Terahertz magnetic response of plasmonic metasurface resonators: origin and orientation dependence
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA 767 227
Horizon 2020
GA 767 227
Horizon 2020
GA 767 227
Horizon 2020
GA 767 227
Horizon 2020
GA 767 227
Horizon 2020
529038510
Deutsche Forschungsgemeinschaft
FSI-S-20-6485
Vysoké Učení Technické v Brně
FSI-S-20-6485
Vysoké Učení Technické v Brně
20-28573S
Grantová Agentura České Republiky
20-28573S
Grantová Agentura České Republiky
PubMed
38961198
PubMed Central
PMC11222506
DOI
10.1038/s41598-024-65804-9
PII: 10.1038/s41598-024-65804-9
Knihovny.cz E-zdroje
- Klíčová slova
- Cavity-enhanced, Electron paramagnetic resonance, Fabry-Pérot, Magnetic metasurface, Terahertz,
- Publikační typ
- časopisecké články MeSH
The increasing miniaturization of everyday devices necessitates advancements in surface-sensitive techniques to access phenomena more effectively. Magnetic resonance methods, such as nuclear or electron paramagnetic resonance, play a crucial role due to their unique analytical capabilities. Recently, the development of a novel plasmonic metasurface resonator aimed at boosting the THz electron magnetic response in 2D materials resulted in a significant magnetic field enhancement, confirmed by both numerical simulations and experimental data. Yet, the mechanisms driving this resonance were not explored in detail. In this study, we elucidate these mechanisms using two semi-analytical models: one addressing the resonant behaviour and the other examining the orientation-dependent response, considering the anisotropy of the antennas and experimental framework. Our findings contribute to advancing magnetic spectroscopic techniques, broadening their applicability to 2D systems.
Center for Integrated Quantum Science and Technology University of Stuttgart Stuttgart Germany
Institute of Physical Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
Zobrazit více v PubMed
Abhyankar N, et al. Scalable microresonators for room-temperature detection of electron spin resonance from dilute, sub-nanoliter volume solids. Sci. Adv. 2020;6:eabb0620. doi: 10.1126/sciadv.abb0620. PubMed DOI PMC
Ghosh A, et al. Evidence of compensated semimetal with electronic correlations at charge neutrality of twisted double bilayer graphene. Commun. Phys. 2023;6:360. doi: 10.1038/s42005-023-01480-x. DOI
Nakazawa K, Kato Y, Motome Y. Magnetic, transport and topological properties of Co-based shandite thin films. Commun. Phys. 2024;7:48. doi: 10.1038/s42005-024-01534-8. DOI
Gibertini M, Koperski M, Morpurgo AF, Novoselov KS. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019;14:408. doi: 10.1038/s41565-019-0438-6. PubMed DOI
Kern M, et al. Hybrid spintronic materials from conducting polymers with molecular quantum bits. Adv. Funct. Mater. 2021;31:2006882. doi: 10.1002/adfm.202006882. DOI
Cucinotta G, et al. Tuning of a vertical spin valve with a monolayer of single molecule magnets. Adv. Funct. Mater. 2017;27:1703600. doi: 10.1002/adfm.201703600. DOI
Shiratani H, Takiguchi K, Anh LD, Tanaka M. Observation of large spin-polarized Fermi surface of a magnetically proximitized semiconductor quantum well. Commun. Phys. 2024;7:6. doi: 10.1038/s42005-023-01485-6. DOI
Blawat J, Speer S, Singleton J, Xie W, Jin R. Quantum-limit phenomena and band structure in the magnetic topological semimetal EuZn2As2. Commun. Phys. 2023;6:255. doi: 10.1038/s42005-023-01378-8. DOI
Tesi L, et al. Quantum coherence in a processable vanadyl complex: New tools for the search of molecular spin qubits. Chem. Sci. 2016;7:2074. doi: 10.1039/C5SC04295J. PubMed DOI PMC
Warner M, et al. Potential for spin-based information processing in a thin-film molecular semiconductor. Nature. 2013;503:504. doi: 10.1038/nature12597. PubMed DOI
Tesi L, et al. Modular approach to creating functionalized surface arrays of molecular qubits. Adv. Mater. 2023;35:2208998. doi: 10.1002/adma.202208998. PubMed DOI
Santanni F, et al. VdW mediated strong magnetic exchange interactions in chains of hydrogen-free sublimable molecular qubits. JACS Au. 2023;3:1250. doi: 10.1021/jacsau.3c00121. PubMed DOI PMC
Lenz S, Kern B, Schneider M, Van Slageren J. Measurement of quantum coherence in thin films of molecular quantum bits without post-processing. Chem. Commun. 2019;55:7163. doi: 10.1039/C9CC02184A. PubMed DOI
Tesi L, Boudalis AK, Drerup K, Ruben M, van Slageren J. Matrix effects on the magnetic properties of a molecular spin triangle embedded in a polymeric film. Phys. Chem. Chem. Phys. 2024;26:8043. doi: 10.1039/D3CP05845J. PubMed DOI
Wang Z, et al. Single-electron spin resonance detection by microwave photon counting. Nature. 2023;619:276. doi: 10.1038/s41586-023-06097-2. PubMed DOI
Toida H, et al. Electron paramagnetic resonance spectroscopy using a single artificial atom. Commun. Phys. 2019;2:1. doi: 10.1038/s42005-019-0133-9. DOI
Bienfait A, et al. Reaching the quantum limit of sensitivity in electron spin resonance. Nat. Nanotechnol. 2016;11:253. doi: 10.1038/nnano.2015.282. PubMed DOI
Abhyankar N, et al. Recent advances in microresonators and supporting instrumentation for electron paramagnetic resonance spectroscopy. Rev. Sci. Instrum. 2022;93:101101. doi: 10.1063/5.0097853. PubMed DOI PMC
Grinberg O, Berliner LJ. Very Frequency (VHF) ESR/EPR. Biological Magnetic Resonance. Springer; 2004.
Takahashi S, et al. Decoherence in crystals of quantum molecular magnets. Nature. 2011;476:76. doi: 10.1038/nature10314. PubMed DOI
Laguta O, Tuček M, van Slageren J, Neugebauer P. Multi-frequency rapid-scan HFEPR. J. Magn. Reson. 2018;296:138. doi: 10.1016/j.jmr.2018.09.005. PubMed DOI
Sojka A. High-frequency EPR: current state and perspectives. In: Chechik V, editor. Electron Paramagnetic Resonance. Royal Society of Chemistry; 2020. pp. 214–252.
Tesi L, et al. Plasmonic metasurface resonators to enhance terahertz magnetic fields for high-frequency electron paramagnetic resonance. Small Methods. 2021;5:2100376. doi: 10.1002/smtd.202100376. PubMed DOI
Meinzer N, Barnes WL, Hooper IR. Plasmonic meta-atoms and metasurfaces. Nat. Photonics. 2014;8:889. doi: 10.1038/nphoton.2014.247. DOI
Bozhevolnyi SI, Volkov VS, Devaux E, Laluet J-Y, Ebbesen TW. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature. 2006;440:508. doi: 10.1038/nature04594. PubMed DOI
Islam M, Chowdhury DR, Ahmad A, Kumar G. Terahertz plasmonic waveguide based thin film sensor. J. Light. Technol. 2017;35:5215. doi: 10.1109/JLT.2017.2763326. DOI
Iwanaga M, Hironaka T, Ikeda N, Sugasawa T, Takekoshi K. Metasurface biosensors enabling single-molecule sensing of cell-free DNA. Nano Lett. 2023;23:5755. doi: 10.1021/acs.nanolett.3c01527. PubMed DOI
Yu N, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334:333. doi: 10.1126/science.1210713. PubMed DOI
Mascaretti L, et al. Designing metasurfaces for efficient solar energy conversion. ACS Photonics. 2023;10:4079. doi: 10.1021/acsphotonics.3c01013. PubMed DOI PMC
Solntsev AS, Agarwal GS, Kivshar YS. Metasurfaces for quantum photonics. Nat. Photonics. 2021;15:327. doi: 10.1038/s41566-021-00793-z. DOI
Yang K, Yao X, Liu B, Ren B. Metallic plasmonic array structures: Principles, fabrications, properties, and applications. Adv. Mater. 2021;33:2007988. doi: 10.1002/adma.202007988. PubMed DOI
Ameling R, Giessen H. Microcavity plasmonics: Strong coupling of photonic cavities and plasmons. Laser Photonics Rev. 2013;7:141. doi: 10.1002/lpor.201100041. DOI
Ameling R, et al. Cavity-enhanced localized plasmon resonance sensing. Appl. Phys. Lett. 2010;97:253116. doi: 10.1063/1.3530795. DOI
Neugebauer P, et al. Ultra-broadband EPR spectroscopy in field and frequency domains. Phys. Chem. Chem. Phys. 2018;20:15528. doi: 10.1039/C7CP07443C. PubMed DOI
Smith, G. M., Cruickshank, P. A. S., Bolton, D. R. & Robertson, D. A. High-field pulse EPR instrumentation, in Electron Paramagnetic Resonance (ed. Gilbert, B. C.) vol. 21 (2008).
Grosjean T, Mivelle M, Baida FI, Burr GW, Fischer UC. Diabolo nanoantenna for enhancing and confining the magnetic optical field. Nano Lett. 2011;11:1009. doi: 10.1021/nl103817f. PubMed DOI
Epstein PS. Theory of wave propagation in a gyromagnetic medium. Rev. Mod. Phys. 1956;28:3. doi: 10.1103/RevModPhys.28.3. DOI
Novotny L, Hecht B. Principles of Nano-Optics. Cambridge University Press; 2012. Theoretical foundations.
Harris CR, et al. Array programming with NumPy. Nature. 2020;585:357. doi: 10.1038/s41586-020-2649-2. PubMed DOI PMC
Hunter JD. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007;9:90. doi: 10.1109/MCSE.2007.55. DOI
Virtanen P, et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods. 2020;17:261. doi: 10.1038/s41592-019-0686-2. PubMed DOI PMC