Biomarkers of RV Dysfunction in HFrEF Identified by Direct Tissue Proteomics: Extracellular Proteins Fibromodulin and Fibulin-5
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
39823288
PubMed Central
PMC11905906
DOI
10.1161/circheartfailure.124.011984
Knihovny.cz E-resources
- Keywords
- biomarkers, extracellular matrix, fibromodulin, fibrosis, heart failure,
- MeSH
- Biomarkers * blood MeSH
- Extracellular Matrix Proteins blood metabolism MeSH
- Fibromodulin * MeSH
- Ventricular Function, Left physiology MeSH
- Ventricular Function, Right physiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Prognosis MeSH
- Calcium-Binding Proteins blood metabolism MeSH
- Proteomics * methods MeSH
- Aged MeSH
- Heart Ventricles physiopathology metabolism MeSH
- Heart Failure * physiopathology metabolism blood MeSH
- Stroke Volume * physiology MeSH
- Heart Transplantation MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biomarkers * MeSH
- Extracellular Matrix Proteins MeSH
- Fibromodulin * MeSH
- FMOD protein, human MeSH Browser
- Calcium-Binding Proteins MeSH
BACKGROUND: Right ventricular dysfunction (RVD) is common in patients with heart failure with reduced ejection fraction, and it is associated with poor prognosis. However, no biomarker reflecting RVD is available for routine clinical use. METHODS: Proteomic analysis of myocardium from the left ventricle and right ventricle (RV) of patients with heart failure with reduced ejection fraction with (n=10) and without RVD (n=10) who underwent heart transplantation was performed. Concentrations of 2 ECM (extracellular matrix) proteins with the highest myocardial upregulation in RVD, FMOD (fibromodulin) and FBLN5 (fibulin-5), were assayed in the blood and tested in a separate cohort of patients with heart failure with reduced ejection fraction (n=232) to test for the association of the 2 proteins with RV function and long-term outcomes. RESULTS: Multivariable linear regression revealed that plasma concentrations of both FMOD and FBLN5 were significantly associated with RV function regardless of the RV function assessment method. No association of FMOD or FBLN5 with left ventricular dysfunction, cardiac index, body mass index, diabetes status, or kidney function was found. Plasma levels of FMOD and FBLN5 were significantly associated with patient outcomes (P=0.005; P=0.004). Area under the curve analysis showed that the addition of FBLN5 or FMOD to RV function assessment had a significantly higher area under the curve after 4 years of follow-up (0.653 and 0.631, respectively) compared with RV function alone (0.570; P<0.05 for both). Similarly, the combination of MAGGIC (Meta-Analysis Global Group in Chronic Heart Failure) score, FBLN5, and FMOD had a significantly larger area under the curve (0.669) than the combination of MAGGIC score+RVD grade (0.572; P=0.02). The Kaplan-Meier analysis demonstrated that patients with the elevation of both FMOD and FBLN5 (ie, FMOD >64 ng/mL and FMOD >27 ng/mL) had a worse prognosis than those with the elevation of either FBLN5 or FMOD (P=0.03) demonstrating the additive prognostic value of both proteins. CONCLUSIONS: Our study proposes that circulating levels of FMOD and FBLN5 may serve as new biomarkers of RVD in patients with heart failure with reduced ejection fraction.
1st Faculty of Medicine Charles University Prague Czech Republic
Center of Experimental Medicine Prague Czech Republic
Department of Cardiology Prague Czech Republic
Division of Cardiovascular Medicine University of Utah School of Medicine Salt Lake City
Proteomic Core Facility Faculty of Science Charles University Prague Czech Republic
See more in PubMed
Melenovsky V, Hwang SJ, Lin G, Redfield MM, Borlaug BA. Right heart dysfunction in heart failure with preserved ejection fraction. Eur Heart J. 2014;35:3452–3462. doi: 10.1093/eurheartj/ehu193 PubMed PMC
Benes J, Kotrc M, Wohlfahrt P, Kroupova K, Tupy M, Kautzner J, Melenovsky V. Right ventricular global dysfunction score: a new concept of right ventricular function assessment in patients with heart failure with reduced ejection fraction (HFrEF). Front Cardiovasc Med. 2023;10:1194174. doi: 10.3389/fcvm.2023.1194174 PubMed PMC
Houston BA, Brittain EL, Tedford RJ. Right ventricular failure. N Engl J Med. 2023;388:1111–1125. doi: 10.1056/NEJMra2207410 PubMed
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, et al. ; ESC Scientific Document Group. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599–3726. doi: 10.1093/eurheartj/ehab368 PubMed
Benes J, Kotrc M, Jarolim P, Hoskova L, Hegarova M, Dorazilova Z, Podzimkova M, Binova J, Lukasova M, Malek I, et al. . The effect of three major co-morbidities on quality of life and outcome of patients with heart failure with reduced ejection fraction. ESC Heart Fail. 2021;8:1417–1426. doi: 10.1002/ehf2.13227 PubMed PMC
Lei Q, Yi T, Li H, Yan Z, Lv Z, Li G, Wang Y. Ubiquitin C-terminal hydrolase L1 (UCHL1) regulates post-myocardial infarction cardiac fibrosis through glucose-regulated protein of 78 kDa (GRP78). Sci Rep. 2020;10:10604. doi: 10.1038/s41598-020-67746-4 PubMed PMC
Kim HT, Yin W, Jin YJ, Panza P, Gunawan F, Grohmann B, Buettner C, Sokol AM, Preussner J, Guenther S, et al. . Myh10 deficiency leads to defective extracellular matrix remodeling and pulmonary disease. Nat Commun. 2018;9:4600. doi: 10.1038/s41467-018-06833-7 PubMed PMC
Podolsky MJ, Yang CD, Valenzuela CL, Datta R, Huang SK, Nishimura SL, Dallas SL, Wolters PJ, Le Saux CJ, Atabai K. Age-dependent regulation of cell-mediated collagen turnover. JCI Insight. 2020;5:e137519. doi: 10.1172/jci.insight.137519 PubMed PMC
Leening MJ, Vedder MM, Witteman JC, Pencina MJ, Steyerberg EW. Net reclassification improvement: computation, interpretation, and controversies: a literature review and clinician’s guide. Ann Intern Med. 2014;160:122–131. doi: 10.7326/M13-1522 PubMed
Pocock SJ, Ariti CA, McMurray JJ, Maggioni A, Køber L, Squire IB, Swedberg K, Dobson J, Poppe KK, Whalley GA, et al. ; Meta-Analysis Global Group in Chronic Heart Failure. Predicting survival in heart failure: a risk score based on 39 372 patients from 30 studies. Eur Heart J. 2013;34:1404–1413. doi: 10.1093/eurheartj/ehs337 PubMed
Melenovsky V, Kotrc M, Borlaug BA, Marek T, Kovar J, Malek I, Kautzner J. Relationships between right ventricular function, body composition, and prognosis in advanced heart failure. J Am Coll Cardiol. 2013;62:1660–1670. doi: 10.1016/j.jacc.2013.06.046 PubMed
Frangogiannis NG. Cardiac fibrosis. Cardiovasc Res. 2021;117:1450–1488. doi: 10.1093/cvr/cvaa324 PubMed PMC
Neff LS, Bradshaw AD. Cross your heart? Collagen cross-links in cardiac health and disease. Cell Signal. 2021;79:109889. doi: 10.1016/j.cellsig.2020.109889 PubMed PMC
Boucherat O, Yokokawa T, Krishna V, Kalyana-Sundaram S, Martineau S, Breuils-Bonnet S, Azhar N, Bonilla F, Gutstein D, Potus F, et al. . Identification of LTBP-2 as a plasma biomarker for right ventricular dysfunction in human pulmonary arterial hypertension. Nat Cardiovasc Res. 2022;1:748–760. doi: 10.1038/s44161-022-00113-w PubMed
Andersen S, Nielsen-Kudsk JE, Vonk Noordegraaf A, de Man FS. Right ventricular fibrosis. Circulation. 2019;139:269–285. doi: 10.1161/CIRCULATIONAHA.118.035326 PubMed
Schimmel K, Ichimura K, Reddy S, Haddad F, Spiekerkoetter E. Cardiac fibrosis in the pressure overloaded left and right ventricle as a therapeutic target. Front Cardiovasc Med. 2022;9:886553. doi: 10.3389/fcvm.2022.886553 PubMed PMC
Bekedam FT, Goumans MJ, Bogaard HJ, de Man FS, Llucià-Valldeperas A. Molecular mechanisms and targets of right ventricular fibrosis in pulmonary hypertension. Pharmacol Ther. 2023;244:108389. doi: 10.1016/j.pharmthera.2023.108389 PubMed
Kalamajski S, Bihan D, Bonna A, Rubin K, Farndale RW. Fibromodulin interacts with collagen cross-linking sites and activates lysyl oxidase. J Biol Chem. 2016;291:7951–7960. doi: 10.1074/jbc.M115.693408 PubMed PMC
Andenæs K, Lunde IG, Mohammadzadeh N, Dahl CP, Aronsen JM, Strand ME, Palmero S, Sjaastad I, Christensen G, Engebretsen KVT, et al. . The extracellular matrix proteoglycan fibromodulin is upregulated in clinical and experimental heart failure and affects cardiac remodeling. PLoS One. 2018;13:e0201422. doi: 10.1371/journal.pone.0201422 PubMed PMC
Barallobre-Barreiro J, Radovits T, Fava M, Mayr U, Lin WY, Ermolaeva E, Martínez-López D, Lindberg EL, Duregotti E, Daróczi L, et al. . Extracellular matrix in heart failure: role of ADAMTS5 in proteoglycan remodeling. Circulation. 2021;144:2021–2034. doi: 10.1161/CIRCULATIONAHA.121.055732 PubMed PMC
Khassafi F, Chelladurai P, Valasarajan C, Nayakanti SR, Martineau S, Sommer N, Yokokawa T, Boucherat O, Kamal A, Kiely DG, et al. . Transcriptional profiling unveils molecular subgroups of adaptive and maladaptive right ventricular remodeling in pulmonary hypertension. Nat Cardiovasc Res. 2023;2:917–936. doi: 10.1038/s44161-023-00338-3 PubMed PMC
Zhang X, Alanazi YF, Jowitt TA, Roseman AM, Baldock C. Elastic fibre proteins in elastogenesis and wound healing. Int J Mol Sci. 2022;23:4087. doi: 10.3390/ijms23084087 PubMed PMC
Nakasaki M, Hwang Y, Xie Y, Kataria S, Gund R, Hajam EY, Samuel R, George R, Danda D, M JP, et al. . The matrix protein fibulin-5 is at the interface of tissue stiffness and inflammation in fibrosis. Nat Commun. 2015;6:8574. doi: 10.1038/ncomms9574 PubMed PMC
Nakamura T, Lozano PR, Ikeda Y, Iwanaga Y, Hinek A, Minamisawa S, Cheng CF, Kobuke K, Dalton N, Takada Y, et al. . Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature. 2002;415:171–175. doi: 10.1038/415171a PubMed
Yanagisawa H, Davis EC, Starcher BC, Ouchi T, Yanagisawa M, Richardson JA, Olson EN. Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature. 2002;415:168–171. doi: 10.1038/415168a PubMed
Schiemann WP, Blobe GC, Kalume DE, Pandey A, Lodish HF. Context-specific effects of fibulin-5 (DANCE/EVEC) on cell proliferation, motility, and invasion. Fibulin-5 is induced by transforming growth factor-beta and affects protein kinase cascades. J Biol Chem. 2002;277:27367–27377. doi: 10.1074/jbc.M200148200 PubMed
Hughes CS, Moggridge S, Müller T, Sorensen PH, Morin GB, Krijgsveld J. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat Protoc. 2019;14:68–85. doi: 10.1038/s41596-018-0082-x PubMed
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901 PubMed
Goedhart J, Luijsterburg MS. VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Sci Rep. 2020;10:20560. doi: 10.1038/s41598-020-76603-3 PubMed PMC
Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, Gauthier C, Jacques PE, Li S, Xia J. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49:W388–W396. doi: 10.1093/nar/gkab382 PubMed PMC
Yu G, He QY. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol Biosyst. 2016;12:477–479. doi: 10.1039/c5mb00663e PubMed