• This record comes from PubMed

Metabarcoding expands knowledge on diversity and ecology of rare actinobacteria in the Brazilian Cerrado

. 2025 Feb ; 70 (1) : 159-175. [epub] 20240703

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
421350/2017-2 Instituto Chico Mendes de Conservação da Biodiversidade
18/2017 Conselho Nacional de Desenvolvimento Científico e Tecnológico

Links

PubMed 38961050
DOI 10.1007/s12223-024-01184-x
PII: 10.1007/s12223-024-01184-x
Knihovny.cz E-resources

Rare and unknown actinobacteria from unexplored environments have the potential to produce new bioactive molecules. This study aimed to use 16 s rRNA metabarcoding to determine the composition of the actinobacterial community, particularly focusing on rare and undescribed species, in a nature reserve within the Brazilian Cerrado called Sete Cidades National Park. Since this is an inaccessible area without due legal authorization, it is understudied, and, therefore, its diversity and biotechnological potential are not yet fully understood, and it may harbor species with groundbreaking genetic potential. In total, 543 operational taxonomic units (OTUs) across 14 phyla were detected, with Actinobacteria (41.2%), Proteobacteria (26.5%), and Acidobacteria (14.3%) being the most abundant. Within Actinobacteria, 107 OTUs were found, primarily from the families Mycobacteriaceae, Pseudonocardiaceae, and Streptomycetaceae. Mycobacterium and Streptomyces were the predominant genera across all samples. Seventeen rare OTUs with relative abundance < 0.1% were identified, with 82.3% found in only one sample yet 25.5% detected in all units. Notable rare and transient genera included Salinibacterium, Nocardia, Actinomycetospora_01, Saccharopolyspora, Sporichthya, and Nonomuraea. The high diversity and distribution of Actinobacteria OTUs indicate the area's potential for discovering new rare species. Intensified prospection on underexplored environments and characterization of their actinobacterial diversity could lead to the discovery of new species capable of generating innovative natural products.

See more in PubMed

Agrawal R, Rebhun J, Yang J et al (2021) Mycobacterium celatum: a new pathogen of the pancreas. Am J Gastroenterol 116:s705. https://doi.org/10.14309/01.ajg.0000779776.56137.54 DOI

Al-shaibani MM, Mohamed RMSR, Sidik NM et al (2021) Biodiversity of secondary metabolites compounds isolated from phylum actinobacteria and its therapeutic applications. Molecules 26:4504. https://doi.org/10.3390/molecules26154504 PubMed DOI PMC

Alonso-Sáez L, Díaz-Pérez L, Morán XAG (2015) The hidden seasonality of the rare biosphere in coastal marine bacterioplankton. Environ Microbiol 17:3766–3780. https://doi.org/10.1111/1462-2920.12801 PubMed DOI

Amin DH, Abdallah NA, Abolmaaty A et al (2020) Microbiological and molecular insights on rare actinobacteria harboring bioactive prospective. Bull Natl Res Cent. https://doi.org/10.1186/s42269-019-0266-8 DOI

Araujo JF, Castro AP, Costa MMC et al (2012) Characterization of soil bacterial assemblies in Brazilian savanna-like vegetation reveals acidobacteria dominance. Microb Ecol 64:760–770. https://doi.org/10.1007/s00248-012-0057-3 PubMed DOI

Araujo ASF, Bezerra WM, Santos VM et al (2017) Distinct bacterial communities across a gradient of vegetation from a preserved Brazilian Cerrado. Antonie Van Leeuwenhoek 110:457–469. https://doi.org/10.1007/s10482-016-0815-1 PubMed DOI

Araújo ASF, Rocha SMB, Antunes JEL et al (2019) What do we know about microbial genetic resources of soil in Cerrado areas in the Sete Cidades National Park? Revista De Recursos Genéticos - RG News 5:11–15

Azman AS, Othman I, Velu SS, Chan KG, Lee LH (2015) Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00856 PubMed DOI PMC

Bao Y, Dolfing J, Guo Z et al (2021) Important ecophysiological roles of non-dominant actinobacteria in plant residue decomposition, especially in less fertile soils. Microbiome. https://doi.org/10.1186/s40168-021-01032-x PubMed DOI PMC

Barros EVSA, Manfio GP, Maitan VR et al (2003) Nocardia cerradoensis sp. nov., a novel isolate from Cerrado soil in Brazil. Int J Syst Evol Microbiol 53:29–33. https://doi.org/10.1099/ijs.0.02020-0 DOI

Belov AA, Cheptsov VS, Vorobyova EA et al (2019) Stress-tolerance and taxonomy of culturable bacterial communities isolated from a Central Mojave Desert soil sample. Geosci 9:166. https://doi.org/10.3390/geosciences9040166 DOI

Bokulich NA, Kaehler BD, Rideout JR et al (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90. https://doi.org/10.1186/s40168-018-0470-z PubMed DOI PMC

Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9 PubMed DOI PMC

Bull AT, Idris H, Sanderson R et al (2017) High altitude, hyper-arid soils of the Central-Andes harbor mega-diverse communities of actinobacteria. Extremophiles 22:47–57. https://doi.org/10.1007/s00792-017-0976-5 PubMed DOI PMC

Bundale S, Pathak A (2022) Anti-Quorum sensing compounds from rare actinobacteria. In Actinobacteria - diversity, applications and medical aspects. IntechOpen. https://doi.org/10.5772/intechopen.106526 DOI

Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869 PubMed DOI PMC

Campbell BJ, Yu L, Heidelberg JF et al (2011) Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci 108:12776–12781. https://doi.org/10.1073/pnas.1101405108 PubMed DOI PMC

Cardinale M, Ratering S, Sadeghi A et al (2020) The response of the soil microbiota to long-term mineral and organic nitrogen fertilization is stronger in the bulk soil than in the rhizosphere. Genes 11:456. https://doi.org/10.3390/genes11040456 PubMed DOI PMC

Carrano L, Abbondi M, Turconi P et al (2015) A novel microbisporicin producer identified by early dereplication during lantibiotic screening. BioMed Res Int 2015:1–10. https://doi.org/10.1155/2015/419383 DOI

Chang HY, Tsai WC, Lee TF et al (2021) Mycobacterium gordonae infection in immunocompromised and immunocompetent hosts: a series of seven cases and literature review. J Formos Med Assoc 120:524–532. https://doi.org/10.1016/j.jfma.2020.06.029 PubMed DOI

Cui Y, Fang L, Guo X et al (2018) Responses of soil microbial communities to nutrient limitation in the desert-grassland ecological transition zone. Sci Total Environ 642:45–55. https://doi.org/10.1016/j.scitotenv.2018.06.033 PubMed DOI

Daoussis D, Kolonitsiou F, Militsopoulou M et al (2019) First report of Mycobacterium celatum-induced arthritis. Rheumatology 59:1772–1773. https://doi.org/10.1093/rheumatology/kez586 DOI

Davidovich N, Pretto T, Blum S et al (2019) Mycobacterium gordonae infecting redclaw crayfish Cherax quadricarinatus. Dis Aquat Org 135:169–174. https://doi.org/10.3354/dao03392 DOI

Debroas D, Hugoni M, Domaizon I (2015) Evidence for an active rare biosphere within freshwater protists community. Mol Ecol 24:1236–1247. https://doi.org/10.1111/mec.13116 PubMed DOI

Demmin MD, Gillissen A (2019) A rare case of pulmonary mycobacteriosis caused by rifabutin resistant Mycobacterium celatum and review of the literature. Respir Med Case Rep 28:100903. https://doi.org/10.1016/j.rmcr.2019.100903 DOI

Dhakal D, Rayamajhi V, Mishra R et al (2019) Bioactive molecules from Nocardia: diversity, bioactivities and biosynthesis. J Ind Microbiol Biotechnol 46:385–407. https://doi.org/10.1007/s10295-018-02120-y PubMed DOI

Ding T, Yang LJ, Zhang WD et al (2019) The secondary metabolites of rare actinomycetes: chemistry and bioactivity. RSC Adv 9:21964–21988. https://doi.org/10.1039/c9ra03579f PubMed DOI PMC

Drummond AJ, Newcomb RD, Buckley TR et al (2015) Evaluating a multigene environmental DNA approach for biodiversity assessment. GigaScience. https://doi.org/10.1186/s13742-015-0086-1 PubMed DOI PMC

Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10. https://doi.org/10.1016/0006-3207(92)91201-3 DOI

Falkinham JO (2021) Ecology of Nontuberculous Mycobacteria Microorganisms 9:2262. https://doi.org/10.3390/microorganisms9112262 PubMed DOI

Fang BZ, Salam N, Han MX et al (2017) Insights on the effects of heat pretreatment, pH, and calcium salts on isolation of rare actinobacteria from Karstic caves. Front Microbiol. https://doi.org/10.3389/fmicb.2017.01535 PubMed DOI PMC

Foulon J, Zappelini C, Durand A et al (2016) Environmental metabarcoding reveals contrasting microbial communities at two poplar phytomanagement sites. Sci Total Environ 571:1230–1240. https://doi.org/10.1016/j.scitotenv.2016.07.151 PubMed DOI

Foxx CL, Heinze JD, González A et al (2021) Effects of immunization with the soil-derived bacterium Mycobacterium vaccae on stress coping behaviors and cognitive performance in a “two hit” stressor model. Front Physiol. https://doi.org/10.3389/fphys.2020.524833 PubMed DOI PMC

Glickman CM, Virdi R, Hasan NA et al (2020) Assessment of soil features on the growth of environmental nontuberculous mycobacterial isolates from Hawai’i. Appl Environ Microbiol 86:e00121-e220. https://doi.org/10.1128/AEM.00121-20 PubMed DOI PMC

Goldberg DW, Alcala MM, Nóbrega DFd et al (2023) Mycobacterium gordonae infection in a free-ranging green turtle (Chelonia mydas). Brazil Front Mar Sci. https://doi.org/10.3389/fmars.2023.1197731 DOI

Grenni P, Ancona V, Caracciolo AB (2018) Ecological effects of antibiotics on natural ecosystems: a review. Microchem J 136:25–39. https://doi.org/10.1016/j.microc.2017.02.006 DOI

Guo X, Liu N, Li X et al (2015) Red soils harbor diverse culturable actinomycetes that are promising sources of novel secondary metabolites. Appl Environ Microbiol 81:3086–3103. https://doi.org/10.1128/aem.03859-14 PubMed DOI PMC

Hammer Ø, Harper DA, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:4

Hu D, Gao C, Sun C et al (2019) Genome-guided and mass spectrometry investigation of natural products produced by a potential new actinobacterial strain isolated from a mangrove ecosystem in Futian, Shenzhen. China Sci Rep. https://doi.org/10.1038/s41598-018-37475-w PubMed DOI

Idris H, Goodfellow M, Sanderson R et al (2017) Actinobacterial rare biospheres and dark matter revealed in habitats of the Chilean Atacama Desert. Sci Rep. https://doi.org/10.1038/s41598-017-08937-4 PubMed DOI PMC

INMET - Instituto Nacional de Meteorologia. (2018). Banco de dados meteorológicos para ensino e pesquisa - BDMEP.  https://bdmep.inmet.gov.br/

Jose PA, Jebakumar SRD (2013) Non-streptomycete actinomycetes nourish the current microbial antibiotic drug discovery. Front Microbiol. https://doi.org/10.3389/fmicb.2013.00240 PubMed DOI PMC

Kato G, Kakazu T, Yamada M et al (2019) Granulomatous inflammation in ginbuna crucian carp Carassius auratus langsdorfii against Mycobacterium gordonae. Dev Comp Immunol 91:93–100. https://doi.org/10.1016/j.dci.2018.10.009 PubMed DOI

Katoh K (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066. https://doi.org/10.1093/nar/gkf436 PubMed DOI PMC

Krespach MKC, Stroe MC, Netzker T, Rosin M et al (2023) Streptomyces polyketides mediate bacteria–fungi interactions across soil environments. Nat Microbiol 8:1348–1361. https://doi.org/10.1038/s41564-023-01382-2 PubMed DOI PMC

Lazzarini A, Cavaletti L, Toppo G et al (2001) Rare genera of actinomycetes as potential producers of new antibiotics. Nat Microbiol 79:399–405

Lewin G, Carlos C, Chevrette M et al (2016) Evolution and ecology of actinobacteria and their bioenergy applications. Annu Rev Microbiol 70:235–254. https://doi.org/10.1146/annurev-micro-102215-095748 PubMed DOI PMC

Lipun K, Teo WFA, Suksaard P et al (2020) Nonomuraea antri sp. nov., an actinomycete isolated from cave soil in Thailand. Int J Syst Evol Microbiol 70:5296–5303. https://doi.org/10.1099/ijsem.0.004413 PubMed DOI

Liu J, Li B, Wang Y et al (2019) Passage and community changes of filterable bacteria during microfiltration of a surface water supply. Environ Int 131:104998. https://doi.org/10.1016/j.envint.2019.104998 PubMed DOI

Logares R, Audic S, Bass D et al (2014) Patterns of rare and abundant marine microbial eukaryotes. Curr Biol 24:813–821. https://doi.org/10.1016/j.cub.2014.02.050 PubMed DOI

Lupatini M, Suleiman AKA, Jacques RJS et al (2014) Network topology reveals high connectance levels and few key microbial genera within soils. Front Environ Sci 2:10. https://doi.org/10.3389/fenvs.2014.00010 DOI

Lynch MDJ, Neufeld JD (2015) Ecology and exploration of the rare biosphere. Nat Rev Microbiol 13:217–229. https://doi.org/10.1038/nrmicro3400 PubMed DOI

Mazza P, Monciardini P, Cavaletti L et al (2003) Diversity of Actinoplanes and related genera isolated from an Italian soil. Microb Ecol 45:362–372 PubMed DOI

McDonald D, Price MN, Goodrich J et al (2011) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618. https://doi.org/10.1038/ismej.2011.139 PubMed DOI PMC

Mikhaĭlov VV, Zenova GM (1980) Dinamika i struktura populiatsii Streptomyces lanatus v dvukh tipakh pochv [population dynamics and structures of Streptomyces lanatus in 2 soil types]. Mikrobiologiia 49:1011–1013 PubMed

MMA - Ministério do Meio Ambiente (2018) Catálogo de imagens de satélite RapidEye do Ministério do Meio Ambiente. Geo Catálogo MMA.  http://geocatalogo.mma.gov.br

Nakaew N, Sungthong R, Yokota A et al (2012) Nonomuraea monospora sp. nov., an actinomycete isolated from cave soil in Thailand, and emended description of the genus Nonomuraea. Int J Syst Evol Microbiol 62:3007–3012. https://doi.org/10.1099/ijs.0.035220-0 PubMed DOI

Naumova N, Belanov I, Alikina T et al (2021) Soil microbiome after nine years of fly ash dump spontaneous revegetation. Soil Res 59:673–683. https://doi.org/10.1071/sr20304 DOI

Olanrewaju OS, Babalola OO (2018) Streptomyces: implications and interactions in plant growth promotion. Appl Microbiol Biotechnol 103:1179–1188. https://doi.org/10.1007/s00253-018-09577-y PubMed DOI PMC

Oliveira MEA, Martins FR, Castro AAJF et al (2007) Classes de cobertura vegetal do Parque Nacional de Sete Cidades (transição campo-floresta) utilizando imagens TM/Landsat, NE do Brasil. In Anais dos XIII Simpósio Brasileiro de Sensoriamento Remoto (pp. 1775–1783). INPE - Instituto Nacional de Pesquisas Espaciais

Oyedoh OP, Yang W, Dhanasekaran D et al (2023) Sustainable agriculture: rare-actinomycetes to the rescue. Agronomy 13:666. https://doi.org/10.3390/agronomy13030666 DOI

Pádua MTJ (1979) Parque Nacional de Sete Cidades: Plano de manejo (Doc. Téc. n.1). IBDF; Fundação Brasileira para a Conservaçao da Natureza

Pedrós-Alió C (2012) The rare bacterial biosphere. Annu Rev Mar Sci 4:449–466. https://doi.org/10.1146/annurev-marine-120710-100948 DOI

Pikoli MR, Sugoro I, Suharti S (2020) Diversity analysis of an extremely acidic soil in a layer of coal mine detected the occurrence of rare actinobacteria. Walailak J Sci Technol 17:529–542. https://doi.org/10.48048/wjst.2020.4380 DOI

Price MN, Dehal PS, Arkin AP (2010) FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5:e9490. https://doi.org/10.1371/journal.pone.0009490 PubMed DOI PMC

Ren Z, Zhang C, Li X et al (2022) Abundant and rare bacterial taxa structuring differently in sediment and water in Thermokarst lakes in the Yellow River source area. Qinghai-Tibet Plateau Front Microbiol 13:774514. https://doi.org/10.3389/fmicb.2022.774514 PubMed DOI

Riahi K, Hosni K, Raies A et al (2019) Unique secondary metabolites of a Streptomyces strain isolated from extreme salty wetland show antioxidant and antibacterial activities. Front Microbiol 127:1727–1740. https://doi.org/10.1111/jam.14428 DOI

Ribeiro JF and Walter BMT (2008) As principais fitofisionomias do bioma Cerrado. Cerrado: Ecologia e Flora, 1:151–212

Sayed AM, Abdel-Wahab NM, Hassan HM et al (2019) Saccharopolyspora: an underexplored source for bioactive natural products. Curr Opin Microbiol 128:314–329. https://doi.org/10.1111/jam.14360 DOI

Saygin H, Ay H, Guven K et al (2021) Comprehensive genome analysis of a novel actinobacterium with high potential for biotechnological applications, Nonomuraea aridisoli sp. nov., isolated from desert soil. Antonie Van Leeuwenhoek 114:1963–1975. https://doi.org/10.1007/s10482-021-01654-z PubMed DOI

Scherr N, Nguyen L (2009) Mycobacterium versus Streptomyces—we are different, we are the same. Curr Opin Microbiol 12:699–707. https://doi.org/10.1016/j.mib.2009.10.003 PubMed DOI

Sharma P, Kalita MC, Thakur D (2016) Broad spectrum antimicrobial activity of forest-derived soil actinomycete, Nocardia sp. PB-52. Front Microbiol 7:347. https://doi.org/10.3389/fmicb.2016.00347 PubMed DOI PMC

Shi Z, Ma L, Wang Y et al (2023) Abundant and rare bacteria in anthropogenic estuary: community co-occurrence and assembly patterns. Ecol Indic 146:109820. https://doi.org/10.1016/j.ecolind.2022.109820 DOI

Silva MS, Sales AN, Magalhães-Guedes KT et al (2013) Brazilian Cerrado soil actinobacteria ecology. BioMed Res Int 2013:503805. https://doi.org/10.1155/2013/503805 DOI

Silva JdN, Mendes LW, Antunes JEL et al (2021) Diversity, structure, and composition of plant growth-promoting bacteria in soil from Brazilian Cerrado. Rhizosphere 20:100435. https://doi.org/10.1016/j.rhisph.2021.100435 DOI

Subramani R, Aalbersberg W (2012) Marine actinomycetes: an ongoing source of novel bioactive metabolites. Microbiol Res 167:571–580. https://doi.org/10.1016/j.micres.2012.06.005 PubMed DOI

Tamura T, Ishida Y, Nozawa Y et al (2009) Transfer of Actinomadura spadix Nonomura and Ohara 1971 to Actinoallomurus spadix gen. nov., comb. nov., and description of Actinoallomurus amamiensis sp. nov., Actinoallomurus caesius sp. nov., Actinoallomurus coprocola sp. nov., Actinoallomurus fulvus sp. nov., Actinoallomurus iriomotensis sp. nov., Actinoallomurus luridus sp. nov., Actinoallomurus purpureus sp. nov. and Actinoallomurus yoronens. Int J Syst Evol Microbiol 59:1867–1874. https://doi.org/10.1099/ijs.0.006858-0 PubMed DOI

Teixeira PC, Donagemma GK, Fontana A et al (2017) Manual de métodos de análise de solo, 4th edn. Embrapa Solos

Větrovský T, Baldrian P (2015) An in-depth analysis of actinobacterial communities shows their high diversity in grassland soils along a gradient of mixed heavy metal contamination. Biol Fertil Soils 51:827–837. https://doi.org/10.1007/s00374-015-1029-9 DOI

Walsh CM, Gebert MJ, Delgado-Baquerizo M et al (2019) A global survey of mycobacterial diversity in soil. Appl Environ Microbiol 85:e01180-e1219. https://doi.org/10.1128/aem.01180-19 PubMed DOI PMC

Wright GD (2018) Unlocking the potential of natural products in drug discovery. Microb Biotechnol 12:55–57. https://doi.org/10.1111/1751-7915.13351 PubMed DOI PMC

Xie F, Pathom-aree W (2021) Actinobacteria from desert: diversity and biotechnological applications. Front Microbiol 12:765531. https://doi.org/10.3389/fmicb.2021.765531 PubMed DOI PMC

Xu Q, Vandenkoornhuyse P, Li L et al (2021) Microbial generalists and specialists differently contribute to the community diversity in farmland soils. J Adv Res 40:17–27. https://doi.org/10.1016/j.jare.2021.12.003 PubMed DOI PMC

Yuan H, Meng M, Chen Y et al (2022) Microbial community diversity and enzyme activity varies in response to long-term fertilisation in a continuous potato (Solanum tuberosum L.) cropping system. Soil Res 61:224–240. https://doi.org/10.1071/sr22015 DOI

Zamora-Quintero AY, Torres-Beltrán M, Guillén Matus DG et al (2022) Rare actinobacteria isolated from the hypersaline Ojo de Liebre Lagoon as a source of novel bioactive compounds with biotechnological potential. Microbiology 168:001144. https://doi.org/10.1099/mic.0.001144 PubMed DOI PMC

Zeng Q, An S (2021) Identifying the biogeographic patterns of rare and abundant bacterial communities using different primer sets on the Loess Plateau. Microorganisms 9:139. https://doi.org/10.3390/microorganisms9010139 PubMed DOI PMC

Zhang DC, Liu HC, Xin YH et al (2008) Salinibacterium xinjiangense sp. nov., a psychrophilic bacterium isolated from the China No. 1 glacier. Int J Syst Evol Microbiol 58:2739–2742. https://doi.org/10.1099/ijs.0.65802-0 PubMed DOI

Zhang B, Wu X, Zhang G et al (2016) The diversity and biogeography of the communities of actinobacteria in the forelands of glaciers at a continental scale. Environ Res Lett 11:054012. https://doi.org/10.1088/1748-9326/11/5/054012 DOI

Zhang G, Li B, Liu J et al (2018) The bacterial community significantly promotes cast iron corrosion in reclaimed wastewater distribution systems. Microbiome 6:222. https://doi.org/10.1186/s40168-018-0610-5 PubMed DOI PMC

Zhang B, Wu X, Tai X et al (2019) Variation in actinobacterial community composition and potential function in different soil ecosystems belonging to the arid Heihe River Basin of Northwest China. Front Microbiol 10:2209. https://doi.org/10.3389/fmicb.2019.02209 PubMed DOI PMC

Zhang J, Xie Y, Wei Y et al (2020) Effects of fertilisation on microbial communities in short-term coal mine reclamation. Soil Res 58:779. https://doi.org/10.1071/sr19262 DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...