Improving laboratory animal genetic reporting: LAG-R guidelines
Language English Country Great Britain, England Media electronic
Document type Journal Article, Review
Grant support
P30 CA093373
NCI NIH HHS - United States
MC_UP_2201/2
Medical Research Council - United Kingdom
P40 OD011062
NIH HHS - United States
U42 OD010924
NIH HHS - United States
UM1 OD023221
NIH HHS - United States
UM1 HG006348
NHGRI NIH HHS - United States
U42 OD010921
NIH HHS - United States
MC_UP_2201/3
Medical Research Council - United Kingdom
ANR-10-INBS-07
Agence Nationale de la Recherche (French National Research Agency)
MC_UP_2201/1
Medical Research Council - United Kingdom
PubMed
38956430
PubMed Central
PMC11220107
DOI
10.1038/s41467-024-49439-y
PII: 10.1038/s41467-024-49439-y
Knihovny.cz E-resources
- MeSH
- Biomedical Research standards MeSH
- Animal Experimentation standards MeSH
- Animals, Laboratory * genetics MeSH
- Reproducibility of Results MeSH
- Guidelines as Topic * MeSH
- Research Design MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The biomedical research community addresses reproducibility challenges in animal studies through standardized nomenclature, improved experimental design, transparent reporting, data sharing, and centralized repositories. The ARRIVE guidelines outline documentation standards for laboratory animals in experiments, but genetic information is often incomplete. To remedy this, we propose the Laboratory Animal Genetic Reporting (LAG-R) framework. LAG-R aims to document animals' genetic makeup in scientific publications, providing essential details for replication and appropriate model use. While verifying complete genetic compositions may be impractical, better reporting and validation efforts enhance reliability of research. LAG-R standardization will bolster reproducibility, peer review, and overall scientific rigor.
Centre for Biomedical Network Research on Rare Diseases 28029 Madrid Spain
Department of Genetics The University of Texas MD Anderson Cancer Center Houston TX USA
Department of Genetics University of North Carolina Chapel Hill NC 27599 USA
Department of Molecular and Cellular Biology National Centre for Biotechnology 28049 Madrid Spain
Department of Molecular Biology University of Aarhus Aarhus C 8000 Denmark
Department Veterinary Resources Weizmann Institute of Science Rehovot Israel
Experimental Animal Division RIKEN BioResource Research Center Tsukuba Ibaraki 305 0074 Japan
Francis Crick Institute London NW1 1AT UK
Genentech Inc a member of the Roche group South San Francisco CA USA
German Center for Diabetes Research Ingolstaedter Landstraße 1 85764 Neuherberg Germany
Lineberger Comprehensive Cancer Center University of North Carolina Chapel Hill NC 27599 USA
Mouse Biology Program University of California Davis Davis CA USA
Mouse Genome Informatics Jackson Laboratory Bar Harbor ME USA
National Laboratory Animal Center NARLabs Taipei Taiwan
Phenomics Australia Australian National University 131 Garran Road Canberra ACT 2601 Australia
Rat Resource and Research Center University of Missouri Columbia MO 65201 USA
Rat Resource and Research Center University of Missouri Columbia MO USA
RIKEN BioResource Research Center Tsukuba Japan
The Jackson Laboratory Bar Harbor ME USA
The Mary Lyon Centre at MRC Harwell Harwell Campus Didcot OX11 0RD Oxon UK
Université de Strasbourg CNRS Inserm IGBMC UMR 7104 UMR S 1258 F 67400 Illkirch France
Université Paris Saclay INRAE AgroParisTech GABI Jouy en Josas France
Université Paris Saclay UVSQ INRAE BREED 78350 Jouy en Josas France
University of Missouri College of Veterinary Medicine Columbia MO USA
See more in PubMed
Baker, M. 1,500 scientists lift the lid on reproducibility. Nature533, 452–454 (2016). 10.1038/533452a PubMed DOI
Lloyd, K., Franklin, C., Lutz, C. & Magnuson, T. Reproducibility: Use mouse biobanks or lose them. Nature522, 151–153 (2015). 10.1038/522151a PubMed DOI PMC
Dessimoz, C., Škunca N. The Gene Ontology Handbook Vol. 1446 (Springer, New York, NY, 2017).
Alliance of Genome Resources Consortium et al. Harmonizing model organism data in the Alliance of Genome Resources. Genetics220, iyac022 (2022). 10.1093/genetics/iyac022 PubMed DOI PMC
Smith, A. J., Clutton, R. E., Lilley, E., Hansen, K. E. A. & Brattelid, T. PREPARE: guidelines for planning animal research and testing. Lab. Anim.52, 135–141 (2018). 10.1177/0023677217724823 PubMed DOI PMC
Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol.18, e3000410 (2020). 10.1371/journal.pbio.3000410 PubMed DOI PMC
the FAIRsharing Community et al. FAIRsharing as a community approach to standards, repositories and policies. Nat. Biotechnol.37, 358–367 (2019). 10.1038/s41587-019-0080-8 PubMed DOI PMC
Percie du Sert, N. et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol.18, e3000411 (2020). 10.1371/journal.pbio.3000411 PubMed DOI PMC
Sittig, L. J. et al. Genetic background limits generalizability of genotype–phenotype relationships. Neuron91, 1253–1259 (2016). 10.1016/j.neuron.2016.08.013 PubMed DOI PMC
Doetschman, T. Influence of genetic background on genetically engineered mouse phenotypes. In Gene Knockout Protocols Vol. 530 (eds. Wurst, W. & Kühn, R.) 423–433 (Humana Press, Totowa, NJ, 2009). PubMed PMC
Strobel, M. C., Reinholdt, L. G., Malcolm, R. D. & Pritchett-Corning, K. Genetic monitoring of laboratory mice and rats. In Laboratory Animal Medicine. (eds Fox, J. G. et al.) 1403–1416 (Elsevier, 2015).
Simon, M. M. et al. A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biol.14, R82 (2013). 10.1186/gb-2013-14-7-r82 PubMed DOI PMC
Voelkl, B. et al. Reproducibility of animal research in light of biological variation. Nat. Rev. Neurosci.21, 384–393 (2020). 10.1038/s41583-020-0313-3 PubMed DOI
Zeldovich, L. Genetic drift: the ghost in the genome. Lab Anim.46, 255–257 (2017).10.1038/laban.1275 PubMed DOI
Freedman, L. P., Cockburn, I. M. & Simcoe, T. S. The economics of reproducibility in preclinical research. PLoS Biol.13, e1002165 (2015). 10.1371/journal.pbio.1002165 PubMed DOI PMC
Jacquot, S., Chartoire, N., Piguet, F., Hérault, Y. & Pavlovic, G. Optimizing PCR for mouse genotyping: recommendations for reliable, rapid, cost effective, robust and adaptable to high‐throughput genotyping protocol for any type of mutation. Curr. Protoc. Mouse Biol.9, e65 1–28 (2019). PubMed
Russell, W. M. S. & Burch, R. L. The Principles of Humane Experimental Technique. (Methuen, 1959).
Engle, S. HPRT-APRT-deficient mice are not a model for Lesch–Nyhan syndrome. Hum. Mol. Genet.5, 1607–1610 (1996). 10.1093/hmg/5.10.1607 PubMed DOI
Meek, S. et al. Reduced levels of dopamine and altered metabolism in brains of HPRT knock-out rats: a new rodent model of Lesch–Nyhan Disease. Sci. Rep.6, 25592 (2016). 10.1038/srep25592 PubMed DOI PMC
Bilovocky, N. A., Romito-DiGiacomo, R. R., Murcia, C. L., Maricich, S. M. & Herrup, K. Factors in the genetic background suppress the Engrailed-1 cerebellar phenotype. J. Neurosci.23, 5105–5112 (2003). 10.1523/JNEUROSCI.23-12-05105.2003 PubMed DOI PMC
Axelsson, E. et al. The genetic consequences of dog breed formation—accumulation of deleterious genetic variation and fixation of mutations associated with myxomatous mitral valve disease in cavalier King Charles spaniels. PLoS Genet.17, e1009726 (2021). 10.1371/journal.pgen.1009726 PubMed DOI PMC
Sigmon, J. S. et al. Content and performance of the MiniMUGA genotyping array: a new tool to improve rigor and reproducibility in mouse research. Genetics216, 905–930 (2020). 10.1534/genetics.120.303596 PubMed DOI PMC
Barbaric, I. et al. An ENU-induced mutation in the Ankrd11 gene results in an osteopenia-like phenotype in the mouse mutant Yoda. Physiol. Genom.32, 311–321 (2008).10.1152/physiolgenomics.00116.2007 PubMed DOI
De Angelis, M. H. et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat. Genet.25, 444–447 (2000). 10.1038/78146 PubMed DOI
Andersson, L. Molecular consequences of animal breeding. Curr. Opin. Genet. Dev.23, 295–301 (2013). 10.1016/j.gde.2013.02.014 PubMed DOI
Ciepłoch, A., Rutkowska, K., Oprządek, J. & Poławska, E. Genetic disorders in beef cattle: a review. Genes Genom.39, 461–471 (2017).10.1007/s13258-017-0525-8 PubMed DOI PMC
Bunton-Stasyshyn, R. K., Codner, G. F. & Teboul, L. Screening and validation of genome-edited animals. Lab Anim.56, 69–82 (2022). 10.1177/00236772211016922 PubMed DOI PMC
Marx, V. Method of the year: long-read sequencing. Nat. Methods20, 6–11 (2023). 10.1038/s41592-022-01730-w PubMed DOI
De Coster, W. & Van Broeckhoven, C. Newest methods for detecting structural variations. Trends Biotechnol.37, 973–982 (2019). 10.1016/j.tibtech.2019.02.003 PubMed DOI
Chan, S. et al. Structural variation detection and analysis using bionano optical mapping. In Copy Number Variants Vol. 1833 (ed. Bickhart, D. M.) 193–203 (Springer, New York, 2018). PubMed
Benavides, F. et al. Genetic quality assurance and genetic monitoring of laboratory mice and rats: FELASA Working Group Report. Lab. Anim.54, 135–148 (2020). 10.1177/0023677219867719 PubMed DOI PMC
Cagan, A. et al. Somatic mutation rates scale with lifespan across mammals. Nature604, 517–524 (2022). 10.1038/s41586-022-04618-z PubMed DOI PMC
Milholland, B. et al. Differences between germline and somatic mutation rates in humans and mice. Nat. Commun.8, 15183 (2017). 10.1038/ncomms15183 PubMed DOI PMC
Lynch, M. Evolution of the mutation rate. Trends Genet.26, 345–352 (2010). 10.1016/j.tig.2010.05.003 PubMed DOI PMC
Fox, J.G. et al. The Mouse in Biomedical Research (Elsevier, Amsterdam; Boston, 2007).
Rogers, J. Genomic resources for rhesus macaques (Macaca mulatta). Mamm. Genome33, 91–99 (2022). 10.1007/s00335-021-09922-z PubMed DOI PMC
Vaysse, A. et al. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLoS Genet.7, e1002316 (2011). 10.1371/journal.pgen.1002316 PubMed DOI PMC
Matsuda, K. PCR-based detection methods for single-nucleotide polymorphism or mutation. In Advances in Clinical Chemistry Vol. 80 45–72 (Elsevier, 2017). PubMed
Rawle, D. J. et al. Widespread discrepancy in Nnt genotypes and genetic backgrounds complicates granzyme A and other knockout mouse studies. eLife11, e70207 (2022). 10.7554/eLife.70207 PubMed DOI PMC
Kelmenson, P. How to Refresh Your Mutant or Transgenic Mouse Strainshttps://www.jax.org/news-and-insights/jax-blog/2018/april/how-to-refresh-your-mutant-or-transgenic-mouse-strains (2018).
Trevarrow, B. & Robison, B. Genetic backgrounds, standard lines, and husbandry of zebrafish. Methods Cell Biol.77, 599–616 (2004). 10.1016/S0091-679X(04)77032-6 PubMed DOI
Varga, Z. M. Aquaculture, husbandry, and shipping at the Zebrafish International Resource Center. Methods Cell Biol.135, 509–534 (2016). 10.1016/bs.mcb.2016.01.007 PubMed DOI
Martins, S. et al. Toward an integrated zebrafish health management program supporting cancer and neuroscience research. Zebrafish13, S47–S55 (2016). 10.1089/zeb.2015.1198 PubMed DOI
Liang, Q., Conte, N., Skarnes, W. C. & Bradley, A. Extensive genomic copy number variation in embryonic stem cells. Proc. Natl Acad. Sci. USA105, 17453–17456 (2008). 10.1073/pnas.0805638105 PubMed DOI PMC
Lintott, L. G. & Nutter, L. M. J. Genetic and Molecular Quality Control of Genetically Engineered Mice. In Transgenesis Vol. 2631 (ed. Saunders, T. L.) 53–101 (Springer US, New York, NY, 2023). PubMed
Goodwin, L. O. et al. Large-scale discovery of mouse transgenic integration sites reveals frequent structural variation and insertional mutagenesis. Genome Res.29, 494–505 (2019). 10.1101/gr.233866.117 PubMed DOI PMC
Burgio, G. & Teboul, L. Anticipating and Identifying Collateral Damage in Genome Editing. Trends Genet.36, 905–914 (2020). 10.1016/j.tig.2020.09.011 PubMed DOI PMC
Peterson, K. A. et al. Whole genome analysis for 163 gRNAs in Cas9-edited mice reveals minimal off-target activity. Commun. Biol.6, 626 (2023). 10.1038/s42003-023-04974-0 PubMed DOI PMC
Anderson, K. R. et al. CRISPR off-target analysis in genetically engineered rats and mice. Nat. Methods15, 512–514 (2018). 10.1038/s41592-018-0011-5 PubMed DOI PMC
Manghwar, H. et al. CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off‐target evaluation, and strategies to mitigate off‐target effects. Adv. Sci.7, 1902312 (2020).10.1002/advs.201902312 PubMed DOI PMC
CRISPR off-targets: a reassessment. Nat Methods15, 229–230 (2018).
Norris, A. L. et al. Template plasmid integration in germline genome-edited cattle. Nat. Biotechnol.38, 163–164 (2020). 10.1038/s41587-019-0394-6 PubMed DOI
Leibowitz, M. L. et al. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat. Genet.53, 895–905 (2021). 10.1038/s41588-021-00838-7 PubMed DOI PMC
Bertelsen, B. et al. A germline chromothripsis event stably segregating in 11 individuals through three generations. Genet. Med.18, 494–500 (2016). 10.1038/gim.2015.112 PubMed DOI
Nurk, S. et al. The complete sequence of a human genome. Science376, 44–53 (2022). 10.1126/science.abj6987 PubMed DOI PMC
Schoch, C. L. et al. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database2020, baaa062 (2020). 10.1093/database/baaa062 PubMed DOI PMC
Tweedie, S. et al. Genenames.org: the HGNC and VGNC resources in 2021. Nucleic Acids Res.49, D939–D946 (2021). 10.1093/nar/gkaa980 PubMed DOI PMC
McCarthy, F. M. et al. The case for standardizing gene nomenclature in vertebrates. Nature614, E31–E32 (2023). 10.1038/s41586-022-05633-w PubMed DOI PMC
Wells, D. J. et al. Assessing the welfare of genetically altered mice. Lab Anim.40, 111–114 (2006). 10.1258/002367706776318971 PubMed DOI
Lalonde, R., Filali, M. & Strazielle, C. SHIRPA as a neurological screening battery in mice. Curr. Protoc.1, e135 1–30 (2021). PubMed
Patange, S. & Maragh, S. Fire burn and cauldron bubble: what is in your genome editing brew? Biochemistry10.1021/acs.biochem.2c00431 (2022). PubMed PMC