, Jarolim P, Seeman P, et al. Cancer risk of heterozygotes with the NBN founder mutation. J Natl Cancer Inst. 2007;99(24):1875‐1880.
Heikkinen K, Karppinen SM, Soini Y, Mäkinen M, Winqvist R. Mutation screening of Mre11 complex genes: indication of RAD50 involvement in breast and ovarian cancer susceptibility. J Med Genet. 2003;40(12):e131.
Ramos CRN, Oliveira RJS, Rosa MN, et al. RAD50 deficient in a breast cancer model predicts sensitivity to PARP inhibitors. Curr Cancer Drug Targets. 2023;23(11):900‐909.
Rebbeck TR, Mitra N, Domchek SM, et al. Modification of ovarian cancer risk by BRCA1/2‐interacting genes in a multicenter cohort of BRCA1/2 mutation carriers. Cancer Res. 2009;69(14):5801‐5810.