Designing Metasurfaces for Efficient Solar Energy Conversion

. 2023 Dec 20 ; 10 (12) : 4079-4103. [epub] 20231206

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38145171

Metasurfaces have recently emerged as a promising technological platform, offering unprecedented control over light by structuring materials at the nanoscale using two-dimensional arrays of subwavelength nanoresonators. These metasurfaces possess exceptional optical properties, enabling a wide variety of applications in imaging, sensing, telecommunication, and energy-related fields. One significant advantage of metasurfaces lies in their ability to manipulate the optical spectrum by precisely engineering the geometry and material composition of the nanoresonators' array. Consequently, they hold tremendous potential for efficient solar light harvesting and conversion. In this Review, we delve into the current state-of-the-art in solar energy conversion devices based on metasurfaces. First, we provide an overview of the fundamental processes involved in solar energy conversion, alongside an introduction to the primary classes of metasurfaces, namely, plasmonic and dielectric metasurfaces. Subsequently, we explore the numerical tools used that guide the design of metasurfaces, focusing particularly on inverse design methods that facilitate an optimized optical response. To showcase the practical applications of metasurfaces, we present selected examples across various domains such as photovoltaics, photoelectrochemistry, photocatalysis, solar-thermal and photothermal routes, and radiative cooling. These examples highlight the ways in which metasurfaces can be leveraged to harness solar energy effectively. By tailoring the optical properties of metasurfaces, significant advancements can be expected in solar energy harvesting technologies, offering new practical solutions to support an emerging sustainable society.

Zobrazit více v PubMed

IRENA . World Energy Transitions Outlook: 1.5°C Pathway, 2022. https://www.irena.org/publications/2022/Mar/World-Energy-Transitions-Outlook-2022 (accessed 2022–04–08).

Paris Agreement | UNFCCC. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed 2022–02–15).

Lewis N. S.; Crabtree G.. Basic Research Needs for Solar Energy Utilization: Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18–21, 2005; US Department of Energy, Office of Basic Energy Science: Washington, DC, 2005. http://authors.library.caltech.edu/8599/.

Key World Energy Statistics 2021. https://www.iea.org/reports/key-world-energy-statistics-2021 (accessed 2022–01–18).

Quevedo-Teruel O.; Chen H.; Díaz-Rubio A.; Gok G.; Grbic A.; Minatti G.; Martini E.; Maci S.; Eleftheriades G. V.; Chen M.; Zheludev N. I.; Papasimakis N.; Choudhury S.; Kudyshev Z. A.; Saha S.; Reddy H.; Boltasseva A.; Shalaev V. M.; Kildishev A. V.; Sievenpiper D.; Caloz C.; Alù A.; He Q.; Zhou L.; Valerio G.; Rajo-Iglesias E.; Sipus Z.; Mesa F.; Rodríguez-Berral R.; Medina F.; Asadchy V.; Tretyakov S.; Craeye C. Roadmap on Metasurfaces. J. Opt. 2019, 21 (7), 073002.10.1088/2040-8986/ab161d. DOI

Genevet P.; Capasso F.; Aieta F.; Khorasaninejad M.; Devlin R. Recent Advances in Planar Optics: From Plasmonic to Dielectric Metasurfaces. Optica 2017, 4 (1), 139–152. 10.1364/OPTICA.4.000139. DOI

Khorasaninejad M.; Capasso F. Metalenses: Versatile Multifunctional Photonic Components. Science 2017, 358 (6367), eaam810010.1126/science.aam8100. PubMed DOI

Li Z.; Pestourie R.; Lin Z.; Johnson S. G.; Capasso F. Empowering Metasurfaces with Inverse Design: Principles and Applications. ACS Photonics 2022, 9 (7), 2178–2192. 10.1021/acsphotonics.1c01850. DOI

Yu N.; Capasso F. Flat Optics with Designer Metasurfaces. Nat. Mater. 2014, 13 (2), 139–150. 10.1038/nmat3839. PubMed DOI

Chen W. T.; Zhu A. Y.; Capasso F. Flat Optics with Dispersion-Engineered Metasurfaces. Nat. Rev. Mater. 2020, 5 (8), 604–620. 10.1038/s41578-020-0203-3. DOI

Lin D.; Fan P.; Hasman E.; Brongersma M. L. Dielectric Gradient Metasurface Optical Elements. Science 2014, 345 (6194), 298–302. 10.1126/science.1253213. PubMed DOI

Kuznetsov A. I.; Miroshnichenko A. E.; Brongersma M. L.; Kivshar Y. S.; Luk’yanchuk B. Optically Resonant Dielectric Nanostructures. Science 2016, 354 (6314), aag2472.10.1126/science.aag2472. PubMed DOI

Lalanne P.; Chavel P. Metalenses at Visible Wavelengths: Past, Present, Perspectives. Laser Photonics Rev. 2017, 11 (3), 1600295.10.1002/lpor.201600295. DOI

Hsiao H.-H.; Chu C. H.; Tsai D. P. Fundamentals and Applications of Metasurfaces. Small Methods 2017, 1 (4), 1600064.10.1002/smtd.201600064. DOI

Ding F.; Yang Y.; Deshpande R. A.; Bozhevolnyi S. I. A Review of Gap-Surface Plasmon Metasurfaces: Fundamentals and Applications. Nanophotonics 2018, 7 (6), 1129–1156. 10.1515/nanoph-2017-0125. DOI

Krasnok A.; Tymchenko M.; Alù A. Nonlinear Metasurfaces: A Paradigm Shift in Nonlinear Optics. Mater. Today 2018, 21 (1), 8–21. 10.1016/j.mattod.2017.06.007. DOI

Solntsev A. S.; Agarwal G. S.; Kivshar Y. S. Metasurfaces for Quantum Photonics. Nat. Photonics 2021, 15 (5), 327–336. 10.1038/s41566-021-00793-z. DOI

Su V.-C.; Chu C. H.; Sun G.; Tsai D. P. Advances in Optical Metasurfaces: Fabrication and Applications [Invited]. Opt. Express 2018, 26 (10), 13148–13182. 10.1364/OE.26.013148. PubMed DOI

Deng Y.; Cai Z.; Ding Y.; Bozhevolnyi S. I.; Ding F. Recent Progress in Metasurface-Enabled Optical Waveplates. Nanophotonics 2022, 11 (10), 2219–2244. 10.1515/nanoph-2022-0030. DOI

Overvig A. C.; Malek S. C.; Yu N. Multifunctional Nonlocal Metasurfaces. Phys. Rev. Lett. 2020, 125 (1), 017402.10.1103/PhysRevLett.125.017402. PubMed DOI

Shirmanesh G. K.; Sokhoyan R.; Wu P. C.; Atwater H. A. Electro-Optically Tunable Multifunctional Metasurfaces. ACS Nano 2020, 14 (6), 6912–6920. 10.1021/acsnano.0c01269. PubMed DOI

Kwon H.; Sounas D.; Cordaro A.; Polman A.; Alù A. Nonlocal Metasurfaces for Optical Signal Processing. Phys. Rev. Lett. 2018, 121 (17), 173004.10.1103/PhysRevLett.121.173004. PubMed DOI

Qiu C.-W.; Zhang T.; Hu G.; Kivshar Y. Quo Vadis, Metasurfaces?. Nano Lett. 2021, 21 (13), 5461–5474. 10.1021/acs.nanolett.1c00828. PubMed DOI

Chen H.-T.; Taylor A. J.; Yu N. A Review of Metasurfaces: Physics and Applications. Rep. Prog. Phys. 2016, 79 (7), 076401.10.1088/0034-4885/79/7/076401. PubMed DOI

Minovich A. E.; Miroshnichenko A. E.; Bykov A. Y.; Murzina T. V.; Neshev D. N.; Kivshar Y. S. Functional and Nonlinear Optical Metasurfaces. Laser Photonics Rev. 2015, 9 (2), 195–213. 10.1002/lpor.201400402. DOI

Glybovski S. B.; Tretyakov S. A.; Belov P. A.; Kivshar Y. S.; Simovski C. R. Metasurfaces: From Microwaves to Visible. Phys. Rep. 2016, 634, 1–72. 10.1016/j.physrep.2016.04.004. DOI

Yu N.; Genevet P.; Kats M. A.; Aieta F.; Tetienne J.-P.; Capasso F.; Gaburro Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334 (6054), 333–337. 10.1126/science.1210713. PubMed DOI

Aieta F.; Genevet P.; Yu N.; Kats M. A.; Gaburro Z.; Capasso F. Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities. Nano Lett. 2012, 12 (3), 1702–1706. 10.1021/nl300204s. PubMed DOI

Shalaev V. M.; Cai W.; Chettiar U. K.; Yuan H.-K.; Sarychev A. K.; Drachev V. P.; Kildishev A. V. Negative Index of Refraction in Optical Metamaterials. Opt. Lett. 2005, 30 (24), 3356–3358. 10.1364/OL.30.003356. PubMed DOI

Zheludev N. I.; Kivshar Y. S. From Metamaterials to Metadevices. Nat. Mater. 2012, 11 (11), 917–924. 10.1038/nmat3431. PubMed DOI

Shaltout A. M.; Shalaev V. M.; Brongersma M. L. Spatiotemporal Light Control with Active Metasurfaces. Science 2019, 364 (6441), 648.10.1126/science.aat3100. PubMed DOI

Cortés E.; Wendisch F. J.; Sortino L.; Mancini A.; Ezendam S.; Saris S.; de S. Menezes L.; Tittl A.; Ren H.; Maier S. A. Optical Metasurfaces for Energy Conversion. Chem. Rev. 2022, 122 (19), 15082–15176. 10.1021/acs.chemrev.2c00078. PubMed DOI PMC

Mascaretti L.; Schirato A.; Fornasiero P.; Boltasseva A.; Shalaev V. M.; Alabastri A.; Naldoni A. Challenges and Prospects of Plasmonic Metasurfaces for Photothermal Catalysis. Nanophotonics 2022, 11 (13), 3035–3056. 10.1515/nanoph-2022-0073. DOI

Yu M.-J.; Chang C.-L.; Lan H.-Y.; Chiao Z.-Y.; Chen Y.-C.; Howard Lee H. W.; Chang Y.-C.; Chang S.-W.; Tanaka T.; Tung V.; Chou H.-H.; Lu Y.-J. Plasmon-Enhanced Solar-Driven Hydrogen Evolution Using Titanium Nitride Metasurface Broadband Absorbers. ACS Photonics 2021, 8 (11), 3125–3132. 10.1021/acsphotonics.1c00927. DOI

Hüttenhofer L.; Golibrzuch M.; Bienek O.; Wendisch F. J.; Lin R.; Becherer M.; Sharp I. D.; Maier S. A.; Cortés E. Metasurface Photoelectrodes for Enhanced Solar Fuel Generation. Adv. Energy Mater. 2021, 11 (46), 2102877.10.1002/aenm.202102877. DOI

Li N.; Xu Z.; Dong Y.; Hu T.; Zhong Q.; Fu Y. H.; Zhu S.; Singh N. Large-Area Metasurface on CMOS-Compatible Fabrication Platform: Driving Flat Optics from Lab to Fab. Nanophotonics 2020, 9 (10), 3071–3087. 10.1515/nanoph-2020-0063. DOI

Chang S.; Guo X.; Ni X. Optical Metasurfaces: Progress and Applications. Annu. Rev. Mater. Res. 2018, 48 (1), 279–302. 10.1146/annurev-matsci-070616-124220. DOI

Liu G.-X.; Liu J.-F.; Zhou W.-J.; Li L.-Y.; You C.-L.; Qiu C.-W.; Wu L. Inverse Design in Quantum Nanophotonics: Combining Local-Density-of-States and Deep Learning. Nanophotonics 2023, 12 (11), 1943–1955. 10.1515/nanoph-2022-0746. DOI

Liu Z.; Zhu D.; Rodrigues S. P.; Lee K.-T.; Cai W. Generative Model for the Inverse Design of Metasurfaces. Nano Lett. 2018, 18 (10), 6570–6576. 10.1021/acs.nanolett.8b03171. PubMed DOI

So S.; Badloe T.; Noh J.; Bravo-Abad J.; Rho J. Deep Learning Enabled Inverse Design in Nanophotonics. Nanophotonics 2020, 9 (5), 1041–1057. 10.1515/nanoph-2019-0474. DOI

Jiang J.; Fan J. A. Simulator-Based Training of Generative Neural Networks for the Inverse Design of Metasurfaces. Nanophotonics 2020, 9 (5), 1059–1069. 10.1515/nanoph-2019-0330. DOI

Haegel N. M.; Verlinden P.; Victoria M.; Altermatt P.; Atwater H.; Barnes T.; Breyer C.; Case C.; De Wolf S.; Deline C.; Dharmrin M.; Dimmler B.; Gloeckler M.; Goldschmidt J. C.; Hallam B.; Haussener S.; Holder B.; Jaeger U.; Jaeger-Waldau A.; Kaizuka I.; Kikusato H.; Kroposki B.; Kurtz S.; Matsubara K.; Nowak S.; Ogimoto K.; Peter C.; Peters I. M.; Philipps S.; Powalla M.; Rau U.; Reindl T.; Roumpani M.; Sakurai K.; Schorn C.; Schossig P.; Schlatmann R.; Sinton R.; Slaoui A.; Smith B. L.; Schneidewind P.; Stanbery B.; Topic M.; Tumas W.; Vasi J.; Vetter M.; Weber E.; Weeber A. W.; Weidlich A.; Weiss D.; Bett A. W. Photovoltaics at Multi-Terawatt Scale: Waiting Is Not an Option. Science 2023, 380 (6640), 39–42. 10.1126/science.adf6957. PubMed DOI

Ballif C.; Haug F.-J.; Boccard M.; Verlinden P. J.; Hahn G. Status and Perspectives of Crystalline Silicon Photovoltaics in Research and Industry. Nat. Rev. Mater. 2022, 7 (8), 597–616. 10.1038/s41578-022-00423-2. DOI

Duan L.; Walter D.; Chang N.; Bullock J.; Kang D.; Phang S. P.; Weber K.; White T.; Macdonald D.; Catchpole K.; Shen H. Stability Challenges for the Commercialization of Perovskite-Silicon Tandem Solar Cells. Nat. Rev. Mater. 2023, 8 (4), 261–281. 10.1038/s41578-022-00521-1. DOI

Green M. A.; Dunlop E. D.; Yoshita M.; Kopidakis N.; Bothe K.; Siefer G.; Hao X. Solar Cell Efficiency Tables (Version 62). Prog. Photovolt. Res. Appl. 2023, 31 (7), 651–663. 10.1002/pip.3726. DOI

Almora O.; Baran D.; Bazan G. C.; Cabrera C. I.; Erten-Ela S.; Forberich K.; Guo F.; Hauch J.; Ho-Baillie A. W. Y.; Jacobsson T. J.; Janssen R. A. J.; Kirchartz T.; Kopidakis N.; Loi M. A.; Lunt R. R.; Mathew X.; McGehee M. D.; Min J.; Mitzi D. B.; Nazeeruddin M. K.; Nelson J.; Nogueira A. F.; Paetzold U. W.; Rand B. P.; Rau U.; Snaith H. J.; Unger E.; Vaillant-Roca L.; Yang C.; Yip H.-L.; Brabec C. J. Device Performance of Emerging Photovoltaic Materials (Version 3). Adv. Energy Mater. 2023, 13 (1), 2203313.10.1002/aenm.202203313. DOI

Weinstein L. A.; Loomis J.; Bhatia B.; Bierman D. M.; Wang E. N.; Chen G. Concentrating Solar Power. Chem. Rev. 2015, 115 (23), 12797–12838. 10.1021/acs.chemrev.5b00397. PubMed DOI

Saidur R.; Elcevvadi E. T.; Mekhilef S.; Safari A.; Mohammed H. A. An Overview of Different Distillation Methods for Small Scale Applications. Renew. Sustain. Energy Rev. 2011, 15 (9), 4756–4764. 10.1016/j.rser.2011.07.077. DOI

Li W.; Fan S. Nanophotonic Control of Thermal Radiation for Energy Applications [Invited]. Opt. Express 2018, 26 (12), 15995–16021. 10.1364/OE.26.015995. PubMed DOI

Wang Q.; Domen K. Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chem. Rev. 2020, 120 (2), 919–985. 10.1021/acs.chemrev.9b00201. PubMed DOI

Melchionna M.; Fornasiero P. Updates on the Roadmap for Photocatalysis. ACS Catal. 2020, 10, 5493–5501. 10.1021/acscatal.0c01204. DOI

Segev G.; Kibsgaard J.; Hahn C.; Xu Z. J.; Cheng W.-H. S.; Deutsch T. G.; Xiang C.; Zhang J. Z.; Hammarström L.; Nocera D. G.; Weber A. Z.; Agbo P.; Hisatomi T.; Osterloh F. E.; Domen K.; Abdi F. F.; Haussener S.; Miller D. J.; Ardo S.; McIntyre P. C.; Hannappel T.; Hu S.; Atwater H.; Gregoire J. M.; Ertem M. Z.; Sharp I. D.; Choi K.-S.; Lee J. S.; Ishitani O.; Ager J. W.; Prabhakar R. R.; Bell A. T.; Boettcher S. W.; Vincent K.; Takanabe K.; Artero V.; Napier R.; Cuenya B. R.; Koper M. T. M.; Van de Krol R.; Houle F. The 2022 Solar Fuels Roadmap. J. Phys. Appl. Phys. 2022, 55 (32), 323003.10.1088/1361-6463/ac6f97. DOI

Sivula K.; van de Krol R. Semiconducting Materials for Photoelectrochemical Energy Conversion. Nat. Rev. Mater. 2016, 1, 15010.10.1038/natrevmats.2015.10. DOI

Romano V.; D’Angelo G.; Perathoner S.; Centi G. Current Density in Solar Fuel Technologies. Energy Environ. Sci. 2021, 14 (11), 5760–5787. 10.1039/D1EE02512K. DOI

Spitler M. T.; Modestino M. A.; Deutsch T. G.; Xiang C. X.; Durrant J. R.; Esposito D. V.; Haussener S.; Maldonado S.; Sharp I. D.; Parkinson B. A.; Ginley D. S.; Houle F. A.; Hannappel T.; Neale N. R.; Nocera D. G.; McIntyre P. C. Practical Challenges in the Development of Photoelectrochemical Solar Fuels Production. Sustain. Energy Fuels 2020, 4 (3), 985–995. 10.1039/C9SE00869A. DOI

Carrillo A. J.; González-Aguilar J.; Romero M.; Coronado J. M. Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials. Chem. Rev. 2019, 119 (7), 4777–4816. 10.1021/acs.chemrev.8b00315. PubMed DOI

Zhou Z.; Sakr E.; Sun Y.; Bermel P. Solar Thermophotovoltaics: Reshaping the Solar Spectrum. Nanophotonics 2016, 5 (1), 1–21. 10.1515/nanoph-2016-0011. DOI

Burger T.; Sempere C.; Roy-Layinde B.; Lenert A. Present Efficiencies and Future Opportunities in Thermophotovoltaics. Joule 2020, 4 (8), 1660–1680. 10.1016/j.joule.2020.06.021. DOI

Ghoussoub M.; Xia M.; Duchesne P. N.; Segal D.; Ozin G. Principles of Photothermal Gas-Phase Heterogeneous CO2 Catalysis. Energy Environ. Sci. 2019, 12 (4), 1122–1142. 10.1039/C8EE02790K. DOI

Mascaretti L.; Schirato A.; Montini T.; Alabastri A.; Naldoni A.; Fornasiero P. Challenges in Temperature Measurements in Gas-Phase Photothermal Catalysis. Joule 2022, 6 (8), 1727–1732. 10.1016/j.joule.2022.06.019. DOI

Ra’di Y.; Simovski C. R.; Tretyakov S. A. Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations. Phys. Rev. Appl. 2015, 3 (3), 037001.10.1103/PhysRevApplied.3.037001. DOI

Tagliabue G.; Eghlidi H.; Poulikakos D. Rapid-Response Low Infrared Emission Broadband Ultrathin Plasmonic Light Absorber. Sci. Rep. 2014, 4, 7181.10.1038/srep07181. PubMed DOI PMC

Yang K.; Wang J.; Yao X.; Lyu D.; Zhu J.; Yang Z.; Liu B.; Ren B. Large-Area Plasmonic Metamaterial with Thickness-Dependent Absorption. Adv. Opt. Mater. 2021, 9 (1), 2001375.10.1002/adom.202001375. DOI

Patsalas P.; Kalfagiannis N.; Kassavetis S.; Abadias G.; Bellas D. V.; Lekka Ch.; Lidorikis E. Conductive Nitrides: Growth Principles, Optical and Electronic Properties, and Their Perspectives in Photonics and Plasmonics. Mater. Sci. Eng. R Rep. 2018, 123, 1–55. 10.1016/j.mser.2017.11.001. DOI

Gui L.; Bagheri S.; Strohfeldt N.; Hentschel M.; Zgrabik C. M.; Metzger B.; Linnenbank H.; Hu E. L.; Giessen H. Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas. Nano Lett. 2016, 16 (9), 5708–5713. 10.1021/acs.nanolett.6b02376. PubMed DOI

Gadalla M. N.; Chaudhary K.; Zgrabik C. M.; Capasso F.; Hu E. L. Imaging of Surface Plasmon Polaritons in Low-Loss Highly Metallic Titanium Nitride Thin Films in Visible and Infrared Regimes. Opt. Express 2020, 28 (10), 14536–14546. 10.1364/OE.391482. PubMed DOI

Ishii S.; Shinde S. L.; Jevasuwan W.; Fukata N.; Nagao T. Hot Electron Excitation from Titanium Nitride Using Visible Light. ACS Photonics 2016, 3 (9), 1552–1557. 10.1021/acsphotonics.6b00360. DOI

Ishii S.; Higashino M.; Goya S.; Shkondin E.; Tanaka K.; Nagao T.; Takayama O.; Murai S. Extreme Thermal Anisotropy in High-Aspect-Ratio Titanium Nitride Nanostructures for Efficient Photothermal Heating. Nanophotonics 2021, 10 (5), 1487–1494. 10.1515/nanoph-2020-0569. DOI

Wang Y.; Capretti A.; Dal Negro L. Wide Tuning of the Optical and Structural Properties of Alternative Plasmonic Materials. Opt. Mater. Express 2015, 5 (11), 2415–2430. 10.1364/OME.5.002415. DOI

Briggs J. A.; Naik G. V.; Petach T. A.; Baum B. K.; Goldhaber-Gordon D.; Dionne J. A. Fully CMOS-Compatible Titanium Nitride Nanoantennas. Appl. Phys. Lett. 2016, 108 (5), 051110.10.1063/1.4941413. DOI

Krekeler T.; Rout S. S.; Krishnamurthy G. V.; Störmer M.; Arya M.; Ganguly A.; Sutherland D. S.; Bozhevolnyi S. I.; Ritter M.; Pedersen K.; Petrov A. Y.; Eich M.; Chirumamilla M. Unprecedented Thermal Stability of Plasmonic Titanium Nitride Films up to 1400 °C. Adv. Opt. Mater. 2021, 9 (16), 2100323.10.1002/adom.202100323. DOI

Chang C.-C.; Kuo S.-C.; Cheng H.-E.; Chen H.-T.; Yang Z.-P. Broadband Titanium Nitride Disordered Metasurface Absorbers. Opt. Express 2021, 29 (26), 42813–42826. 10.1364/OE.445247. DOI

Naik G. V.; Shalaev V. M.; Boltasseva A. Alternative Plasmonic Materials: Beyond Gold and Silver. Adv. Mater. 2013, 25 (24), 3264–3294. 10.1002/adma.201205076. PubMed DOI

Jaffray W.; Saha S.; Shalaev V. M.; Boltasseva A.; Ferrera M. Transparent Conducting Oxides: From All-Dielectric Plasmonics to a New Paradigm in Integrated Photonics. Adv. Opt. Photonics 2022, 14 (2), 148–208. 10.1364/AOP.448391. DOI

Fujishima A.; Zhang X.; Tryk D. A. TiO2 Photocatalysis and Related Surface Phenomena. Surf. Sci. Rep. 2008, 63 (12), 515–582. 10.1016/j.surfrep.2008.10.001. DOI

Etacheri V.; Di Valentin C.; Schneider J.; Bahnemann D.; Pillai S. C. Visible-Light Activation of TiO2 Photocatalysts: Advances in Theory and Experiments. J. Photochem. Photobiol. C Photochem. Rev. 2015, 25, 1–29. 10.1016/j.jphotochemrev.2015.08.003. DOI

Look D. C.; Leach J. H. On the Accurate Determination of Absorption Coefficient from Reflectanceand Transmittance Measurements: Application to Fe-Doped GaN. J. Vac. Sci. Technol. B 2016, 34 (4), 04J105.10.1116/1.4954211. DOI

Langereis E.; Heil S. B. S.; Knoops H. C. M.; Keuning W.; van de Sanden M. C. M.; Kessels W. M. M. In Situ Spectroscopic Ellipsometry as a Versatile Tool for Studying Atomic Layer Deposition. J. Phys. Appl. Phys. 2009, 42 (7), 073001.10.1088/0022-3727/42/7/073001. DOI

Kim J.; Naik G. V.; Emani N. K.; Guler U.; Boltasseva A. Plasmonic Resonances in Nanostructured Transparent Conducting Oxide Films. IEEE J. Sel. Top. Quantum Electron. 2013, 19 (3), 4601907–4601907. 10.1109/JSTQE.2013.2238611. DOI

Jolivet A.; Labbé C.; Frilay C.; Debieu O.; Marie P.; Horcholle B.; Lemarié F.; Portier X.; Grygiel C.; Duprey S.; Jadwisienczak W.; Ingram D.; Upadhyay M.; David A.; Fouchet A.; Lüders U.; Cardin J. Structural, Optical, and Electrical Properties of TiO2 Thin Films Deposited by ALD: Impact of the Substrate, the Deposited Thickness and the Deposition Temperature. Appl. Surf. Sci. 2023, 608, 155214.10.1016/j.apsusc.2022.155214. DOI

Alaee R.; Rockstuhl C.; Fernandez-Corbaton I. Exact Multipolar Decompositions with Applications in Nanophotonics. Adv. Opt. Mater. 2019, 7 (1), 1800783.10.1002/adom.201800783. DOI

Riccardi M.; Kiselev A.; Achouri K.; Martin O. J. F. Multipolar Expansions for Scattering and Optical Force Calculations beyond the Long Wavelength Approximation. Phys. Rev. B 2022, 106 (11), 115428.10.1103/PhysRevB.106.115428. DOI

Maier S. A.Plasmonics: Fundamentals and Applications; Springer Science & Business Media, 2007.

Kravets V. G.; Kabashin A. V.; Barnes W. L.; Grigorenko A. N. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem. Rev. 2018, 118 (12), 5912–5951. 10.1021/acs.chemrev.8b00243. PubMed DOI PMC

Schirato A.; Maiuri M.; Cerullo G.; Della Valle G. Ultrafast Hot Electron Dynamics in Plasmonic Nanostructures: Experiments, Modelling, Design. Nanophotonics 2023, 12 (1), 1–28. 10.1515/nanoph-2022-0592. DOI

Besteiro L. V.; Yu P.; Wang Z.; Holleitner A. W.; Hartland G. V.; Wiederrecht G. P.; Govorov A. O. The Fast and the Furious: Ultrafast Hot Electrons in Plasmonic Metastructures. Size and Structure Matter. Nano Today 2019, 27, 120–145. 10.1016/j.nantod.2019.05.006. DOI

Erwin W. R.; Zarick H. F.; Talbert E. M.; Bardhan R. Light Trapping in Mesoporous Solar Cells with Plasmonic Nanostructures. Energy Environ. Sci. 2016, 9 (5), 1577–1601. 10.1039/C5EE03847B. DOI

Yuan L.; Bourgeois B. B.; Carlin C. C.; da Jornada F. H.; Dionne J. A. Sustainable Chemistry with Plasmonic Photocatalysts. Nanophotonics 2023, 12 (14), 2745–2762. 10.1515/nanoph-2023-0149. DOI

Zhang Y.; Guo W.; Zhang Y.; Wei W. D. Plasmonic Photoelectrochemistry: In View of Hot Carriers. Adv. Mater. 2021, 33 (46), 2006654.10.1002/adma.202006654. PubMed DOI

Zhou L.; Swearer D. F.; Zhang C.; Robatjazi H.; Zhao H.; Henderson L.; Dong L.; Christopher P.; Carter E. A.; Nordlander P.; Halas N. J. Quantifying Hot Carrier and Thermal Contributions in Plasmonic Photocatalysis. Science 2018, 362 (6410), 69–72. 10.1126/science.aat6967. PubMed DOI

Zhou L.; Martirez J. M. P.; Finzel J.; Zhang C.; Swearer D. F.; Tian S.; Robatjazi H.; Lou M.; Dong L.; Henderson L.; Christopher P.; Carter E. A.; Nordlander P.; Halas N. J. Light-Driven Methane Dry Reforming with Single Atomic Site Antenna-Reactor Plasmonic Photocatalysts. Nat. Energy 2020, 5, 61–70. 10.1038/s41560-019-0517-9. DOI

Brown A. M.; Sundararaman R.; Narang P.; Goddard W. A.; Atwater H. A. Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry. ACS Nano 2016, 10 (1), 957–966. 10.1021/acsnano.5b06199. PubMed DOI

Habib A.; Florio F.; Sundararaman R. Hot Carrier Dynamics in Plasmonic Transition Metal Nitrides. J. Opt. 2018, 20 (6), 064001.10.1088/2040-8986/aac1d8. DOI

Baffou G.; Quidant R.; Girard C. Heat Generation in Plasmonic Nanostructures: Influence of Morphology. Appl. Phys. Lett. 2009, 94 (15), 153109.10.1063/1.3116645. DOI

Baffou G.; Berto P.; Bermúdez Ureña E.; Quidant R.; Monneret S.; Polleux J.; Rigneault H. Photoinduced Heating of Nanoparticle Arrays. ACS Nano 2013, 7 (8), 6478–6488. 10.1021/nn401924n. PubMed DOI

Richardson H. H.; Carlson M. T.; Tandler P. J.; Hernandez P.; Govorov A. O. Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions. Nano Lett. 2009, 9 (3), 1139–1146. 10.1021/nl8036905. PubMed DOI PMC

Baffou G.; Cichos F.; Quidant R. Applications and Challenges of Thermoplasmonics. Nat. Mater. 2020, 19 (9), 946–958. 10.1038/s41563-020-0740-6. PubMed DOI

Chirumamilla M.; Roberts A. S.; Ding F.; Wang D.; Kristensen P. K.; Bozhevolnyi S. I.; Pedersen K. Multilayer Tungsten-Alumina-Based Broadband Light Absorbers for High-Temperature Applications. Opt. Mater. Express 2016, 6 (8), 2704–2714. 10.1364/OME.6.002704. DOI

Chen T.-A.; Un I.-W.; Wei C.-C.; Lu Y.-J.; Tsai D. P.; Yen T.-J. Alternating Nanolayers of Dielectric MgF2 and Metallic Ag as Hyperbolic Metamaterials: Probing Surface States and Optical Topological Phase Transition and Implications for Sensing Applications. ACS Appl. Nano Mater. 2021, 4 (2), 2211–2217. 10.1021/acsanm.1c00030. DOI

Li W.; Guler U.; Kinsey N.; Naik G. V.; Boltasseva A.; Guan J.; Shalaev V. M.; Kildishev A. V. Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber. Adv. Mater. 2014, 26 (47), 7959–7965. 10.1002/adma.201401874. PubMed DOI

Ding F.; Dai J.; Chen Y.; Zhu J.; Jin Y.; Bozhevolnyi S. I. Broadband Near-Infrared Metamaterial Absorbers Utilizing Highly Lossy Metals. Sci. Rep. 2016, 6 (1), 39445.10.1038/srep39445. PubMed DOI PMC

Jahani S.; Jacob Z. All-Dielectric Metamaterials. Nat. Nanotechnol. 2016, 11 (1), 23–36. 10.1038/nnano.2015.304. PubMed DOI

Castellanos G. W.; Bai P.; Gómez Rivas J. Lattice Resonances in Dielectric Metasurfaces. J. Appl. Phys. 2019, 125 (21), 213105.10.1063/1.5094122. DOI

Luk’yanchuk B.; Zheludev N. I.; Maier S. A.; Halas N. J.; Nordlander P.; Giessen H.; Chong C. T. The Fano Resonance in Plasmonic Nanostructures and Metamaterials. Nat. Mater. 2010, 9 (9), 707–715. 10.1038/nmat2810. PubMed DOI

Limonov M. F.; Rybin M. V.; Poddubny A. N.; Kivshar Y. S. Fano Resonances in Photonics. Nat. Photonics 2017, 11 (9), 543–554. 10.1038/nphoton.2017.142. DOI

Campione S.; Guclu C.; Ragan R.; Capolino F. Enhanced Magnetic and Electric Fields via Fano Resonances in Metasurfaces of Circular Clusters of Plasmonic Nanoparticles. ACS Photonics 2014, 1 (3), 254–260. 10.1021/ph4001313. DOI

Liu Z.; Ye J. Highly Controllable Double Fano Resonances in Plasmonic Metasurfaces. Nanoscale 2016, 8 (40), 17665–17674. 10.1039/C6NR06388H. PubMed DOI

Shah Y. D.; Grant J.; Hao D.; Kenney M.; Pusino V.; Cumming D. R. S. Ultra-Narrow Line Width Polarization-Insensitive Filter Using a Symmetry-Breaking Selective Plasmonic Metasurface. ACS Photonics 2018, 5 (2), 663–669. 10.1021/acsphotonics.7b01011. DOI

Limonov M. F. Fano Resonance for Applications. Adv. Opt. Photonics 2021, 13 (3), 703–771. 10.1364/AOP.420731. DOI

Campione S.; Liu S.; Basilio L. I.; Warne L. K.; Langston W. L.; Luk T. S.; Wendt J. R.; Reno J. L.; Keeler G. A.; Brener I.; Sinclair M. B. Broken Symmetry Dielectric Resonators for High Quality Factor Fano Metasurfaces. ACS Photonics 2016, 3 (12), 2362–2367. 10.1021/acsphotonics.6b00556. DOI

Liu Y.-C.; Li B.-B.; Xiao Y.-F. Electromagnetically Induced Transparency in Optical Microcavities. Nanophotonics 2017, 6 (5), 789–811. 10.1515/nanoph-2016-0168. DOI

Hsu C. W.; Zhen B.; Stone A. D.; Joannopoulos J. D.; Soljačić M. Bound States in the Continuum. Nat. Rev. Mater. 2016, 1 (9), 1–13. 10.1038/natrevmats.2016.48. DOI

Koshelev K.; Bogdanov A.; Kivshar Y. Meta-Optics and Bound States in the Continuum. Sci. Bull. 2019, 64 (12), 836–842. 10.1016/j.scib.2018.12.003. PubMed DOI

Koshelev K.; Kruk S.; Melik-Gaykazyan E.; Choi J.-H.; Bogdanov A.; Park H.-G.; Kivshar Y. Subwavelength Dielectric Resonators for Nonlinear Nanophotonics. Science 2020, 367 (6475), 288–292. 10.1126/science.aaz3985. PubMed DOI

Zhou C.; Huang L.; Jin R.; Xu L.; Li G.; Rahmani M.; Chen X.; Lu W.; Miroshnichenko A. E. Bound States in the Continuum in Asymmetric Dielectric Metasurfaces. Laser Photonics Rev. 2023, 17 (3), 2200564.10.1002/lpor.202200564. DOI

Yang Y.; Kravchenko I. I.; Briggs D. P.; Valentine J. All-Dielectric Metasurface Analogue of Electromagnetically Induced Transparency. Nat. Commun. 2014, 5 (1), 5753.10.1038/ncomms6753. PubMed DOI

Miroshnichenko A. E.; Evlyukhin A. B.; Yu Y. F.; Bakker R. M.; Chipouline A.; Kuznetsov A. I.; Luk’yanchuk B.; Chichkov B. N.; Kivshar Y. S. Nonradiating Anapole Modes in Dielectric Nanoparticles. Nat. Commun. 2015, 6 (1), 8069.10.1038/ncomms9069. PubMed DOI PMC

Savinov V.; Papasimakis N.; Tsai D. P.; Zheludev N. I. Optical Anapoles. Commun. Phys. 2019, 2 (1), 1–4. 10.1038/s42005-019-0167-z. DOI

Guan J.; Park J.-E.; Deng S.; Tan M. J. H.; Hu J.; Odom T. W. Light-Matter Interactions in Hybrid Material Metasurfaces. Chem. Rev. 2022, 122 (19), 15177–15203. 10.1021/acs.chemrev.2c00011. PubMed DOI

Wang F.; Harutyunyan H. Tailoring the Quality Factors and Nonlinear Response in Hybrid Plasmonic-Dielectric Metasurfaces. Opt. Express 2018, 26 (1), 120–129. 10.1364/OE.26.000120. PubMed DOI

Huang Y.; Liu L.; Pu M.; Li X.; Ma X.; Luo X. A Refractory Metamaterial Absorber for Ultra-Broadband, Omnidirectional and Polarization-Independent Absorption in the UV-NIR Spectrum. Nanoscale 2018, 10 (17), 8298–8303. 10.1039/C8NR01728J. PubMed DOI

Yang J.; Gurung S.; Bej S.; Ni P.; Howard Lee H. W. Active Optical Metasurfaces: Comprehensive Review on Physics, Mechanisms, and Prospective Applications. Rep. Prog. Phys. 2022, 85 (3), 036101.10.1088/1361-6633/ac2aaf. PubMed DOI

Wang Q.; Rogers E. T. F.; Gholipour B.; Wang C.-M.; Yuan G.; Teng J.; Zheludev N. I. Optically Reconfigurable Metasurfaces and Photonic Devices Based on Phase Change Materials. Nat. Photonics 2016, 10 (1), 60–65. 10.1038/nphoton.2015.247. DOI

Ladutenko K.; Pal U.; Rivera A.; Peña-Rodríguez O. Mie Calculation of Electromagnetic Near-Field for a Multilayered Sphere. Comput. Phys. Commun. 2017, 214, 225–230. 10.1016/j.cpc.2017.01.017. DOI

Bin-Alam M. S.; Reshef O.; Mamchur Y.; Alam M. Z.; Carlow G.; Upham J.; Sullivan B. T.; Ménard J.-M.; Huttunen M. J.; Boyd R. W.; Dolgaleva K. Ultra-High-Q Resonances in Plasmonic Metasurfaces. Nat. Commun. 2021, 12 (1), 974.10.1038/s41467-021-21196-2. PubMed DOI PMC

Campbell S. D.; Sell D.; Jenkins R. P.; Whiting E. B.; Fan J. A.; Werner D. H. Review of Numerical Optimization Techniques for Meta-Device Design [Invited]. Opt. Mater. Express 2019, 9 (4), 1842.10.1364/OME.9.001842. DOI

Minkov M.; Williamson I. A. D.; Andreani L. C.; Gerace D.; Lou B.; Song A. Y.; Hughes T. W.; Fan S. Inverse Design of Photonic Crystals through Automatic Differentiation. ACS Photonics 2020, 7 (7), 1729–1741. 10.1021/acsphotonics.0c00327. DOI

Peurifoy J.; Shen Y.; Jing L.; Yang Y.; Cano-Renteria F.; DeLacy B. G.; Joannopoulos J. D.; Tegmark M.; Soljačić M. Nanophotonic Particle Simulation and Inverse Design Using Artificial Neural Networks. Sci. Adv. 2018, 4 (6), eaar420610.1126/sciadv.aar4206. PubMed DOI PMC

Krasikov S.; Tranter A.; Bogdanov A.; Kivshar Y. Intelligent Metaphotonics Empowered by Machine Learning. Opto-Electron. Adv. 2022, 5 (3), 210147–24. 10.29026/oea.2022.210147. DOI

An S.; Zheng B.; Tang H.; Shalaginov M. Y.; Zhou L.; Li H.; Kang M.; Richardson K. A.; Gu T.; Hu J.; Fowler C.; Zhang H. Multifunctional Metasurface Design with a Generative Adversarial Network. Adv. Opt. Mater. 2021, 9 (5), 2001433.10.1002/adom.202001433. DOI

Ma W.; Liu Z.; Kudyshev Z. A.; Boltasseva A.; Cai W.; Liu Y. Deep Learning for the Design of Photonic Structures. Nat. Photonics 2021, 15 (2), 77–90. 10.1038/s41566-020-0685-y. DOI

Jiang J.; Chen M.; Fan J. A. Deep Neural Networks for the Evaluation and Design of Photonic Devices. Nat. Rev. Mater. 2021, 6 (8), 679–700. 10.1038/s41578-020-00260-1. DOI

Yao K.; Unni R.; Zheng Y. Intelligent Nanophotonics: Merging Photonics and Artificial Intelligence at the Nanoscale. Nanophotonics 2019, 8 (3), 339–366. 10.1515/nanoph-2018-0183. PubMed DOI PMC

Fan J. A. Freeform Metasurface Design Based on Topology Optimization. MRS Bull. 2020, 45 (3), 196–201. 10.1557/mrs.2020.62. DOI

Lin Z.; Liu V.; Pestourie R.; Johnson S. G. Topology Optimization of Freeform Large-Area Metasurfaces. Opt. Express 2019, 27 (11), 15765.10.1364/OE.27.015765. PubMed DOI

Wang E. W.; Sell D.; Phan T.; Fan J. A. Robust Design of Topology-Optimized Metasurfaces. Opt. Mater. Express 2019, 9 (2), 469–482. 10.1364/OME.9.000469. DOI

Jiang J.; Fan J. A. Global Optimization of Dielectric Metasurfaces Using a Physics-Driven Neural Network. Nano Lett. 2019, 19 (8), 5366–5372. 10.1021/acs.nanolett.9b01857. PubMed DOI

Diaz A. R.; Sigmund O. A Topology Optimization Method for Design of Negative Permeability Metamaterials. Struct. Multidiscip. Optim. 2010, 41 (2), 163–177. 10.1007/s00158-009-0416-y. DOI

Christiansen R. E.; Sigmund O. Inverse Design in Photonics by Topology Optimization: Tutorial. JOSA B 2021, 38 (2), 496–509. 10.1364/JOSAB.406048. DOI

Lalau-Keraly C. M.; Bhargava S.; Miller O. D.; Yablonovitch E. Adjoint Shape Optimization Applied to Electromagnetic Design. Opt. Express 2013, 21 (18), 21693–21701. 10.1364/OE.21.021693. PubMed DOI

Khatib O.; Ren S.; Malof J.; Padilla W. J. Deep Learning the Electromagnetic Properties of Metamaterials—A Comprehensive Review. Adv. Funct. Mater. 2021, 31 (31), 2101748.10.1002/adfm.202101748. DOI

Rycroft M. J. Computational Electrodynamics, the Finite-Difference Time-Domain Method. J. Atmospheric Terr. Phys. 1996, 58 (15), 1817–1818. 10.1016/0021-9169(96)80449-1. DOI

Rumpf R. C. Simple Implementation of Arbitrarily Shaped Total-Field/Scattered-Field Regions in Finite-Difference Frequency-Domain. Prog. Electromagn. Res. B 2012, 36, 221–248. 10.2528/PIERB11092006. DOI

Sumithra P.; Thiripurasundari D. Review on Computational Electromagnetics Methods. Adv. Electromagnetics 2017, 6 (1), 42–55. 10.7716/aem.v6i1.407. DOI

Christiansen R. E.; Lin Z.; Roques-Carmes C.; Salamin Y.; Kooi S. E.; Joannopoulos J. D.; Soljačić M.; Johnson S. G. Fullwave Maxwell Inverse Design of Axisymmetric, Tunable, and Multi-Scale Multi-Wavelength Metalenses. Opt. Express 2020, 28 (23), 33854.10.1364/OE.403192. PubMed DOI

Lin Z.; Roques-Carmes C.; Christiansen R. E.; Soljačić M.; Johnson S. G. Computational Inverse Design for Ultra-Compact Single-Piece Metalenses Free of Chromatic and Angular Aberration. Appl. Phys. Lett. 2021, 118 (4), 041104.10.1063/5.0035419. DOI

Chung H.; Miller O. D. High-NA Achromatic Metalenses by Inverse Design. Opt. Express 2020, 28 (5), 6945.10.1364/OE.385440. PubMed DOI

Pestourie R.; Mroueh Y.; Nguyen T. V.; Das P.; Johnson S. G. Active Learning of Deep Surrogates for PDEs: Application to Metasurface Design. Npj Comput. Mater. 2020, 6 (1), 164.10.1038/s41524-020-00431-2. DOI

Arbabi E.; Arbabi A.; Kamali S. M.; Horie Y.; Faraon A. Multiwavelength Polarization-Insensitive Lenses Based on Dielectric Metasurfaces with Meta-Molecules. Optica 2016, 3 (6), 628.10.1364/OPTICA.3.000628. DOI

Fan Z.-B.; Shao Z.-K.; Xie M.-Y.; Pang X.-N.; Ruan W.-S.; Zhao F.-L.; Chen Y.-J.; Yu S.-Y.; Dong J.-W. Silicon Nitride Metalenses for Close-to-One Numerical Aperture and Wide-Angle Visible Imaging. Phys. Rev. Appl. 2018, 10 (1), 014005.10.1103/PhysRevApplied.10.014005. DOI

Shi Z.; Khorasaninejad M.; Huang Y.-W.; Roques-Carmes C.; Zhu A. Y.; Chen W. T.; Sanjeev V.; Ding Z.-W.; Tamagnone M.; Chaudhary K.; Devlin R. C.; Qiu C.-W.; Capasso F. Single-Layer Metasurface with Controllable Multiwavelength Functions. Nano Lett. 2018, 18 (4), 2420–2427. 10.1021/acs.nanolett.7b05458. PubMed DOI

Venter G.Review of Optimization Techniques. In Encyclopedia of Aerospace Engineering; Blockley R., Shyy W., Eds.; John Wiley & Sons, Ltd: Chichester, U.K., 2010; p eae495. 10.1002/9780470686652.eae495. DOI

Lalau-Keraly C. M.; Bhargava S.; Miller O. D.; Yablonovitch E. Adjoint Shape Optimization Applied to Electromagnetic Design. Opt. Express 2013, 21 (18), 21693.10.1364/OE.21.021693. PubMed DOI

Bendsøe M. P.; Sigmund O.. Topology Optimization; Springer: Berlin, Heidelberg, 2004. 10.1007/978-3-662-05086-6. DOI

Jenkins R. P.; Whiting E. B.; Campbell S. D.; Werner D. H. Improved Convergence in Planar Nanophotonic Topology Optimization via the Multigradient. Photonics Nanostructures - Fundam. Appl. 2022, 52, 101067.10.1016/j.photonics.2022.101067. DOI

Yu S.; Wang C.; Sun C.; Chen W. Topology Optimization for Light-Trapping Structure in Solar Cells. Struct. Multidiscip. Optim. 2014, 50 (3), 367–382. 10.1007/s00158-014-1077-z. DOI

Park J.; Kim S.; Nam D. W.; Chung H.; Park C. Y.; Jang M. S. Free-Form Optimization of Nanophotonic Devices: From Classical Methods to Deep Learning. Nanophotonics 2022, 11 (9), 1809–1845. 10.1515/nanoph-2021-0713. DOI

Martí R.Multi-Start Methods. In Handbook of Metaheuristics; Glover F., Kochenberger G. A., Eds.; International Series in Operations Research & Management Science; Kluwer Academic Publishers: Boston, 2003; Vol. 57, pp 355–368. 10.1007/0-306-48056-5_12. DOI

Floudas C. A.Deterministic Global Optimization; Pardalos P., Horst R., Eds.; Nonconvex Optimization and Its Applications; Springer US: Boston, MA, 2000; Vol. 37. 10.1007/978-1-4757-4949-6. DOI

Holm E. A.; Cohn R.; Gao N.; Kitahara A. R.; Matson T. P.; Lei B.; Yarasi S. R. Overview: Computer Vision and Machine Learning for Microstructural Characterization and Analysis. Metall. Mater. Trans. A 2020, 51 (12), 5985–5999. 10.1007/s11661-020-06008-4. DOI

Nassif A. B.; Shahin I.; Attili I.; Azzeh M.; Shaalan K. Speech Recognition Using Deep Neural Networks: A Systematic Review. IEEE Access 2019, 7, 19143–19165. 10.1109/ACCESS.2019.2896880. DOI

Otter D. W.; Medina J. R.; Kalita J. K. A Survey of the Usages of Deep Learning for Natural Language Processing. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32 (2), 604–624. 10.1109/TNNLS.2020.2979670. PubMed DOI

Kim D.; Kim S.-H.; Kim T.; Kang B. B.; Lee M.; Park W.; Ku S.; Kim D.; Kwon J.; Lee H.; Bae J.; Park Y.-L.; Cho K.-J.; Jo S. Review of Machine Learning Methods in Soft Robotics. PLoS One 2021, 16 (2), e024610210.1371/journal.pone.0246102. PubMed DOI PMC

Punia S. K.; Kumar M.; Stephan T.; Deverajan G. G.; Patan R. Performance Analysis of Machine Learning Algorithms for Big Data Classification: ML and AI-Based Algorithms for Big Data Analysis. Int. J. E-Health Med. Commun. 2021, 12 (4), 60–75. 10.4018/IJEHMC.20210701.oa4. DOI

Ma W.; Liu Z.; Kudyshev Z. A.; Boltasseva A.; Cai W.; Liu Y. Deep Learning for the Design of Photonic Structures. Nat. Photonics 2021, 15 (2), 77–90. 10.1038/s41566-020-0685-y. DOI

Malkiel I.; Mrejen M.; Nagler A.; Arieli U.; Wolf L.; Suchowski H. Plasmonic Nanostructure Design and Characterization via Deep Learning. Light Sci. Appl. 2018, 7 (1), 60.10.1038/s41377-018-0060-7. PubMed DOI PMC

Yesilyurt O.; Peana S.; Mkhitaryan V.; Pagadala K.; Shalaev V. M.; Kildishev A. V.; Boltasseva A. Fabrication-Conscious Neural Network Based Inverse Design of Single-Material Variable-Index Multilayer Films:. Nanophotonics 2023, 12 (5), 993–1006. 10.1515/nanoph-2022-0537. DOI

Sajedian I.; Kim J.; Rho J. Finding the Optical Properties of Plasmonic Structures by Image Processing Using a Combination of Convolutional Neural Networks and Recurrent Neural Networks. Microsyst. Nanoeng. 2019, 5 (1), 27.10.1038/s41378-019-0069-y. PubMed DOI PMC

So S.; Rho J. Designing Nanophotonic Structures Using Conditional Deep Convolutional Generative Adversarial Networks. Nanophotonics 2019, 8 (7), 1255–1261. 10.1515/nanoph-2019-0117. DOI

Ma W.; Liu Y. A Data-Efficient Self-Supervised Deep Learning Model for Design and Characterization of Nanophotonic Structures. Sci. China Phys. Mech. Astron. 2020, 63 (8), 284212.10.1007/s11433-020-1575-2. DOI

Kudyshev Z. A.; Kildishev A. V.; Shalaev V. M.; Boltasseva A. Machine Learning-Assisted Global Optimization of Photonic Devices. Nanophotonics 2020, 10 (1), 371–383. 10.1515/nanoph-2020-0376. DOI

Kudyshev Z. A.; Kildishev A. V.; Shalaev V. M.; Boltasseva A. Machine-Learning-Assisted Metasurface Design for High-Efficiency Thermal Emitter Optimization. Appl. Phys. Rev. 2020, 7 (2), 021407.10.1063/1.5134792. DOI

Xu D.; Luo Y.; Luo J.; Pu M.; Zhang Y.; Ha Y.; Luo X. Efficient Design of a Dielectric Metasurface with Transfer Learning and Genetic Algorithm. Opt. Mater. Express 2021, 11 (7), 1852.10.1364/OME.427426. DOI

Zhu R.; Qiu T.; Wang J.; Sui S.; Li Y.; Feng M.; Ma H.; Qu S. Multiplexing the Aperture of a Metasurface: Inverse Design via Deep-Learning-Forward Genetic Algorithm. J. Phys. Appl. Phys. 2020, 53 (45), 455002.10.1088/1361-6463/aba64f. DOI

Elsawy M. M. R.; Lanteri S.; Duvigneau R.; Brière G.; Mohamed M. S.; Genevet P. Global Optimization of Metasurface Designs Using Statistical Learning Methods. Sci. Rep. 2019, 9 (1), 17918.10.1038/s41598-019-53878-9. PubMed DOI PMC

Elsawy M. M. R.; Lanteri S.; Duvigneau R.; Fan J. A.; Genevet P. Numerical Optimization Methods for Metasurfaces. Laser Photonics Rev. 2020, 14 (10), 1900445.10.1002/lpor.201900445. DOI

Jiang J.; Sell D.; Hoyer S.; Hickey J.; Yang J.; Fan J. A. Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks. ACS Nano 2019, 13 (8), 8872–8878. 10.1021/acsnano.9b02371. PubMed DOI

Sullivan J.; Mirhashemi A.; Lee J. Deep Learning Based Analysis of Microstructured Materials for Thermal Radiation Control. Sci. Rep. 2022, 12 (1), 9785.10.1038/s41598-022-13832-8. PubMed DOI PMC

Du X.; Zhou C.; Bai H.; Liu X. Inverse Design Paradigm for Fast and Accurate Prediction of a Functional Metasurface via Deep Convolutional Neural Networks. Opt. Mater. Express 2022, 12 (10), 4104.10.1364/OME.470819. DOI

So S.; Yang Y.; Lee T.; Rho J. On-Demand Design of Spectrally Sensitive Multiband Absorbers Using an Artificial Neural Network. Photonics Res. 2021, 9 (4), B153.10.1364/PRJ.415789. DOI

Ding W.; Chen J.; Wu R.-x. A Generative Meta-Atom Model for Metasurface-Based Absorber Designs. Adv. Opt. Mater. 2023, 11, 2201959.10.1002/adom.202201959. DOI

Deng Y.; Ren S.; Malof J.; Padilla W. J. Deep Inverse Photonic Design: A Tutorial. Photonics Nanostructures - Fundam. Appl. 2022, 52, 101070.10.1016/j.photonics.2022.101070. DOI

Aryal U. K.; Ahmadpour M.; Turkovic V.; Rubahn H.-G.; Di Carlo A.; Madsen M. 2D Materials for Organic and Perovskite Photovoltaics. Nano Energy 2022, 94, 106833.10.1016/j.nanoen.2021.106833. DOI

Günes S.; Neugebauer H.; Sariciftci N. S. Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 2007, 107 (4), 1324–1338. 10.1021/cr050149z. PubMed DOI

Atwater H. A.; Polman A. Plasmonics for Improved Photovoltaic Devices. Nat. Mater. 2010, 9 (3), 205–213. 10.1038/nmat2629. PubMed DOI

Elshorbagy M. H.; Sánchez P. A.; Cuadrado A.; Alda J.; Esteban Ó. Resonant Nano-Dimer Metasurface for Ultra-Thin a-Si:H Solar Cells. Sci. Rep. 2021, 11 (1), 7179.10.1038/s41598-021-86738-6. PubMed DOI PMC

Pala R. A.; Butun S.; Aydin K.; Atwater H. A. Omnidirectional and Broadband Absorption Enhancement from Trapezoidal Mie Resonators in Semiconductor Metasurfaces. Sci. Rep. 2016, 6 (1), 31451.10.1038/srep31451. PubMed DOI PMC

Odebo Länk N.; Verre R.; Johansson P.; Käll M. Large-Scale Silicon Nanophotonic Metasurfaces with Polarization Independent Near-Perfect Absorption. Nano Lett. 2017, 17 (5), 3054–3060. 10.1021/acs.nanolett.7b00416. PubMed DOI

Esfandyarpour M.; Garnett E. C.; Cui Y.; McGehee M. D.; Brongersma M. L. Metamaterial Mirrors in Optoelectronic Devices. Nat. Nanotechnol. 2014, 9 (7), 542–547. 10.1038/nnano.2014.117. PubMed DOI

Ou Q.-D.; Xie H.-J.; Chen J.-D.; Zhou L.; Li Y.-Q.; Tang J.-X. Enhanced Light Harvesting in Flexible Polymer Solar Cells: Synergistic Simulation of a Plasmonic Meta-Mirror and a Transparent Silver Mesowire Electrode. J. Mater. Chem. A 2016, 4 (48), 18952–18962. 10.1039/C6TA08119C. DOI

Shameli M. A.; Yousefi L. Absorption Enhancement in Thin-Film Solar Cells Using an Integrated Metasurface Lens. JOSA B 2018, 35 (2), 223–230. 10.1364/JOSAB.35.000223. DOI

Cai J.; Qi L. Recent Advances in Antireflective Surfaces Based on Nanostructure Arrays. Mater. Horiz. 2015, 2 (1), 37–53. 10.1039/C4MH00140K. DOI

Spinelli P.; Verschuuren M. A.; Polman A. Broadband Omnidirectional Antireflection Coating Based on Subwavelength Surface Mie Resonators. Nat. Commun. 2012, 3 (1), 692.10.1038/ncomms1691. PubMed DOI PMC

Pecora E. F.; Cordaro A.; Kik P. G.; Brongersma M. L. Broadband Antireflection Coatings Employing Multiresonant Dielectric Metasurfaces. ACS Photonics 2018, 5 (11), 4456–4462. 10.1021/acsphotonics.8b00913. DOI

Piechulla P. M.; Slivina E.; Bätzner D.; Fernandez-Corbaton I.; Dhawan P.; Wehrspohn R. B.; Sprafke A. N.; Rockstuhl C. Antireflective Huygens’ Metasurface with Correlated Disorder Made from High-Index Disks Implemented into Silicon Heterojunction Solar Cells. ACS Photonics 2021, 8 (12), 3476–3485. 10.1021/acsphotonics.1c00601. DOI

Uleman F.; Neder V.; Cordaro A.; Alù A.; Polman A. Resonant Metagratings for Spectral and Angular Control of Light for Colored Rooftop Photovoltaics. ACS Appl. Energy Mater. 2020, 3 (4), 3150–3156. 10.1021/acsaem.0c00027. DOI

Ferry V. E.; Sweatlock L. A.; Pacifici D.; Atwater H. A. Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells. Nano Lett. 2008, 8 (12), 4391–4397. 10.1021/nl8022548. PubMed DOI

Simovski C.; Morits D.; Voroshilov P.; Guzhva M.; Belov P.; Kivshar Y. Enhanced Efficiency of Light-Trapping Nanoantenna Arrays for Thin-Film Solar Cells. Opt. Express 2013, 21 (104), A714–A725. 10.1364/OE.21.00A714. PubMed DOI

Voroshilov P. M.; Ovchinnikov V.; Papadimitratos A.; Zakhidov A. A.; Simovski C. R. Light Trapping Enhancement by Silver Nanoantennas in Organic Solar Cells. ACS Photonics 2018, 5 (5), 1767–1772. 10.1021/acsphotonics.7b01459. DOI

Chen X.; Shen S.; Guo L.; Mao S. S. Semiconductor-Based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110 (11), 6503–6570. 10.1021/cr1001645. PubMed DOI

Ghobadi A.; Ulusoy Ghobadi T. G.; Karadas F.; Ozbay E. Semiconductor Thin Film Based Metasurfaces and Metamaterials for Photovoltaic and Photoelectrochemical Water Splitting Applications. Adv. Opt. Mater. 2019, 7 (14), 1900028.10.1002/adom.201900028. DOI

Nwosu U.; Wang A.; Palma B.; Zhao H.; Khan M. A.; Kibria M.; Hu J. Selective Biomass Photoreforming for Valuable Chemicals and Fuels: A Critical Review. Renew. Sustain. Energy Rev. 2021, 148, 111266.10.1016/j.rser.2021.111266. DOI

Ma J.; Liu K.; Yang X.; Jin D.; Li Y.; Jiao G.; Zhou J.; Sun R. Recent Advances and Challenges in Photoreforming of Biomass-Derived Feedstocks into Hydrogen, Biofuels, or Chemicals by Using Functional Carbon Nitride Photocatalysts. ChemSusChem 2021, 14 (22), 4903–4922. 10.1002/cssc.202101173. PubMed DOI

Bosomtwi D.; Osiński M.; Babicheva V. E. Lattice Effect for Enhanced Hot-Electron Generation in Nanoelectrodes. Opt. Mater. Express 2021, 11 (9), 3232–3244. 10.1364/OME.430577. DOI

Deng S.; Zhang B.; Choo P.; Smeets P. J. M.; Odom T. W. Plasmonic Photoelectrocatalysis in Copper-Platinum Core-Shell Nanoparticle Lattices. Nano Lett. 2021, 21 (3), 1523–1529. 10.1021/acs.nanolett.0c05029. PubMed DOI

Xu R.; Wen L.; Wang Z.; Zhao H.; Mu G.; Zeng Z.; Zhou M.; Bohm S.; Zhang H.; Wu Y.; Runge E.; Lei Y. Programmable Multiple Plasmonic Resonances of Nanoparticle Superlattice for Enhancing Photoelectrochemical Activity. Adv. Funct. Mater. 2020, 30 (48), 2005170.10.1002/adfm.202005170. DOI

Li J.; Cushing S. K.; Zheng P.; Meng F.; Chu D.; Wu N. Plasmon-Induced Photonic and Energy-Transfer Enhancement of Solar Water Splitting by a Hematite Nanorod Array. Nat. Commun. 2013, 4 (1), 2651.10.1038/ncomms3651. PubMed DOI

Yalavarthi R.; Yesilyurt O.; Henrotte O.; Kment Š.; Shalaev V. M.; Boltasseva A.; Naldoni A. Multimetallic Metasurfaces for Enhanced Electrocatalytic Oxidations in Direct Alcohol Fuel Cells. Laser Photonics Rev. 2022, 16 (7), 2200137.10.1002/lpor.202200137. DOI

Yalavarthi R.; Henrotte O.; Kment Š.; Naldoni A. Determining the Role of Pd Catalyst Morphology and Deposition Criteria over Large Area Plasmonic Metasurfaces during Light-Enhanced Electrochemical Oxidation of Formic Acid. J. Chem. Phys. 2022, 157 (11), 114706.10.1063/5.0102012. PubMed DOI

Wu Y.; Yang W.; Fan Y.; Song Q.; Xiao S. TiO2Metasurfaces: From Visible Planar Photonics to Photochemistry. Sci. Adv. 2019, 5 (11), eaax093910.1126/sciadv.aax0939. PubMed DOI PMC

Hu H.; Weber T.; Bienek O.; Wester A.; Hüttenhofer L.; Sharp I. D.; Maier S. A.; Tittl A.; Cortés E. Catalytic Metasurfaces Empowered by Bound States in the Continuum. ACS Nano 2022, 16 (8), 13057–13068. 10.1021/acsnano.2c05680. PubMed DOI PMC

Xiao Q.; Connell T. U.; Cadusch J. J.; Roberts A.; Chesman A. S. R.; Gómez D. E. Hot-Carrier Organic Synthesis via the Near-Perfect Absorption of Light. ACS Catal. 2018, 8 (11), 10331–10339. 10.1021/acscatal.8b03486. DOI

Wang W.; Besteiro L. V.; Liu T.; Wu C.; Sun J.; Yu P.; Chang L.; Wang Z.; Govorov A. O. Generation of Hot Electrons with Chiral Metamaterial Perfect Absorbers: Giant Optical Chirality for Polarization-Sensitive Photochemistry. ACS Photonics 2019, 6 (12), 3241–3252. 10.1021/acsphotonics.9b01180. DOI

Wei X.; Liu J.; Xia G.-J.; Deng J.; Sun P.; Chruma J. J.; Wu W.; Yang C.; Wang Y.-G.; Huang Z. Enantioselective Photoinduced Cyclodimerization of a Prochiral Anthracene Derivative Adsorbed on Helical Metal Nanostructures. Nat. Chem. 2020, 12 (6), 551–559. 10.1038/s41557-020-0453-0. PubMed DOI

Xiao Q.; Kinnear C.; Connell T. U.; Kashif M. K.; Easton C. D.; Seeber A.; Bourgeois L.; Bonin Gus. O.; Duffy N. W.; Chesman A. S. R.; Gómez D. E. Dual Photolytic Pathways in an Alloyed Plasmonic Near-Perfect Absorber: Implications for Photoelectrocatalysis. ACS Appl. Nano Mater. 2021, 4 (3), 2702–2712. 10.1021/acsanm.0c03341. DOI

Baranov D. G.; Zuev D. A.; Lepeshov S. I.; Kotov O. V.; Krasnok A. E.; Evlyukhin A. B.; Chichkov B. N. All-Dielectric Nanophotonics: The Quest for Better Materials and Fabrication Techniques. Optica 2017, 4 (7), 814–825. 10.1364/OPTICA.4.000814. DOI

Naldoni A.; Guler U.; Wang Z.; Marelli M.; Malara F.; Meng X.; Besteiro L. V.; Govorov A. O.; Kildishev A. V.; Boltasseva A.; Shalaev V. M. Broadband Hot-Electron Collection for Solar Water Splitting with Plasmonic Titanium Nitride. Adv. Opt. Mater. 2017, 5 (15), 1601031.10.1002/adom.201601031. DOI

Xu L.; Rahmani M.; Ma Y.; Smirnova D. A.; Kamali K. Z.; Deng F.; Chiang Y. K.; Huang L.; Zhang H.; Gould S.; Neshev D. N.; Miroshnichenko A. E. Enhanced Light-Matter Interactions in Dielectric Nanostructures via Machine-Learning Approach. Adv. Photonics 2020, 2 (2), 026003.10.1117/1.AP.2.2.026003. DOI

Ma W.; Xu Y.; Xiong B.; Deng L.; Peng R.-W.; Wang M.; Liu Y. Pushing the Limits of Functionality-Multiplexing Capability in Metasurface Design Based on Statistical Machine Learning. Adv. Mater. 2022, 34 (16), 2110022.10.1002/adma.202110022. PubMed DOI

Neumann O.; Neumann A. D.; Tian S.; Thibodeaux C.; Shubhankar S.; Müller J.; Silva E.; Alabastri A.; Bishnoi S. W.; Nordlander P.; Halas N. J. Combining Solar Steam Processing and Solar Distillation for Fully Off-Grid Production of Cellulosic Bioethanol. ACS Energy Lett. 2017, 2 (1), 8–13. 10.1021/acsenergylett.6b00520. DOI

Dongare P. D.; Alabastri A.; Pedersen S.; Zodrow K. R.; Hogan N. J.; Neumann O.; Wu J.; Wang T.; Deshmukh A.; Elimelech M.; Li Q.; Nordlander P.; Halas N. J. Nanophotonics-Enabled Solar Membrane Distillation for off-Grid Water Purification. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (27), 6936–6941. 10.1073/pnas.1701835114. PubMed DOI PMC

Schmid W.; Machorro-Ortiz A.; Jerome B.; Naldoni A.; Halas N. J.; Dongare P. D.; Alabastri A. Decentralized Solar-Driven Photothermal Desalination: An Interdisciplinary Challenge to Transition Lab-Scale Research to Off-Grid Applications. ACS Photonics 2022, 9 (12), 3764–3776. 10.1021/acsphotonics.2c01251. DOI

Zhou L.; Tan Y.; Wang J.; Xu W.; Yuan Y.; Cai W.; Zhu S.; Zhu J. 3D Self-Assembly of Aluminium Nanoparticles for Plasmon-Enhanced Solar Desalination. Nat. Photonics 2016, 10 (6), 393–398. 10.1038/nphoton.2016.75. DOI

Zhou L.; Tan Y.; Ji D.; Zhu B.; Zhang P.; Xu J.; Gan Q.; Yu Z.; Zhu J. Self-Assembly of Highly Efficient, Broadband Plasmonic Absorbers for Solar Steam Generation. Sci. Adv. 2016, 2 (4), e150122710.1126/sciadv.1501227. PubMed DOI PMC

Kaur M.; Ishii S.; Shinde S. L.; Nagao T. All-Ceramic Solar-Driven Water Purifier Based on Anodized Aluminum Oxide and Plasmonic Titanium Nitride. Adv. Sustain. Syst. 2019, 3 (2), 1800112.10.1002/adsu.201800112. DOI

Liu Y.; Song H.; Bei Z.; Zhou L.; Zhao C.; Ooi B. S.; Gan Q. Ultra-Thin Dark Amorphous TiOx Hollow Nanotubes for Full Spectrum Solar Energy Harvesting and Conversion‡. Nano Energy 2021, 84, 105872.10.1016/j.nanoen.2021.105872. DOI

Mascaretti L.; Schirato A.; Zbořil R.; Kment Š.; Schmuki P.; Alabastri A.; Naldoni A. Solar Steam Generation on Scalable Ultrathin Thermoplasmonic TiN Nanocavity Arrays. Nano Energy 2021, 83, 105828.10.1016/j.nanoen.2021.105828. DOI

Chen W.; Gao Y.; Li Y.; Yan Y.; Ou J.-Y.; Ma W.; Zhu J. Broadband Solar Metamaterial Absorbers Empowered by Transformer-Based Deep Learning. Adv. Sci. 2023, 10 (13), 2206718.10.1002/advs.202206718. PubMed DOI PMC

Chang C.-C.; Kort-Kamp W. J. M.; Nogan J.; Luk T. S.; Azad A. K.; Taylor A. J.; Dalvit D. A. R.; Sykora M.; Chen H.-T. High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting. Nano Lett. 2018, 18 (12), 7665–7673. 10.1021/acs.nanolett.8b03322. PubMed DOI

Rinnerbauer V.; Lenert A.; Bierman D. M.; Yeng Y. X.; Chan W. R.; Geil R. D.; Senkevich J. J.; Joannopoulos J. D.; Wang E. N.; Soljačić M.; Celanovic I. Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics. Adv. Energy Mater. 2014, 4 (12), 1400334.10.1002/aenm.201400334. DOI

Rana A. S.; Zubair M.; Chen Y.; Wang Z.; Deng J.; Chani M. T. S.; Danner A.; Teng J.; Mehmood M. Q. Broadband Solar Absorption by Chromium Metasurface for Highly Efficient Solar Thermophotovoltaic Systems. Renew. Sustain. Energy Rev. 2023, 171, 113005.10.1016/j.rser.2022.113005. DOI

Chirumamilla M.; Chirumamilla A.; Yang Y.; Roberts A. S.; Kristensen P. K.; Chaudhuri K.; Boltasseva A.; Sutherland D. S.; Bozhevolnyi S. I.; Pedersen K. Large-Area Ultrabroadband Absorber for Solar Thermophotovoltaics Based on 3D Titanium Nitride Nanopillars. Adv. Opt. Mater. 2017, 5 (22), 1700552.10.1002/adom.201700552. DOI

Chou J. B.; Yeng Y. X.; Lee Y. E.; Lenert A.; Rinnerbauer V.; Celanovic I.; Soljačić M.; Fang N. X.; Wang E. N.; Kim S.-G. Enabling Ideal Selective Solar Absorption with 2D Metallic Dielectric Photonic Crystals. Adv. Mater. 2014, 26 (47), 8041–8045. 10.1002/adma.201403302. PubMed DOI

Zhang F.; Li Y.-H.; Qi M.-Y.; Yamada Y. M. A.; Anpo M.; Tang Z.-R.; Xu Y.-J. Photothermal Catalytic CO2 Reduction over Nanomaterials. Chem. Catal. 2021, 1 (2), 272–297. 10.1016/j.checat.2021.01.003. DOI

Naldoni A.; Kudyshev Z. A.; Mascaretti L.; Sarmah S. P.; Rej S.; Froning J. P.; Tomanec O.; Yoo J. E.; Wang D.; Kment Š.; Montini T.; Fornasiero P.; Shalaev V. M.; Schmuki P.; Boltasseva A.; Zbořil R. Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis. Nano Lett. 2020, 20 (5), 3663–3672. 10.1021/acs.nanolett.0c00594. PubMed DOI

Nguyen N. T.; Xia M.; Duchesne P. N.; Wang L.; Mao C.; Ali F. M.; Yan T.; Li P.; Lu Z.-H.; Ozin G. A. Enhanced CO2 Photocatalysis by Indium Oxide Hydroxide Supported on TiN@TiO2 Nanotubes. Nano Lett. 2021, 21 (3), 1311–1319. 10.1021/acs.nanolett.0c04008. PubMed DOI

Hong J.; Xu C.; Deng B.; Gao Y.; Zhu X.; Zhang X.; Zhang Y. Photothermal Chemistry Based on Solar Energy: From Synergistic Effects to Practical Applications. Adv. Sci. 2022, 9 (3), 2103926.10.1002/advs.202103926. PubMed DOI PMC

Gao W.; Chen Y. Emerging Materials and Strategies for Passive Daytime Radiative Cooling. Small 2023, 19 (18), 2206145.10.1002/smll.202206145. PubMed DOI

Rephaeli E.; Raman A.; Fan S. Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling. Nano Lett. 2013, 13 (4), 1457–1461. 10.1021/nl4004283. PubMed DOI

Li W.; Shi Y.; Chen K.; Zhu L.; Fan S. A Comprehensive Photonic Approach for Solar Cell Cooling. ACS Photonics 2017, 4 (4), 774–782. 10.1021/acsphotonics.7b00089. DOI

Zhu L.; Raman A. P.; Fan S. Radiative Cooling of Solar Absorbers Using a Visibly Transparent Photonic Crystal Thermal Blackbody. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (40), 12282–12287. 10.1073/pnas.1509453112. PubMed DOI PMC

Hossain M. M.; Jia B.; Gu M. A Metamaterial Emitter for Highly Efficient Radiative Cooling. Adv. Opt. Mater. 2015, 3 (8), 1047–1051. 10.1002/adom.201500119. DOI

Cho J.-W.; Park S.-J.; Park S.-J.; Kim Y.-B.; Moon Y.-J.; Kim S.-K. Cooling Metals via Gap Plasmon Resonance. Nano Lett. 2021, 21 (9), 3974–3980. 10.1021/acs.nanolett.1c00741. PubMed DOI

Zou C.; Ren G.; Hossain M. M.; Nirantar S.; Withayachumnankul W.; Ahmed T.; Bhaskaran M.; Sriram S.; Gu M.; Fumeaux C. Metal-Loaded Dielectric Resonator Metasurfaces for Radiative Cooling. Adv. Opt. Mater. 2017, 5 (20), 1700460.10.1002/adom.201700460. DOI

Dang S.; Wang X.; Ye H. An Ultrathin Transparent Radiative Cooling Photonic Structure with a High NIR Reflection. Adv. Mater. Interfaces 2022, 9 (30), 2201050.10.1002/admi.202201050. DOI

Long L.; Taylor S.; Wang L. Enhanced Infrared Emission by Thermally Switching the Excitation of Magnetic Polariton with Scalable Microstructured VO2Metasurfaces. ACS Photonics 2020, 7 (8), 2219–2227. 10.1021/acsphotonics.0c00760. DOI

Sun K.; Xiao W.; Wheeler C.; Simeoni M.; Urbani A.; Gaspari M.; Mengali S.; de Groot C. H. K.; Muskens O. L. VO2Metasurface Smart Thermal Emitter with High Visual Transparency for Passive Radiative Cooling Regulation in Space and Terrestrial Applications. Nanophotonics 2022, 11 (17), 4101–4114. 10.1515/nanoph-2022-0020. DOI

Wang W.; Zhao Z.; Zou Q.; Hong B.; Zhang W.; Wang G. P. Self-Adaptive Radiative Cooling and Solar Heating Based on a Compound Metasurface. J. Mater. Chem. C 2020, 8 (9), 3192–3199. 10.1039/C9TC05634C. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Terahertz magnetic response of plasmonic metasurface resonators: origin and orientation dependence

. 2024 Jul 03 ; 14 (1) : 15305. [epub] 20240703

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...