• This record comes from PubMed

Ancient Egyptian scribes and specific skeletal occupational risk markers (Abusir, Old Kingdom)

. 2024 Jun 27 ; 14 (1) : 13317. [epub] 20240627

Language English Country Great Britain, England Media electronic

Document type Journal Article, Historical Article

Grant support
Cooperatio Program Univerzita Karlova v Praze
24-10275M Grantová Agentura České Republiky
DKRVO 2024-2028/7.I.a. Ministerstvo Kultury

Links

PubMed 38937484
PubMed Central PMC11211405
DOI 10.1038/s41598-024-63549-z
PII: 10.1038/s41598-024-63549-z
Knihovny.cz E-resources

Men with writing proficiency enjoyed a privileged position in ancient Egyptian society in the third millennium BC. Research focusing on these officials of elevated social status ("scribes") usually concentrates on their titles, scribal statues, iconography, etc., but the individuals themselves, and their skeletal remains, have been neglected. The aim of this study is to reveal whether repetitive tasks and maintained postures related to scribal activity can manifest in skeletal changes and identify possible occupational risk factors. A total of 1767 items including entheseal changes, non-metric traits, and degenerative changes were recorded from the human remains of 69 adult males of well-defined social status categories from the necropolis at Abusir (2700-2180 BC). Statistically significant differences between the scribes and the reference group attested a higher incidence of changes in scribes and manifested themselves especially in the occurrence of osteoarthritis of the joints. Our research reveals that remaining in a cross-legged sitting or kneeling position for extended periods, and the repetitive tasks related to writing and the adjusting of the rush pens during scribal activity, caused the extreme overloading of the jaw, neck and shoulder regions.

See more in PubMed

Baines J, Eyre C. Four notes on literacy. In: Baines J, editor. Visual and Written Culture in Ancient Egypt. Oxford University Press; 2007. pp. 63–94.

Piacentini P. Les Scribes dans la Société Égyptienne de l’Ancien Empire I. Cybele; 2002.

Yuen-Collingridge R, et al. Observing the scribe at work. In: Ast R, et al., editors. Observing the Scribe at Work: Scribal Practice in the Ancient World. Peeters Publishers; 2021. pp. 1–8.

Kennedy KAR, Plummer J, Chiment J. Identification of the eminent dead: Penpi, a scribe of ancient Egypt. In: Reichs K, editor. Forensic Osteology: The Recovery and Analysis of Unknown Skeletal Remains. Charles C Thomas; 1986.

Villotte, S. Enthésopathies et activités des hommes préhistoriques - recherche méthodologique et application aux fossiles européens du Paléolithique supérieur et du Mésolithique. (Archaeopress, 2009).

Henderson CY, Alvez Cardoso F. Special issue entheseal changes and occupation: Technical and theoretical advances and their applications. Int. J. Osteoarchaeol. 2013;23:127–134. doi: 10.1002/oa.2298. DOI

Karakostis FA, Harvati K. New horizons in reconstructing past human behavior: Introducing the “Tübingen University Validated Entheses-Based Reconstruction of Activity” method. Evol. Anthropol. 2021;30:185–198. doi: 10.1002/evan.21892. PubMed DOI

Mafart B. Description, significance and frequency of the acetabular crease of the hip bone. Int. J. Osteoarchaeol. 2005;15:208–215. doi: 10.1002/oa.770. DOI

Dlamini N, Morris AG. An investigation of the frequency of squatting facets in later stone age foragers from South Africa. Int. J. Osteoarchaeol. 2005;15:371–376. doi: 10.1002/Oa.791. DOI

Capasso L, Kennedy KAR, Wilczak CA. Atlas of occupational markers on human remains. Edigrafital; 1998.

Finnegan M. Non-metric variation of the infracranial skeleton. J. Anat. 1978;125:23–37. PubMed PMC

Radi, N. Diversity of the proximal femur in humans: morphological variations of the head-neck junction Dissertation thesis, Università di Bologna, (2014).

Sager P. Spondylosis cervicalis. A pathological and osteoarchaeological study of osteochondrosis intervertebralis cervicalis, arthrosis uncovertebralis, and spondylarthrosis cervicalis. Munksgaard; 1986.

Waldron T. Palaeopathology. Cambridge University Press; 2009.

Jurmain RD, Kilgore L. Skeletal evidence of osteoarthritis: A palaeopathological perspective. Ann. Rheum. Dis. 1995;54:443–450. doi: 10.1136/ard.54.6.443. PubMed DOI PMC

Weiss E, Jurmain RD. Osteoarthritis revisited: A contemporary review of aetiology. Int. J. Osteoarchaeol. 2007;17:437–450. doi: 10.1002/oa.889. DOI

Stloukal, M. & Vyhnánek, L. Slované z velkomoravských Mikulčic. (Academia, 1976).

Ruff CB. Biomechanical analyses of archaeological human skeletons. In: Katzenberg MA, Grauer AL, editors. Biological Anthropology of the Human Skeleton. Wiley Online Library; 2018.

Stock JT, et al. Body Size, Skeletal Biomechanics, Mobility and Habitual Activity from the Late Palaeolithic to the Mid-Dynastic Nile Valley. In: Pinhasi R, Stock JT, et al., editors. Human Bioarchaeology of the Transition to Agriculture. John Wiley; 2011.

Meyer C, Nicklisch N, Held P, Fritsch B, Alt KW. Tracing patterns of activity in the human skeleton: An overview of methods, problems, and limits of interpretation. HOMO J. Comp. Hum. Biol. 2011;62:202–217. doi: 10.1016/j.jchb.2011.03.003. PubMed DOI

Alves-Cardoso F, Assis S. Exploring, “wear and tear” of joints and “muscle function” assumptions in skeletons with known occupation at death. Am. J. Phys. Anthropol. 2021;175:689–700. doi: 10.1002/ajpa.24334. PubMed DOI

Jurmain RD, Alves Cardoso F, Henderson CY, Villotte S. Bioarchaeology’s holy grail: the reconstruction of activity. In: Grauer AL, editor. A companion to Palaeopathology. Wiley-Blackwell; 2012. pp. 531–552.

Tihanyi B, et al. “Brothers in arms”: Activity-related skeletal changes observed on the humerus of individuals buried with and without weapons from the 10th-century CE Carpathian Basin. Int. J. Osteoarchaeol. 2020;30:798–810. doi: 10.1002/oa.2910. DOI

Brandt KD, Dieppe P, Radin EL. Commentary: Is it useful to subset “primary” osteoarthritis? A critique based on evidence regarding the etiopathogenesis of osteoarthritis. Semin. Arthritis. Rheum. 2009;39:81–95. doi: 10.1016/j.semarthrit.2009.06.001. PubMed DOI

Knüsel CJ, Goggel S, Lucy D. Comparative degenerative joint disease of the vertebral column in the medieval monastic cemetery of the Gilbertine priory of St. Andrew, Fishergate, York. England. Am. J. Phys. Anthropol. 1997;103:481–495. doi: 10.1002/(SICI)1096-8644(199708)103:4<481::AID-AJPA6>3.0.CO;2-Q. PubMed DOI

Jurmain RD. Degenerative changes in peripheral joints as indicators of mechanical stress: Opportunities and limitations. Int. J. Osteoarchaeol. 1991;1:247–252. doi: 10.1002/oa.1390010319. DOI

Polis S. Methods, tools, and perspectives of hieratic palaeography. In: Laboury D, Davies V, editors. The Oxford Handbook of Egyptian Epigraphy and Palaeography. Oxford University Press; 2020. pp. 550–565.

Allon N, Navrátilová H. Ancient Egyptian scribes: a cultural exploration. Bloomsbury Publishing; 2017.

Junker, H. Gîza V. Die Mastaba des Snb (Seneb) und die umliegenden Gräber. Bericht über die von der Akademie der Wissenschaften in Wien auf gemeinsame Kosten mit Dr. Wilhelm Pelizaeus unternommenen Grabungen auf dem Friedhof des Alten Reiches bei den Pyramiden von Giza. Akademie der Wissenschaften in Wien Philosophisch-historische Klasse Denkschriften 71, Abhandlung 2. (Hölder-Pichler-Tempsky 1941).

Schäfer, H. Von ägyptischer Kunst. Eine Grundlage. 3. neugestaltete und stark vermehrte Auflage. (Hinrichs, 1930).

Molleson T. Bones of work at the origins of labour. In: Hamilton S, Whitehouse RD, Wright KI, editors. Archaeology and women: Ancient and modern issues. Routledge; 2007. pp. 185–198.

Havelková P, Dulíková V. What skeletal remains reveal about ancient Egypt’s inhabitants. In: Bárta M, editor. Kings of the Sun Studies. National Museum and Charles University; 2020. pp. 347–352.

Roth AM. The meaning of menial labor: “Servant Statues” in Old Kingdom Serdabs. JARCE. 2002;39:103–121. doi: 10.2307/40001151. DOI

Domett K, Evans C, Chang N, Tayles N, Newton J. Interpreting osteoarthritis in bioarchaeology: Highlighting the importance of a clinical approach through case studies from prehistoric Thailand. J. Archaeol. Sci. Rep. 2017;11:762–773. doi: 10.1016/j.jasrep.2016.12.030. DOI

Felson DT, Lawrence RC, Dieppe PA, et al. Osteoarthritis: New insights. Part 1: The disease and its risk factors. Ann. Intern. Med. 2000;133:635–646. doi: 10.7326/0003-4819-133-8-200010170-00016. PubMed DOI

Knüsel CJ. On the biomechanical and osteoarthritic differences between hunter-gatherers and agriculturalists. Am. J. Phys. Anthropol. 1993;91:523–525. doi: 10.1002/ajpa.1330910409. PubMed DOI

Ezra D, Kedar E, Salame K, Alperovitch-Najenson D, Hershkovitz I. Osteophytes on the zygapophyseal (facet) joints of the cervical spine (C3–C7): A skeletal study. Anat. Rec. 2022;305:1065–1072. doi: 10.1002/ar.24751. PubMed DOI

Al-Bustany DA, Aziz ZA. Cervical spondylosis among group of computer users in Erbil City. Zanco J. Med. Sci. 2009;13:28–36. doi: 10.15218/zjms.2009.016. DOI

Harms-Ringdahl K, Ekholm J, Schüldt K, Németh G, Arborelius UP. Load moments and myoelectric activity when the cervical spine is held in full flexion and extension. Ergonomics. 1986;29:1539–1552. doi: 10.1080/00140138608967267. PubMed DOI

Suby JA, Giberto DA. Temporomandibular joint osteoarthritis in human ancient skeletal remains from late holocene in Southern Patagonia. Int. J. Osteoarchaeol. 2019;29:14–25. doi: 10.1002/oa.2709. DOI

Stone JH, Nelson GC, Fitzpatrick SM. Temporomandibular joint osteoarthritis at Chelechol ra Orrak Palau. Int. J. Paleopathol. 2020;28:20–31. doi: 10.1016/j.ijpp.2019.12.001. PubMed DOI

Rando C, Waldron T. TMJ osteoarthritis: A new approach to diagnosis. Am. J. Phys. Anthropol. 2012;148:45–53. doi: 10.1002/ajpa.22039. PubMed DOI

Akmal NLHBI, Kumar S, Duraisamy R. Evaluation of association between dietary habits and temporomandibular joint disorders. JRMDS. 2020;8:291–297.

Almashraqi AA, Ahmed EA, Mohamed NS, Halboub ES. An MRI evaluation of the effects of qat chewing habit on the temporomandibular joint. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018;126:272–282.e272. doi: 10.1016/j.oooo.2018.05.005. PubMed DOI

Molleson T. A method for the study of activity related skeletal morphologies. Bioarchaeol. Near East. 2007;1:5–33. doi: 10.31826/9781463222505-002. DOI

Wiesinger B, Malker H, Englund E, Wänman A. Does a dose-response relation exist between spinal pain and temporomandibular disorders? BMC Musculoskelet. Disord. 2009;10:28. doi: 10.1186/1471-2474-10-28. PubMed DOI PMC

Babalola K, Potluri A, Rengasamy K, Tadinada A. Correlation between arthritic changes in cervical vertebrae and TMJ. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019;127:33–34. doi: 10.1016/j.oooo.2018.07.018. DOI

Reggars JW. The relationship between primary temporomandibular joint disorders and cervical spine dysfunction: A summary and review. COMSIG Rev. 1994;3:35–39.

Aloosi SN, Mohammad SM, Qaradakhy TA, Hasa SO. Contribution of cervical spine in temporomandibular joint disorders: A cross-sectional study. JBR J. Interdiscip. Med. Dental Sci. 2016;4:204. doi: 10.4172/2376-032X.1000204. DOI

Friedman MH, Weisberg J. Temporomandibular Joint Disorders: Diagnosis and Treatment. Quintessence Books; 1985.

Lieverse AR, Weber AW, Bazaliiskiy VI, Goriunova OI, Savel’ev NA. Osteoarthritis in Siberia’s Cis-Baikal: Skeletal indicators of hunter-gatherer adaptation and cultural change. Am. J. Phys. Anthropol. 2007;132:1–16. doi: 10.1002/ajpa.20479. PubMed DOI

Kaczmarek, M. & Kozieradzka-Ogunmakin, I. Anthropology. Demographic, metric and palaeopathological study of human remains recovered from the Lower necropolis at Saqqara in Saqqara V. Old Kingdom Structures Between the Step Pyramid Complex and the Dry Moat. Part 2: Geology, Anthropology, Finds, Conservation (ed. Mysliwiec, K.) 345–422 (Editions Neriton, 2013).

Loew M, et al. Could long-term overhead load in painters be associated with rotator cuff lesions? A pilot study. PLoS One. 2019;14:e0213824. doi: 10.1371/journal.pone.0213824. PubMed DOI PMC

Sommerich CM, McGlothlin JD, Marras WS. Occupational risk factors associated with soft tissue disorders of the shoulder: A review of recent investigations in the literature. Ergonomics. 1993;36:697–717. doi: 10.1080/00140139308967931. PubMed DOI

Keyserling WM. Workplace risk factors and occupational musculoskeletal disorders, part 2: A review of biomechanical and psychophysical research on risk factors associated with upper extremity disorders. Am. Ind. Hyg. Assoc. J. 2000;61:231–243. doi: 10.1080/15298660008984532. PubMed DOI

Keir PJ, Farias Zuniga A, Mulla DM, Somasundram KG. Relationships and mechanisms between occupational risk factors and distal upper extremity disorders. Hum. Factors. 2021;63:5–31. doi: 10.1177/0018720819860683. PubMed DOI

Laulan J, Marteau E, Bacle G. Wrist osteoarthritis. Orthop. Traumatol. Surg. Res. 2015;101:S1–S9. doi: 10.1016/j.otsr.2014.06.025. PubMed DOI

Cayci C, Carlsen BT. Osteoarthritis of the Wrist. Plast. Reconst. Surg. 2014;133:605–615. doi: 10.1097/01.prs.0000438463.90968.d6. PubMed DOI

Dillon C, Petersen M, Tanaka S. Self-reported hand and wrist arthritis and occupation: Data from the U.S. National Health Interview survey-occupational health supplement. Am. J. Ind. Med. 2002;42:318–327. doi: 10.1002/ajim.10117. PubMed DOI

Williams WV, et al. Metacarpophalangeal arthropathy associated with manual labor (missouri metacarpal syndrome). clinical, radiographic, and pathologic characteristics of an unusual degenerative process. Arthritis Rheum. 1987;30:1362–1371. doi: 10.1002/art.1780301207. PubMed DOI

Hammer PEC, Shiri R, Kryger AI, Kirkeskov L, Bonde JP. Associations of work activities requiring pinch or hand grip or exposure to hand-arm vibration with finger and wrist osteoarthritis: A meta-analysis. Scand. J. Work Environ. Health. 2014;40:133–145. doi: 10.5271/sjweh.3409. PubMed DOI

Fontana L, Neel S, Claise J-M, Ughetto S, Catilina P. Osteoarthritis of the thumb carpometacarpal joint in women and occupational risk factors: A case-control study. J. Hand. Surg. Am. 2007;32:459–465. doi: 10.1016/j.jhsa.2007.01.014. PubMed DOI

Wolf JM, Turkiewicz A, Atroshi I, Englund M. Occupational load as a risk factor for clinically relevant base of thumb osteoarthritis. Occup. Environ. Med. 2020;77:168. doi: 10.1136/oemed-2019-106184. PubMed DOI

Cashmore LA, Zakrzewski SR. Assessment of musculoskeletal stress marker development in the hand. Int. J. Osteoarchaeol. 2013;23:334–347. doi: 10.1002/oa.1254. DOI

Karakostis FA, Hotz G, Scherf H, Wahl J, Harvati K. A repeatable geometric morphometric approach to the analysis of hand entheseal three-dimensional form. Am. J. Phys. Anthropol. 2018;166:246–260. doi: 10.1002/ajpa.23421. PubMed DOI

Voisin J-L, Condemi S. Non-metric traits in the Spy remains. Anthropologica et praehistorica. 2014;124(2013):1–16.

Andriacchi TP. Dynamics of knee malalignment. Orthop. Clin. North Am. 1994;25:395–403. doi: 10.1016/S0030-5898(20)31924-6. PubMed DOI

Thambyah A, Goh JCH, De SD. Contact stresses in the knee joint in deep flexion. Med. Eng. Phys. 2005;27:329–335. doi: 10.1016/j.medengphy.2004.09.002. PubMed DOI

Rytter S, Jensen LK, Bonde JP, Jurik AG, Egund N. Occupational kneeling and meniscal tears: A magnetic resonance imaging study in floor layers. J. Rheumatol. 2009;36:1512–1519. doi: 10.3899/jrheum.081150. PubMed DOI

Niinimaki S, Sotos LB. The relationship between intensity of physical activity and entheseal changes on the lower limb. Int. J. Osteoarchaeol. 2013;23:221–228. doi: 10.1002/oa.2295. DOI

Listi GA. The use of entheseal changes in the femur and os coxa for age assessment. J. Forensic. Sci. 2016;61:12–18. doi: 10.1111/1556-4029.12905. PubMed DOI

Kwon Y, et al. Classification of spinal postures during cross-legged sitting on the floor. J. Mech. Med. Biol. 2019;19:1940056. doi: 10.1142/s0219519419400566. DOI

Woo Y, Jun I, Je W. Effects of a good posture belt on buttock pressure during cross-legged sitting. J. Phys. Ther. Sci. 2016;28:976–978. doi: 10.1589/jpts.28.976. PubMed DOI PMC

Moon M-S, et al. Spinopelvic orientation on radiographs in various body postures: upright standing, chair sitting, japanese style kneel sitting, and korean style cross-legged sitting. Clin. Orthop. Surg. 2018;10:322–327. doi: 10.4055/cios.2018.10.3.322. PubMed DOI PMC

Bae JS, Jang J-S, Lee S-H, Kim JU. A comparison study on the change in lumbar lordosis when standing, sitting on a chair, and sitting on the floor in normal individuals. J. Korean Neurosurg. Soc. 2012;51:20–23. doi: 10.3340/jkns.2012.51.1.20. PubMed DOI PMC

Bárta M. Kings of the Sun. Studies. National Museum and Charles University; 2020.

Brukner Havelková, P., Dulíková, V., Bejdová, Š., Velemínský, P. & Bárta, M. Anthropological evaluation of Old Kingdom human burials from the pyramid field of Abusir. PESXXVIII/2022, 28–81 (2022).

Baines J. Modelling the integration of elite and other social groups in Old Kingdom Egypt. In: Moreno García JC, editor. Élites et pouvoir en Égypte ancienne. Université Charles-de-Gaulle/Lille; 2010. pp. 117–144.

Seyfried, K. J. Dienstpflicht mit Selbstversorgung: die Diener des Verstorbenen im Alten Reich in Grab und Totenkult im Alten Ägypten (eds. Guksch, H., Hofmann, E., & Bommas, M.) 41–59 (C.H.Beck, 2003).

Brůžek J, Santos F, Dutailly B, Murail P, Cunha E. Validation and reliability of the sex estimation of the human os coxae using freely available DSP2 software for bioarchaeology and forensic anthropology. Am. J. Phys. Anthropol. 2017;164:440–449. doi: 10.1002/ajpa.23282. PubMed DOI

Murail P, Brůžek J, Houët F, Cunha E. DSP: A tool for probabilistic sex diagnosis using worldwide variability in hip-bone measurements. Bull. Mém. Soc. Anthropol. Paris. 2005;17:167–176. doi: 10.4000/bmsap.1157. DOI

Brůžek J. A method for visual determination of sex, using the human hip bone. Am. J. Phys. Anthropol. 2002;117:157–168. doi: 10.1002/ajpa.10012. PubMed DOI

Buikstra JE, Ubelaker DH. Standards for data collection from human skeletal remains. Arkansas Archeological Survey; 1994.

Ferembach D, Schwidetzky I, Stloukal M. Recommendations for age and sex diagnoses of skeletons. J. Hum. Evol. 1980;9:517–549. doi: 10.1016/0047-2484(80)90061-5. DOI

Walker PL. Sexing skulls using discriminant function analysis of visually assessed traits. Am. J. Phys. Anthropol. 2008;136:39–50. doi: 10.1002/ajpa.20776. PubMed DOI

Raxter MH. Metric sex estimation in an ancient Egyptian skeletal sample. SAS Bull. Newsl. Soc. Archaeol. Sci. 2007;30:9–12.

Dabbs G. Sex determination using the scapula in new kingdom skeletons from Tell El-amarna. HOMO. 2010;61:413–420. doi: 10.1016/j.jchb.2010.09.001. PubMed DOI

Marlow EJ, Kozieradzka-Ogunmakin I. Metric sex estimation of ancient Egyptian skeletal remains.: Part II: Testing of new population-specific methods. Bioarchaeol. Near East. 2016;10:27–46.

Lovejoy CO, Meindl RS, Pryzbeck TR, Mensforth RP. Chronological metamorphosis of the auricular surface of the ilium: A new method for the determination of adult skeletal age at death. Am. J. Phys. Anthropol. 1985;68:15–28. doi: 10.1002/ajpa.1330680103. PubMed DOI

Schmitt A. Une nouvelle méthode pour estimer l’âge au décès des adultes à partir de la surface sacro-pelvienne iliaque. Bull. Mém. Soc. Anthropol. Paris. 2005;17:89–101. doi: 10.4000/bmsap.943. DOI

McKern, T. W. & Stewart, T. D. Skeletal Age Changes in Young American Males. (U.S. Army, 1957).

Brooks ST, Suchey JM. Skeletal age determination based on the os pubis: A comparison of the Acsádi-Nemeskéri and Suchey-Brooks methods. Hum. Evol. 1990;5:227–238. doi: 10.1007/BF02437238. DOI

Schmitt A. Age-at-death assessment using the os pubis and the auricular surface of the ilium: A test on an identified Asian sample. Int. J. Osteoarchaeol. 2004;14:1–6. doi: 10.1002/oa.693. DOI

Calce SE. A new method to estimate adult age-at-death using the acetabulum. Am. J. Phys. Anthropol. 2012;148:11–23. doi: 10.1002/ajpa.22026. PubMed DOI

Szilvássy J. Age determination on the sternal articular faces of the clavicula. J. Hum. Evol. 1980;9:906–910. doi: 10.1016/0047-2484(80)90090-1. DOI

Szilvássy J, Kritscher H. Estimation of chronological age in man based on the spongy structure of long bones. Anthropol. Anz. 1990;48:289–298. doi: 10.1127/anthranz/48/1990/289. PubMed DOI

Lovejoy CO. Dental wear in the Libben population: Its functional pattern and role in the determination of adult skeletal age at death. Am. J. Phys. Anthropol. 1985;68:47–56. doi: 10.1002/ajpa.1330680105. PubMed DOI

Miles AEW. The dentition in the assessment of individual age in skeletal material. In: Brothwell DR, editor. Dental Anthropology. Pergamon; 1963. pp. 191–209.

Brothwell DR. Digging Up Bones: The Excavation, Treatment, and Study of Human Skeletal Remains. Cornell University Press; 1981.

Henderson CY, Mariotti V, Pany-Kucera D, Villotte S, Wilczak CA. The new “Coimbra Method’: A biologically appropriate method for recording specific features of fibrocartilaginous entheseal changes. Int. J. Osteoarchaeol. 2016;26:925–932. doi: 10.1002/oa.2477. DOI

Michopoulou E, Nikita E, Henderson CY. A test of the effectiveness of the coimbra method in capturing activity-induced entheseal changes. Int. J. Osteoarchaeol. 2017;27:409–417. doi: 10.1002/oa.2564. DOI

Radi N, et al. Variation of the anterior aspect of the femoral head-neck junction in a modern human identified skeletal collection. Am. J. Phys. Anthropol. 2013;152:261–272. doi: 10.1002/ajpa.22354. PubMed DOI

Smith RJ. The continuing misuse of null hypothesis significance testing in biological anthropology. Am. J. Phys. Anthropol. 2018;166:236–245. doi: 10.1002/ajpa.23399. PubMed DOI

Rubin M. Inconsistent multiple testing corrections: The fallacy of using family-based error rates to make inferences about individual hypotheses. Methods Psychol. 2024;10:100140. doi: 10.1016/j.metip.2024.100140. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...