Terahertz magnetic response of plasmonic metasurface resonators: origin and orientation dependence

. 2024 Jul 03 ; 14 (1) : 15305. [epub] 20240703

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38961198

Grantová podpora
GA 767 227 Horizon 2020
GA 767 227 Horizon 2020
GA 767 227 Horizon 2020
GA 767 227 Horizon 2020
GA 767 227 Horizon 2020
529038510 Deutsche Forschungsgemeinschaft
FSI-S-20-6485 Vysoké Učení Technické v Brně
FSI-S-20-6485 Vysoké Učení Technické v Brně
20-28573S Grantová Agentura České Republiky
20-28573S Grantová Agentura České Republiky

Odkazy

PubMed 38961198
PubMed Central PMC11222506
DOI 10.1038/s41598-024-65804-9
PII: 10.1038/s41598-024-65804-9
Knihovny.cz E-zdroje

The increasing miniaturization of everyday devices necessitates advancements in surface-sensitive techniques to access phenomena more effectively. Magnetic resonance methods, such as nuclear or electron paramagnetic resonance, play a crucial role due to their unique analytical capabilities. Recently, the development of a novel plasmonic metasurface resonator aimed at boosting the THz electron magnetic response in 2D materials resulted in a significant magnetic field enhancement, confirmed by both numerical simulations and experimental data. Yet, the mechanisms driving this resonance were not explored in detail. In this study, we elucidate these mechanisms using two semi-analytical models: one addressing the resonant behaviour and the other examining the orientation-dependent response, considering the anisotropy of the antennas and experimental framework. Our findings contribute to advancing magnetic spectroscopic techniques, broadening their applicability to 2D systems.

Zobrazit více v PubMed

Abhyankar N, et al. Scalable microresonators for room-temperature detection of electron spin resonance from dilute, sub-nanoliter volume solids. Sci. Adv. 2020;6:eabb0620. doi: 10.1126/sciadv.abb0620. PubMed DOI PMC

Ghosh A, et al. Evidence of compensated semimetal with electronic correlations at charge neutrality of twisted double bilayer graphene. Commun. Phys. 2023;6:360. doi: 10.1038/s42005-023-01480-x. DOI

Nakazawa K, Kato Y, Motome Y. Magnetic, transport and topological properties of Co-based shandite thin films. Commun. Phys. 2024;7:48. doi: 10.1038/s42005-024-01534-8. DOI

Gibertini M, Koperski M, Morpurgo AF, Novoselov KS. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019;14:408. doi: 10.1038/s41565-019-0438-6. PubMed DOI

Kern M, et al. Hybrid spintronic materials from conducting polymers with molecular quantum bits. Adv. Funct. Mater. 2021;31:2006882. doi: 10.1002/adfm.202006882. DOI

Cucinotta G, et al. Tuning of a vertical spin valve with a monolayer of single molecule magnets. Adv. Funct. Mater. 2017;27:1703600. doi: 10.1002/adfm.201703600. DOI

Shiratani H, Takiguchi K, Anh LD, Tanaka M. Observation of large spin-polarized Fermi surface of a magnetically proximitized semiconductor quantum well. Commun. Phys. 2024;7:6. doi: 10.1038/s42005-023-01485-6. DOI

Blawat J, Speer S, Singleton J, Xie W, Jin R. Quantum-limit phenomena and band structure in the magnetic topological semimetal EuZn2As2. Commun. Phys. 2023;6:255. doi: 10.1038/s42005-023-01378-8. DOI

Tesi L, et al. Quantum coherence in a processable vanadyl complex: New tools for the search of molecular spin qubits. Chem. Sci. 2016;7:2074. doi: 10.1039/C5SC04295J. PubMed DOI PMC

Warner M, et al. Potential for spin-based information processing in a thin-film molecular semiconductor. Nature. 2013;503:504. doi: 10.1038/nature12597. PubMed DOI

Tesi L, et al. Modular approach to creating functionalized surface arrays of molecular qubits. Adv. Mater. 2023;35:2208998. doi: 10.1002/adma.202208998. PubMed DOI

Santanni F, et al. VdW mediated strong magnetic exchange interactions in chains of hydrogen-free sublimable molecular qubits. JACS Au. 2023;3:1250. doi: 10.1021/jacsau.3c00121. PubMed DOI PMC

Lenz S, Kern B, Schneider M, Van Slageren J. Measurement of quantum coherence in thin films of molecular quantum bits without post-processing. Chem. Commun. 2019;55:7163. doi: 10.1039/C9CC02184A. PubMed DOI

Tesi L, Boudalis AK, Drerup K, Ruben M, van Slageren J. Matrix effects on the magnetic properties of a molecular spin triangle embedded in a polymeric film. Phys. Chem. Chem. Phys. 2024;26:8043. doi: 10.1039/D3CP05845J. PubMed DOI

Wang Z, et al. Single-electron spin resonance detection by microwave photon counting. Nature. 2023;619:276. doi: 10.1038/s41586-023-06097-2. PubMed DOI

Toida H, et al. Electron paramagnetic resonance spectroscopy using a single artificial atom. Commun. Phys. 2019;2:1. doi: 10.1038/s42005-019-0133-9. DOI

Bienfait A, et al. Reaching the quantum limit of sensitivity in electron spin resonance. Nat. Nanotechnol. 2016;11:253. doi: 10.1038/nnano.2015.282. PubMed DOI

Abhyankar N, et al. Recent advances in microresonators and supporting instrumentation for electron paramagnetic resonance spectroscopy. Rev. Sci. Instrum. 2022;93:101101. doi: 10.1063/5.0097853. PubMed DOI PMC

Grinberg O, Berliner LJ. Very Frequency (VHF) ESR/EPR. Biological Magnetic Resonance. Springer; 2004.

Takahashi S, et al. Decoherence in crystals of quantum molecular magnets. Nature. 2011;476:76. doi: 10.1038/nature10314. PubMed DOI

Laguta O, Tuček M, van Slageren J, Neugebauer P. Multi-frequency rapid-scan HFEPR. J. Magn. Reson. 2018;296:138. doi: 10.1016/j.jmr.2018.09.005. PubMed DOI

Sojka A. High-frequency EPR: current state and perspectives. In: Chechik V, editor. Electron Paramagnetic Resonance. Royal Society of Chemistry; 2020. pp. 214–252.

Tesi L, et al. Plasmonic metasurface resonators to enhance terahertz magnetic fields for high-frequency electron paramagnetic resonance. Small Methods. 2021;5:2100376. doi: 10.1002/smtd.202100376. PubMed DOI

Meinzer N, Barnes WL, Hooper IR. Plasmonic meta-atoms and metasurfaces. Nat. Photonics. 2014;8:889. doi: 10.1038/nphoton.2014.247. DOI

Bozhevolnyi SI, Volkov VS, Devaux E, Laluet J-Y, Ebbesen TW. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature. 2006;440:508. doi: 10.1038/nature04594. PubMed DOI

Islam M, Chowdhury DR, Ahmad A, Kumar G. Terahertz plasmonic waveguide based thin film sensor. J. Light. Technol. 2017;35:5215. doi: 10.1109/JLT.2017.2763326. DOI

Iwanaga M, Hironaka T, Ikeda N, Sugasawa T, Takekoshi K. Metasurface biosensors enabling single-molecule sensing of cell-free DNA. Nano Lett. 2023;23:5755. doi: 10.1021/acs.nanolett.3c01527. PubMed DOI

Yu N, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334:333. doi: 10.1126/science.1210713. PubMed DOI

Mascaretti L, et al. Designing metasurfaces for efficient solar energy conversion. ACS Photonics. 2023;10:4079. doi: 10.1021/acsphotonics.3c01013. PubMed DOI PMC

Solntsev AS, Agarwal GS, Kivshar YS. Metasurfaces for quantum photonics. Nat. Photonics. 2021;15:327. doi: 10.1038/s41566-021-00793-z. DOI

Yang K, Yao X, Liu B, Ren B. Metallic plasmonic array structures: Principles, fabrications, properties, and applications. Adv. Mater. 2021;33:2007988. doi: 10.1002/adma.202007988. PubMed DOI

Ameling R, Giessen H. Microcavity plasmonics: Strong coupling of photonic cavities and plasmons. Laser Photonics Rev. 2013;7:141. doi: 10.1002/lpor.201100041. DOI

Ameling R, et al. Cavity-enhanced localized plasmon resonance sensing. Appl. Phys. Lett. 2010;97:253116. doi: 10.1063/1.3530795. DOI

Neugebauer P, et al. Ultra-broadband EPR spectroscopy in field and frequency domains. Phys. Chem. Chem. Phys. 2018;20:15528. doi: 10.1039/C7CP07443C. PubMed DOI

Smith, G. M., Cruickshank, P. A. S., Bolton, D. R. & Robertson, D. A. High-field pulse EPR instrumentation, in Electron Paramagnetic Resonance (ed. Gilbert, B. C.) vol. 21 (2008).

Grosjean T, Mivelle M, Baida FI, Burr GW, Fischer UC. Diabolo nanoantenna for enhancing and confining the magnetic optical field. Nano Lett. 2011;11:1009. doi: 10.1021/nl103817f. PubMed DOI

Epstein PS. Theory of wave propagation in a gyromagnetic medium. Rev. Mod. Phys. 1956;28:3. doi: 10.1103/RevModPhys.28.3. DOI

Novotny L, Hecht B. Principles of Nano-Optics. Cambridge University Press; 2012. Theoretical foundations.

Harris CR, et al. Array programming with NumPy. Nature. 2020;585:357. doi: 10.1038/s41586-020-2649-2. PubMed DOI PMC

Hunter JD. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007;9:90. doi: 10.1109/MCSE.2007.55. DOI

Virtanen P, et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods. 2020;17:261. doi: 10.1038/s41592-019-0686-2. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...