Tip-to-base conduit widening remains consistent across cambial age and climates in Fagus sylvatica L
Jazyk angličtina Země Kanada Médium print
Typ dokumentu časopisecké články
Grantová podpora
CN00000022
PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR)-MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4-D.D. 1032 17/06/2022
PubMed
38959855
PubMed Central
PMC12066827
DOI
10.1093/treephys/tpae080
PII: 7705537
Knihovny.cz E-zdroje
- Klíčová slova
- allometry, architecture, diffuse-porous, hydraulic, quantitative wood anatomy, vessels, xylem traits,
- MeSH
- buk (rod) * růst a vývoj fyziologie anatomie a histologie MeSH
- kambium * růst a vývoj MeSH
- podnebí * MeSH
- stonky rostlin * růst a vývoj anatomie a histologie fyziologie MeSH
- stromy růst a vývoj fyziologie anatomie a histologie MeSH
- voda metabolismus MeSH
- xylém * růst a vývoj anatomie a histologie fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Itálie MeSH
- Názvy látek
- voda MeSH
Water transport, mechanical support and storage are the vital functions provided by the xylem. These functions are carried out by different cells, exhibiting significant anatomical variation not only within species but also within individual trees. In this study, we used a comprehensive dataset to investigate the consistency of predicted hydraulic vessel diameter widening values in relation to the distance from the tree apex, represented by the relationship Dh ∝ Lβ (where Dh is the hydraulic vessel diameter, L the distance from the stem apex and β the scaling exponent). Our analysis involved 10 Fagus sylvatica L. trees sampled at two distinct sites in the Italian Apennines. Our results strongly emphasize that vessel diameter follows a predictable pattern with the distance from the stem apex and β ~ 0.20 remains consistent across cambial age and climates. This finding supports the hypothesis that trees do not alter their axial configuration represented by scaling of vessel diameter to compensate for hydraulic limitations imposed by tree height during growth. The study further indicates that within-tree variability significantly contributes to the overall variance of the vessel diameter-stem length exponent. Understanding the factors that contribute to the intraindividual variability in the widening exponent is essential, particularly in relation to interspecific responses and adaptations to drought stress.
Zobrazit více v PubMed
Anfodillo T, Olson ME. 2021. Tree mortality: testing the link between drought, embolism vulnerability and xylem conduit diameter remains a priority. Front For Glob Change. 4:704670. 10.3389/ffgc.2021.704670. DOI
Anfodillo T, Carraro V, Carrer M, Fior C, Rossi S. 2006. Convergent tapering of xylem conduits in different woody species. New Phytol. 169(2):279–290. 10.1111/j.1469-8137.2005.01587.x. PubMed DOI
Anfodillo T, Deslauriers A, Menardi R, Tedoldi L, Petit G, Rossi S. 2012. Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem. J Exp Bot. 63(2):837–845. 10.1093/jxb/err309. PubMed DOI PMC
Anfodillo T, Petit G, Crivellaro A. 2013. Axial conduit widening in woody species: a still neglected anatomical pattern. IAWA J. 34(4):352–364. 10.1163/22941932-00000030. DOI
Anfodillo T, Petit G, Sterck F, Lechthaler S, Olson ME. 2016. Allometric trajectories and “stress”: a quantitative approach. Front Plant Sci. 7:1681. 10.3389/fpls.2016.01681. PubMed DOI PMC
Baer AB, Fickle JC, Medina J, Robles C, Pratt RB, Jacobsen AL. 2021. Xylem biomechanics, water storage and density within roots and shoots of an angiosperm tree species. J Exp Bot. 72(22):7984–7997. 10.1093/jxb/erab384. PubMed DOI
Barton K, Barton MK. 2015. Package ‘MuMin’. Version. 1(18):439.
Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw. 67(1):1–48.
Becker P, Gribben RJ, Lim CM. 2000. Tapered conduits can buffer hydraulic conductance from path-length effects. Tree Physiol. 20(14):965–967. 10.1093/treephys/20.14.965. PubMed DOI
Borghetti M, Gentilesca T, Leonardi S, Van Noije T, Rita A, Mencuccini M. 2017. Long-term temporal relationships between environmental conditions and xylem functional traits: a meta-analysis across a range of woody species along climatic and nitrogen deposition gradients. Tree Physiol. 37(1):4–17. 10.1093/treephys/tpw087. PubMed DOI
Brunetti M, Maugeri M, Nanni T, Simolo C, Spinoni J. 2014. High-resolution temperature climatology for Italy: interpolation method intercomparison. Int J Climatol. 34(4):1278–1296. 10.1002/joc.3764. DOI
Cabon A, Fernández-de-Uña L, Gea-Izquierdo G, Meinzer FC, Woodruff DR, Martínez-Vilalta J, De Cáceres M. 2020. Water potential control of turgor-driven tracheid enlargement in Scots pine at its xeric distribution edge. New Phytol. 225(1):209–221. 10.1111/nph.16146. PubMed DOI
Cao X, Li Y, Zheng XJ, Xie JB, Wang ZY. 2022. An inherent coordination between the leaf size and the hydraulic architecture of angiosperm trees. Forests. 13(8):1287. 10.3390/f13081287. DOI
Chambers-Ostler A, Gloor E, Galbraith D, Groenendijk P, Brienen R. 2023. Vessel tapering is conserved along a precipitation gradient in tropical trees of the genus Cedrela. Trees. 37(2):269–284. 10.1007/s00468-022-02345-6. DOI
Chavent M, Kuentz V, Labenne A, Liquet B, Saracco J. 2017. PCAmixdata: multivariate analysis of mixed data. R package version, 3.
Chen H, Niklas KJ, Sun S. 2012. Testing the packing rule across the twig–petiole interface of temperate woody species. Trees. 26(6):1737–1745. 10.1007/s00468-012-0742-3. DOI
Coomes DA, Jenkins KL, Cole LE. 2007. Scaling of tree vascular transport systems along gradients of nutrient supply and altitude. Biol Lett. 3(1):87–90. 10.1098/rsbl.2006.0551. PubMed DOI PMC
Crespi A, Brunetti M, Lentini G, Maugeri M. 2018. 1961–1990 high-resolution monthly precipitation climatologies for Italy. Int J Climatol. 38(2):878–895. 10.1002/joc.5217. DOI
Dória LC, Podadera DS, Lima RS, Lens F, Marcati CR. 2019. Axial sampling height outperforms site as predictor of wood trait variation. IAWA J. 40(2):191–1S3. 10.1163/22941932-40190245. DOI
Echeverría A, Anfodillo T, Soriano D, Rosell JA, Olson ME. 2019. Constant theoretical conductance via changes in vessel diameter and number with height growth in Moringa oleifera. J Exp Bot. 70(20):5765–5772. 10.1093/jxb/erz329. PubMed DOI PMC
Eilmann B, Sterck F, Wegner L, de Vries SM, Von Arx G, Mohren GM, den Ouden J, Sass-Klaassen U. 2014. Wood structural differences between northern and southern beech provenances growing at a moderate site. Tree Physiol. 34(8):882–893. 10.1093/treephys/tpu069. PubMed DOI
Enquist BJ, West GB, Brown JH. 2000. Quarter-power allometric scaling in vascular plants: functional basis and ecological consequences. In: Brown JH and West GB, editors. Scaling in Biology (New York, NY, 2000; online edn, Oxford Academic, 31 Oct. 2023). p. 167–198. 10.1093/oso/9780195131413.003.0010. DOI
Fajardo A, Martínez-Pérez C, Cervantes-Alcayde MA, Olson ME. 2020. Stem length, not climate, controls vessel diameter in two trees species across a sharp precipitation gradient. New Phytol. 225(6):2347–2355. 10.1111/nph.16287. PubMed DOI
Fritts H. 1976. Tree rings and climate. London: Academic Press.
Gartner BL. 1995. Patterns of xylem variation within a tree and their hydraulic and mechanical consequences. In: Plant stems: physiological and functional morphology. San Diego, California: Academic Press, pp 125–149.
Gentilesca T, Rita A, Brunetti M, Giammarchi F, Leonardi S, Magnani F, Van Noije T, Tonon G, Borghetti M. 2018. Nitrogen deposition outweighs climatic variability in driving annual growth rate of canopy beech trees: evidence from long-term growth reconstruction across a geographic gradient. Glob Chang Biol. 24(7):2898–2912. 10.1111/gcb.14142. PubMed DOI
Geraci M. 2014. Linear quantile mixed models: the lqmm package for Laplace quantile regression. J Stat Softw. 57(13):1–29. PubMed
Hacke UG, Sperry JS, Wheeler JK, Castro L. 2006. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol. 26(6):689–701. 10.1093/treephys/26.6.689. PubMed DOI
Hacke UG, Jacobsen AL, Pratt RB. 2023. Vessel diameter and vulnerability to drought-induced embolism: within-tissue and across-species patterns and the issue of survivorship bias. IAWA J. 44(3–4):304–319.
Hajek P, Kurjak D, von Wühlisch G, Delzon S, Schuldt B. 2016. Intraspecific variation in wood anatomical, hydraulic and foliar traits in ten European beech provenances differing in growth yield. Front Plant Sci. 7:791. PubMed PMC
Herbette S, Wortemann R, Awad H, Huc R, Cochard H, Barigah TS. 2010. Insights into xylem vulnerability to cavitation in Fagus sylvatica L.: phenotypic and environmental sources of variability. Tree Physiol. 30(11):1448–1455. 10.1093/treephys/tpq079. PubMed DOI
Holmes RL. 1983. Computer assisted quality control in tree-ring dating and measurement. Tree Ring Bull. 43:69–78.
Jacobsen AL, Pratt RB. 2023. Vessel diameter polymorphism determines vulnerability-to-embolism curve shape. IAWA J. 44(3–4):320–334.
Jacobsen AL, Valdovinos-Ayala J, Rodriguez-Zaccaro FD, Hill-Crim MA, Percolla MI, Venturas MD. 2018. Intra-organismal variation in the structure of plant vascular transport tissues in poplar trees. Trees. 32(5):1335–1346. 10.1007/s00468-018-1714-z. DOI
James SA, Meinzer FC, Goldstein G, Woodruff D, Jones T, Restom T, Mejia M, Clearwater M, Campanello P. 2003. Axial and radial water transport and internal water storage in tropical forest canopy trees. Oecologia. 134(1):37–45. 10.1007/s00442-002-1080-8. PubMed DOI
Johnson D, Eckart P, Alsamadisi N, Noble H, Martin C, Spicer R. 2018. Polar auxin transport is implicated in vessel differentiation and spatial patterning during secondary growth in Populus. Am J Bot. 105(2):186–196. 10.1002/ajb2.1035. PubMed DOI
Jourez B, Riboux A, Leclercq A. 2001. Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana cv “ghoy”). IAWA J. 22(2):133–157. 10.1163/22941932-90000274. DOI
Kašpar J, Tumajer J, Treml V. 2019. IncrementR: analysing height growth of trees and shrubs in R. Dendrochronologia. 53:48–54. 10.1016/j.dendro.2018.11.001. DOI
Kerkhoff AJ, Enquist BJ. 2009. Multiplicative by nature: why logarithmic transformation is necessary in allometry. J Theor Biol. 257(3):519–521. 10.1016/j.jtbi.2008.12.026. DOI
Kiorapostolou N, Petit G. 2019. Similarities and differences in the balances between leaf, xylem and phloem structures in Fraxinus ornus along an environmental gradient. Tree Physiol. 39(2):234–242. 10.1093/treephys/tpy095. PubMed DOI
Koçillari L, Olson ME, Suweis S, Rocha RP, Lovison A, Cardin F, Maritan A. 2021. The widened pipe model of plant hydraulic evolution. Proc Natl Acad Sci USA. 118(22):e2100314118. 10.1073/pnas.2100314118. PubMed DOI PMC
Lechthaler S, Colangeli P, Gazzabin M, Anfodillo T. 2019a. Axial anatomy of the leaf midrib provides new insights into the hydraulic architecture and cavitation patterns of Acer pseudoplatanus leaves. J Exp Bot. 70(21):6195–6201. 10.1093/jxb/erz347. PubMed DOI PMC
Lechthaler S, Turnbull TL, Gelmini Y, Pirotti F, Anfodillo T, Adams MA, Petit G. 2019b. A standardization method to disentangle environmental information from axial trends of xylem anatomical traits. Tree Physiol. 39(3):495–502. 10.1093/treephys/tpy110. PubMed DOI
Lechthaler S, Kiorapostolou N, Pitacco A, Anfodillo T, Petit G. 2020. The total path length hydraulic resistance according to known anatomical patterns: what is the shape of the root-to-leaf tension gradient along the plant longitudinal axis? J Theor Biol. 502:110369. 10.1016/j.jtbi.2020.110369. PubMed DOI
Li S, Li X, Link R, Li R, Deng L, Schuldt B, Jiang X, Zhao R, Zheng J, Li S et al. 2019. Influence of cambial age and axial height on the spatial patterns of xylem traits in Catalpa bungei, a ring-porous tree species native to China. Forests. 10(8):662. 10.3390/f10080662. DOI
Meinzer FC, Lachenbruch B, Dawson TE (eds). 2011. Size-and age-related changes in tree structure and function, Vol. 4. Dordrecht, Netherlands: Springer Science & Business Media.
Mencuccini M, Hölttä T, Petit G, Magnani F. 2007. Sanio’s laws revisited. Size-dependent changes in the xylem architecture of trees. Ecol Lett. 10(11):1084–1093. 10.1111/j.1461-0248.2007.01104.x. PubMed DOI
Olson M, Rosell JA, Martínez-Pérez C, León-Gómez C, Fajardo A, Isnard S, Cervantes-Alcayde MA, Echeverrìa A, Figueroa-Abundiz VA, Segovia-Rivas A et al. 2020. Xylem vessel-diameter–shoot-length scaling: ecological significance of porosity types and other traits. Ecol Monogr. 90(3):e01410. 10.1002/ecm.1410. DOI
Olson ME, Anfodillo T, Rosell JA, Petit G, Crivellaro A, Isnard S, Leòn-Gòmez C, Alvarado-Càrdenas LO, Castorena M. 2014. Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecol Lett. 17(8):988–997. 10.1111/ele.12302. PubMed DOI
Olson ME, Soriano D, Rosell JA, Anfodillo T, Donoghue MJ, Edwards EJ, León-Gómez C, Dawson T, Camarero Martínez JJ, Castorena M et al. 2018. Plant height and hydraulic vulnerability to drought and cold. Proc Natl Acad Sci USA. 115(29):7551–7556. 10.1073/pnas.1721728115. PubMed DOI PMC
Olson ME, Anfodillo T, Gleason SM, McCulloh KA. 2021. Tip-to-base xylem conduit widening as an adaptation: causes, consequences and empirical priorities. New Phytol. 229(4):1877–1893. 10.1111/nph.16961. PubMed DOI
Petit G, Anfodillo T. 2009. Plant physiology in theory and practice: an analysis of the WBE model for vascular plants. J Theor Biol. 259(1):1–4. 10.1016/j.jtbi.2009.03.007. PubMed DOI
Petit G, Anfodillo T, Carraro V, Grani F, Carrer M. 2011. Hydraulic constraints limit height growth in trees at high altitude. New Phytol. 189(1):241–252. 10.1111/j.1469-8137.2010.03455.x. PubMed DOI
Petit G, Anfodillo T, Mencuccini M. 2008. Tapering of xylem conduits and hydraulic limitations in sycamore (Acer pseudoplatanus) trees. New Phytol. 177(3):653–664. 10.1111/j.1469-8137.2007.02291.x. PubMed DOI
Petit G, Pfautsch S, Anfodillo T, Adams MA. 2010. The challenge of tree height in Eucalyptus regnans: when xylem tapering overcomes hydraulic resistance. New Phytol. 187(4):1146–1153. 10.1111/j.1469-8137.2010.03304.x. PubMed DOI
Petit G, Zambonini D, Hesse BD, Häberle KH. 2022. No xylem phenotypic plasticity in mature Picea abies and Fagus sylvatica trees after 5 years of throughfall precipitation exclusion. Glob Chang Biol. 28(15):4668–4683. 10.1111/gcb.16232. PubMed DOI PMC
Petit G, Mencuccini M, Carrer M, Prendin AL, Hölttä T. 2023. Axial conduit widening, tree height and height growth rate set the hydraulic transition of sapwood into heartwood. J Exp Bot. 74(17):5072–5087. 10.1093/jxb/erad227. PubMed DOI
Pfautsch S, Aspinwall MJ, Drake JE, Chacon-Doria L, Langelaan RJA, Tissue DT, Tjoelker MG, Lens F. 2018. Traits and trade-offs in whole-tree hydraulic architecture along the vertical axis of Eucalyptus grandis. Ann Bot. 121(1):129–141. 10.1093/aob/mcx137. PubMed DOI PMC
Prendin AL, Petit G, Fonti P, Rixen C, Dawes MA, von Arx G. 2018. Axial xylem architecture of Larix decidua exposed to CO2 enrichment and soil warming at the tree line. Funct Ecol. 32(2):273–287. 10.1111/1365-2435.12986. DOI
R Core Team . 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Ray DM, Jones CS. 2018. Scaling relationships and vessel packing in petioles. Am J Bot. 105(4):667–676. 10.1002/ajb2.1054. PubMed DOI
Rita A, Pericolo O, Saracino A, Borghetti M. 2020. Sperry’s packing rule affects the spatial proximity but not clustering of xylem conduits: the case of Fagus sylvatica L. IAWA J. 42(2):191–203.
Rodriguez-Zaccaro FD, Daniela Rodriguez-Zaccaro F, Valdovinos-Ayala J, Percolla MI, Venturas MD, Pratt RB, Jacobsen AL. 2019. Wood structure and function change with maturity: age of the vascular cambium is associated with xylem changes in current-year growth. Plant Cell Environ. 42(6):1816–1831. 10.1111/pce.13528. PubMed DOI
Rosell JA, Olson ME, Anfodillo T. 2017. Scaling of xylem vessel diameter with plant size: causes, predictions and outstanding questions. Curr For Rep. 3(1):46–59. 10.1007/s40725-017-0049-0. DOI
Savage VM, Bentley LP, Enquist BJ, Sperry JS, Smith DD, Reich PB, Von Allmen EI. 2010. Hydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants. Proc Natl Acad Sci USA. 107(52):22722–22727. 10.1073/pnas.1012194108. PubMed DOI PMC
Schreiber SG, Hacke UG, Hamann A. 2015. Variation of xylem vessel diameters across a climate gradient: insight from a reciprocal transplant experiment with a widespread boreal tree. Funct Ecol. 29(11):1392–1401. 10.1111/1365-2435.12455. DOI
Shaw M, Rights JD, Sterba SS, Flake JK. 2023. r2mlm: an R package calculating R-squared measures for multilevel models. Behav Res Methods. 55(4):1942–1964. 10.3758/s13428-022-01841-4. PubMed DOI
Shinozaki K, Yoda K, Hozumi K, Kira T. 1964a. A quantitative analysis of plant form—the pipe model theory I. Basic analyses. Jpn J Ecol. 14(3):94–105.
Shinozaki K, Yoda K, Hozumi K, Kira T. 1964b. A quantitative analysis of plant form-the pipe model theory: II. Further evidence of the theory and its application in forest ecology. Jpn J Ecol. 14(4):133–139.
Sopp SBD, Valbuena R. 2023. Vascular optimality dictates plant morphology away from Leonardo’s rule. Proc Natl Acad Sci USA. 120(39):e2215047120. 10.1073/pnas.2215047120. PubMed DOI PMC
Stoffel MA, Nakagawa S, Schielzeth H. 2017. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol Evol. 8(11):1639–1644. 10.1111/2041-210X.12797. DOI
Stoffel MA, Nakagawa S, Schielzeth H. 2021. partR2: partitioning R2 in generalized linear mixed models. PeerJ. 9:e11414. 10.7717/peerj.11414. PubMed DOI PMC
Tokumoto I, Heilman JL, Schwinning S, McInnes KJ, Litvak ME, Morgan CLS, Kamps RH. 2014. Small-scale variability in water storage and plant available water in shallow, rocky soils. Plant Soil. 385(1–2):193–204. 10.1007/s11104-014-2224-4. DOI
Tyree MT, Ewers FW. 1991. The hydraulic architecture of trees and other woody plants. New Phytol. 119(3):345–360.
Tyree MT, Zimmermann MH. 2002. Xylem structure and the ascent of sap. Springer, Berlin, Germany.
Warton DI, Duursma RA, Falster DS, Taskinen S. 2012. ‘Smatr 3’- an R package for estimation and inference about allometric lines. Methods Ecol Evol. 3(2):257–259. 10.1111/j.2041-210X.2011.00153.x. DOI
Weithmann G, Paligi SS, Schuldt B, Leuschner C. 2022. Branch xylem vascular adjustments in European beech in response to decreasing water availability across a precipitation gradient. Tree Physiol. 42(11):2224–2238. 10.1093/treephys/tpac080. PubMed DOI
Weitz JS, Ogle K, Horn HS. 2006. Ontogenetically stable hydraulic design in woody plants. Funct Ecol. 20(2):191–199. 10.1111/j.1365-2435.2006.01083.x. DOI
West GB, Brown JH, Enquist BJ. 1997. A general model for the origin of allometric scaling laws in biology. Science. 276(5309):122–126. 10.1126/science.276.5309.122. PubMed DOI
West GB, Brown JH, Enquist BJ. 1999. A general model for the structure and allometry of plant vascular systems. Nature. 400(6745):664–667. 10.1038/23251. DOI
Williams CB, Anfodillo T, Crivellaro A, Lazzarin M, Dawson TE, Koch GW. 2019. Axial variation of xylem conduits in the Earth’s tallest trees. Trees. 33(5):1299–1311. 10.1007/s00468-019-01859-w. DOI
Woodruff DR, Meinzer FC. 2011. In: Meinzer FC, Lachenbruch B, Dawson TE (eds), Size-dependent changes in biophysical control of tree growth: the role of turgor, in size-and age-related changes in tree structure and function. Springer: Netherlands, Dordrecht, pp. 363–384.
Yang D, Zhang Y, Zhou D, Zhang YJ, Peng G, Tyree MT. 2021. The hydraulic architecture of an arborescent monocot: ontogeny-related adjustments in vessel size and leaf area compensate for increased resistance. New Phytol. 231(1):273–284. 10.1111/nph.17294. PubMed DOI
Zanne AE, Westoby M, Falster DS, Ackerly DD, Loarie SR, Arnold SEJ, Coomes DA. 2010. Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am J Bot. 97(2):207–215. 10.3732/ajb.0900178. PubMed DOI
Zhong M, Castro-Díez P, Puyravaud J-P, Sterck FJ, Cornelissen JHC. 2019. Convergent xylem widening among organs across diverse woody seedlings. New Phytol. 222(4):1873–1882. 10.1111/nph.15734. PubMed DOI
Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. 2009. Mixed effects models and extensions in ecology with R, Vol. 574. Springer, New York, p 574.