• This record comes from PubMed

Improving laboratory animal genetic reporting: LAG-R guidelines

. 2024 Jul 02 ; 15 (1) : 5574. [epub] 20240702

Language English Country Great Britain, England Media electronic

Document type Journal Article, Review

Grant support
P30 CA093373 NCI NIH HHS - United States
MC_UP_2201/2 Medical Research Council - United Kingdom
P40 OD011062 NIH HHS - United States
U42 OD010924 NIH HHS - United States
UM1 OD023221 NIH HHS - United States
UM1 HG006348 NHGRI NIH HHS - United States
U42 OD010921 NIH HHS - United States
MC_UP_2201/3 Medical Research Council - United Kingdom
ANR-10-INBS-07 Agence Nationale de la Recherche (French National Research Agency)
MC_UP_2201/1 Medical Research Council - United Kingdom

Links

PubMed 38956430
PubMed Central PMC11220107
DOI 10.1038/s41467-024-49439-y
PII: 10.1038/s41467-024-49439-y
Knihovny.cz E-resources

The biomedical research community addresses reproducibility challenges in animal studies through standardized nomenclature, improved experimental design, transparent reporting, data sharing, and centralized repositories. The ARRIVE guidelines outline documentation standards for laboratory animals in experiments, but genetic information is often incomplete. To remedy this, we propose the Laboratory Animal Genetic Reporting (LAG-R) framework. LAG-R aims to document animals' genetic makeup in scientific publications, providing essential details for replication and appropriate model use. While verifying complete genetic compositions may be impractical, better reporting and validation efforts enhance reliability of research. LAG-R standardization will bolster reproducibility, peer review, and overall scientific rigor.

Center for Animal Resources and Development Institute of Resource Development and Analysis Kumamoto University Kumamoto Japan

Centre for Biomedical Network Research on Rare Diseases 28029 Madrid Spain

Chair of Experimental Genetics TUM School of Life Sciences Technische Universität München Alte Akademie 8 85354 Freising Germany

Czech Centre for Phenogenomics Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic

Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Houston TX USA

Department of Genetics and Lineberger Comprehensive Cancer Center The University of North Carolina at Chapel Hill Chapel Hill NC 27599 7264 USA

Department of Genetics The University of Texas MD Anderson Cancer Center Houston TX USA

Department of Genetics University of North Carolina Chapel Hill NC 27599 USA

Department of Molecular and Cellular Biology National Centre for Biotechnology 28049 Madrid Spain

Department of Molecular Biology University of Aarhus Aarhus C 8000 Denmark

Department Veterinary Resources Weizmann Institute of Science Rehovot Israel

Experimental Animal Division RIKEN BioResource Research Center Tsukuba Ibaraki 305 0074 Japan

Francis Crick Institute London NW1 1AT UK

Genentech Inc a member of the Roche group South San Francisco CA USA

Genetics and Genome Biology The Hospital for Sick Children and The Centre for Phenogenomics Toronto ON M5T 3H7 Canada

German Center for Diabetes Research Ingolstaedter Landstraße 1 85764 Neuherberg Germany

Institute of Experimental Genetics Helmholtz Zentrum München German Research Center for Environmental Health Ingolstaedter Landstraße 1 85764 Neuherberg Germany

Laboratory Animal Biotechnology Unit Institut Pasteur de Montevideo Mataojo 2020 CP 1400 Montevideo Uruguay

Laboratory Animal Resource Center Korea Research Institute of Bioscience and Biotechnology Daejeon Korea

Laboratory of Developmental Biology and Genomics BK21 PLUS Program for Creative Veterinary Science Research Research Institute for Veterinary Science College of Veterinary Medicine Seoul National University and Korea Mouse Phenotyping Center Seoul 08826 Republic of Korea

Lineberger Comprehensive Cancer Center University of North Carolina Chapel Hill NC 27599 USA

Mouse Biology Program University of California Davis Davis CA USA

Mouse Genome Informatics Jackson Laboratory Bar Harbor ME USA

National Laboratory Animal Center NARLabs Taipei Taiwan

National Resource Center of Mutant Mice Nanjing Biomedical Research Institute Nanjing University Nanjing China

Phenomics Australia Australian National University 131 Garran Road Canberra ACT 2601 Australia

PHENOMIN Institut Clinique de la Souris CELPHEDIA CNRS INSERM Université de Strasbourg Illkirch Grafenstaden 67404 Strasbourg France

Rat Resource and Research Center University of Missouri Columbia MO 65201 USA

Rat Resource and Research Center University of Missouri Columbia MO USA

RIKEN BioResource Research Center Tsukuba Japan

The Jackson Laboratory Bar Harbor ME USA

The Mary Lyon Centre at MRC Harwell Harwell Campus Didcot OX11 0RD Oxon UK

The Roslin Institute and Royal School of Veterinary Studies University of Edinburgh Easter Bush EH25 9RG UK

Université de Strasbourg CNRS Inserm IGBMC UMR 7104 UMR S 1258 F 67400 Illkirch France

Université Paris Saclay INRAE AgroParisTech GABI Jouy en Josas France

Université Paris Saclay UVSQ INRAE BREED 78350 Jouy en Josas France

University of Missouri College of Veterinary Medicine Columbia MO USA

University of Missouri Mutant Mouse Resource and Research Center University of Missouri Columbia MO 65201 USA

University of Missouri School of Medicine Columbia MO USA

Visiting Scientist Institut Clinique de la Souris Université de Strasbourg Illkirch Grafenstaden 67404 Strasbourg France

See more in PubMed

Baker, M. 1,500 scientists lift the lid on reproducibility. Nature533, 452–454 (2016). 10.1038/533452a PubMed DOI

Lloyd, K., Franklin, C., Lutz, C. & Magnuson, T. Reproducibility: Use mouse biobanks or lose them. Nature522, 151–153 (2015). 10.1038/522151a PubMed DOI PMC

Dessimoz, C., Škunca N. The Gene Ontology Handbook Vol. 1446 (Springer, New York, NY, 2017).

Alliance of Genome Resources Consortium et al. Harmonizing model organism data in the Alliance of Genome Resources. Genetics220, iyac022 (2022). 10.1093/genetics/iyac022 PubMed DOI PMC

Smith, A. J., Clutton, R. E., Lilley, E., Hansen, K. E. A. & Brattelid, T. PREPARE: guidelines for planning animal research and testing. Lab. Anim.52, 135–141 (2018). 10.1177/0023677217724823 PubMed DOI PMC

Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol.18, e3000410 (2020). 10.1371/journal.pbio.3000410 PubMed DOI PMC

the FAIRsharing Community et al. FAIRsharing as a community approach to standards, repositories and policies. Nat. Biotechnol.37, 358–367 (2019). 10.1038/s41587-019-0080-8 PubMed DOI PMC

Percie du Sert, N. et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol.18, e3000411 (2020). 10.1371/journal.pbio.3000411 PubMed DOI PMC

Sittig, L. J. et al. Genetic background limits generalizability of genotype–phenotype relationships. Neuron91, 1253–1259 (2016). 10.1016/j.neuron.2016.08.013 PubMed DOI PMC

Doetschman, T. Influence of genetic background on genetically engineered mouse phenotypes. In Gene Knockout Protocols Vol. 530 (eds. Wurst, W. & Kühn, R.) 423–433 (Humana Press, Totowa, NJ, 2009). PubMed PMC

Strobel, M. C., Reinholdt, L. G., Malcolm, R. D. & Pritchett-Corning, K. Genetic monitoring of laboratory mice and rats. In Laboratory Animal Medicine. (eds Fox, J. G. et al.) 1403–1416 (Elsevier, 2015).

Simon, M. M. et al. A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biol.14, R82 (2013). 10.1186/gb-2013-14-7-r82 PubMed DOI PMC

Voelkl, B. et al. Reproducibility of animal research in light of biological variation. Nat. Rev. Neurosci.21, 384–393 (2020). 10.1038/s41583-020-0313-3 PubMed DOI

Zeldovich, L. Genetic drift: the ghost in the genome. Lab Anim.46, 255–257 (2017).10.1038/laban.1275 PubMed DOI

Freedman, L. P., Cockburn, I. M. & Simcoe, T. S. The economics of reproducibility in preclinical research. PLoS Biol.13, e1002165 (2015). 10.1371/journal.pbio.1002165 PubMed DOI PMC

Jacquot, S., Chartoire, N., Piguet, F., Hérault, Y. & Pavlovic, G. Optimizing PCR for mouse genotyping: recommendations for reliable, rapid, cost effective, robust and adaptable to high‐throughput genotyping protocol for any type of mutation. Curr. Protoc. Mouse Biol.9, e65 1–28 (2019). PubMed

Russell, W. M. S. & Burch, R. L. The Principles of Humane Experimental Technique. (Methuen, 1959).

Engle, S. HPRT-APRT-deficient mice are not a model for Lesch–Nyhan syndrome. Hum. Mol. Genet.5, 1607–1610 (1996). 10.1093/hmg/5.10.1607 PubMed DOI

Meek, S. et al. Reduced levels of dopamine and altered metabolism in brains of HPRT knock-out rats: a new rodent model of Lesch–Nyhan Disease. Sci. Rep.6, 25592 (2016). 10.1038/srep25592 PubMed DOI PMC

Bilovocky, N. A., Romito-DiGiacomo, R. R., Murcia, C. L., Maricich, S. M. & Herrup, K. Factors in the genetic background suppress the Engrailed-1 cerebellar phenotype. J. Neurosci.23, 5105–5112 (2003). 10.1523/JNEUROSCI.23-12-05105.2003 PubMed DOI PMC

Axelsson, E. et al. The genetic consequences of dog breed formation—accumulation of deleterious genetic variation and fixation of mutations associated with myxomatous mitral valve disease in cavalier King Charles spaniels. PLoS Genet.17, e1009726 (2021). 10.1371/journal.pgen.1009726 PubMed DOI PMC

Sigmon, J. S. et al. Content and performance of the MiniMUGA genotyping array: a new tool to improve rigor and reproducibility in mouse research. Genetics216, 905–930 (2020). 10.1534/genetics.120.303596 PubMed DOI PMC

Barbaric, I. et al. An ENU-induced mutation in the Ankrd11 gene results in an osteopenia-like phenotype in the mouse mutant Yoda. Physiol. Genom.32, 311–321 (2008).10.1152/physiolgenomics.00116.2007 PubMed DOI

De Angelis, M. H. et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat. Genet.25, 444–447 (2000). 10.1038/78146 PubMed DOI

Andersson, L. Molecular consequences of animal breeding. Curr. Opin. Genet. Dev.23, 295–301 (2013). 10.1016/j.gde.2013.02.014 PubMed DOI

Ciepłoch, A., Rutkowska, K., Oprządek, J. & Poławska, E. Genetic disorders in beef cattle: a review. Genes Genom.39, 461–471 (2017).10.1007/s13258-017-0525-8 PubMed DOI PMC

Bunton-Stasyshyn, R. K., Codner, G. F. & Teboul, L. Screening and validation of genome-edited animals. Lab Anim.56, 69–82 (2022). 10.1177/00236772211016922 PubMed DOI PMC

Marx, V. Method of the year: long-read sequencing. Nat. Methods20, 6–11 (2023). 10.1038/s41592-022-01730-w PubMed DOI

De Coster, W. & Van Broeckhoven, C. Newest methods for detecting structural variations. Trends Biotechnol.37, 973–982 (2019). 10.1016/j.tibtech.2019.02.003 PubMed DOI

Chan, S. et al. Structural variation detection and analysis using bionano optical mapping. In Copy Number Variants Vol. 1833 (ed. Bickhart, D. M.) 193–203 (Springer, New York, 2018). PubMed

Benavides, F. et al. Genetic quality assurance and genetic monitoring of laboratory mice and rats: FELASA Working Group Report. Lab. Anim.54, 135–148 (2020). 10.1177/0023677219867719 PubMed DOI PMC

Cagan, A. et al. Somatic mutation rates scale with lifespan across mammals. Nature604, 517–524 (2022). 10.1038/s41586-022-04618-z PubMed DOI PMC

Milholland, B. et al. Differences between germline and somatic mutation rates in humans and mice. Nat. Commun.8, 15183 (2017). 10.1038/ncomms15183 PubMed DOI PMC

Lynch, M. Evolution of the mutation rate. Trends Genet.26, 345–352 (2010). 10.1016/j.tig.2010.05.003 PubMed DOI PMC

Fox, J.G. et al. The Mouse in Biomedical Research (Elsevier, Amsterdam; Boston, 2007).

Rogers, J. Genomic resources for rhesus macaques (Macaca mulatta). Mamm. Genome33, 91–99 (2022). 10.1007/s00335-021-09922-z PubMed DOI PMC

Vaysse, A. et al. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLoS Genet.7, e1002316 (2011). 10.1371/journal.pgen.1002316 PubMed DOI PMC

Matsuda, K. PCR-based detection methods for single-nucleotide polymorphism or mutation. In Advances in Clinical Chemistry Vol. 80 45–72 (Elsevier, 2017). PubMed

Rawle, D. J. et al. Widespread discrepancy in Nnt genotypes and genetic backgrounds complicates granzyme A and other knockout mouse studies. eLife11, e70207 (2022). 10.7554/eLife.70207 PubMed DOI PMC

Kelmenson, P. How to Refresh Your Mutant or Transgenic Mouse Strainshttps://www.jax.org/news-and-insights/jax-blog/2018/april/how-to-refresh-your-mutant-or-transgenic-mouse-strains (2018).

Trevarrow, B. & Robison, B. Genetic backgrounds, standard lines, and husbandry of zebrafish. Methods Cell Biol.77, 599–616 (2004). 10.1016/S0091-679X(04)77032-6 PubMed DOI

Varga, Z. M. Aquaculture, husbandry, and shipping at the Zebrafish International Resource Center. Methods Cell Biol.135, 509–534 (2016). 10.1016/bs.mcb.2016.01.007 PubMed DOI

Martins, S. et al. Toward an integrated zebrafish health management program supporting cancer and neuroscience research. Zebrafish13, S47–S55 (2016). 10.1089/zeb.2015.1198 PubMed DOI

Liang, Q., Conte, N., Skarnes, W. C. & Bradley, A. Extensive genomic copy number variation in embryonic stem cells. Proc. Natl Acad. Sci. USA105, 17453–17456 (2008). 10.1073/pnas.0805638105 PubMed DOI PMC

Lintott, L. G. & Nutter, L. M. J. Genetic and Molecular Quality Control of Genetically Engineered Mice. In Transgenesis Vol. 2631 (ed. Saunders, T. L.) 53–101 (Springer US, New York, NY, 2023). PubMed

Goodwin, L. O. et al. Large-scale discovery of mouse transgenic integration sites reveals frequent structural variation and insertional mutagenesis. Genome Res.29, 494–505 (2019). 10.1101/gr.233866.117 PubMed DOI PMC

Burgio, G. & Teboul, L. Anticipating and Identifying Collateral Damage in Genome Editing. Trends Genet.36, 905–914 (2020). 10.1016/j.tig.2020.09.011 PubMed DOI PMC

Peterson, K. A. et al. Whole genome analysis for 163 gRNAs in Cas9-edited mice reveals minimal off-target activity. Commun. Biol.6, 626 (2023). 10.1038/s42003-023-04974-0 PubMed DOI PMC

Anderson, K. R. et al. CRISPR off-target analysis in genetically engineered rats and mice. Nat. Methods15, 512–514 (2018). 10.1038/s41592-018-0011-5 PubMed DOI PMC

Manghwar, H. et al. CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off‐target evaluation, and strategies to mitigate off‐target effects. Adv. Sci.7, 1902312 (2020).10.1002/advs.201902312 PubMed DOI PMC

CRISPR off-targets: a reassessment. Nat Methods15, 229–230 (2018).

Norris, A. L. et al. Template plasmid integration in germline genome-edited cattle. Nat. Biotechnol.38, 163–164 (2020). 10.1038/s41587-019-0394-6 PubMed DOI

Leibowitz, M. L. et al. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat. Genet.53, 895–905 (2021). 10.1038/s41588-021-00838-7 PubMed DOI PMC

Bertelsen, B. et al. A germline chromothripsis event stably segregating in 11 individuals through three generations. Genet. Med.18, 494–500 (2016). 10.1038/gim.2015.112 PubMed DOI

Nurk, S. et al. The complete sequence of a human genome. Science376, 44–53 (2022). 10.1126/science.abj6987 PubMed DOI PMC

Schoch, C. L. et al. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database2020, baaa062 (2020). 10.1093/database/baaa062 PubMed DOI PMC

Tweedie, S. et al. Genenames.org: the HGNC and VGNC resources in 2021. Nucleic Acids Res.49, D939–D946 (2021). 10.1093/nar/gkaa980 PubMed DOI PMC

McCarthy, F. M. et al. The case for standardizing gene nomenclature in vertebrates. Nature614, E31–E32 (2023). 10.1038/s41586-022-05633-w PubMed DOI PMC

Wells, D. J. et al. Assessing the welfare of genetically altered mice. Lab Anim.40, 111–114 (2006). 10.1258/002367706776318971 PubMed DOI

Lalonde, R., Filali, M. & Strazielle, C. SHIRPA as a neurological screening battery in mice. Curr. Protoc.1, e135 1–30 (2021). PubMed

Patange, S. & Maragh, S. Fire burn and cauldron bubble: what is in your genome editing brew? Biochemistry10.1021/acs.biochem.2c00431 (2022). PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...