Designing Metasurfaces for Efficient Solar Energy Conversion
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
38145171
PubMed Central
PMC10740004
DOI
10.1021/acsphotonics.3c01013
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Metasurfaces have recently emerged as a promising technological platform, offering unprecedented control over light by structuring materials at the nanoscale using two-dimensional arrays of subwavelength nanoresonators. These metasurfaces possess exceptional optical properties, enabling a wide variety of applications in imaging, sensing, telecommunication, and energy-related fields. One significant advantage of metasurfaces lies in their ability to manipulate the optical spectrum by precisely engineering the geometry and material composition of the nanoresonators' array. Consequently, they hold tremendous potential for efficient solar light harvesting and conversion. In this Review, we delve into the current state-of-the-art in solar energy conversion devices based on metasurfaces. First, we provide an overview of the fundamental processes involved in solar energy conversion, alongside an introduction to the primary classes of metasurfaces, namely, plasmonic and dielectric metasurfaces. Subsequently, we explore the numerical tools used that guide the design of metasurfaces, focusing particularly on inverse design methods that facilitate an optimized optical response. To showcase the practical applications of metasurfaces, we present selected examples across various domains such as photovoltaics, photoelectrochemistry, photocatalysis, solar-thermal and photothermal routes, and radiative cooling. These examples highlight the ways in which metasurfaces can be leveraged to harness solar energy effectively. By tailoring the optical properties of metasurfaces, significant advancements can be expected in solar energy harvesting technologies, offering new practical solutions to support an emerging sustainable society.
Department of Chemistry and NIS Centre University of Turin Turin 10125 Italy
The Quantum Science Center Oak Ridge Tennessee 37931 United States
Zobrazit více v PubMed
IRENA . World Energy Transitions Outlook: 1.5°C Pathway, 2022. https://www.irena.org/publications/2022/Mar/World-Energy-Transitions-Outlook-2022 (accessed 2022–04–08).
Paris Agreement | UNFCCC. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed 2022–02–15).
Lewis N. S.; Crabtree G.. Basic Research Needs for Solar Energy Utilization: Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18–21, 2005; US Department of Energy, Office of Basic Energy Science: Washington, DC, 2005. http://authors.library.caltech.edu/8599/.
Key World Energy Statistics 2021. https://www.iea.org/reports/key-world-energy-statistics-2021 (accessed 2022–01–18).
Quevedo-Teruel O.; Chen H.; Díaz-Rubio A.; Gok G.; Grbic A.; Minatti G.; Martini E.; Maci S.; Eleftheriades G. V.; Chen M.; Zheludev N. I.; Papasimakis N.; Choudhury S.; Kudyshev Z. A.; Saha S.; Reddy H.; Boltasseva A.; Shalaev V. M.; Kildishev A. V.; Sievenpiper D.; Caloz C.; Alù A.; He Q.; Zhou L.; Valerio G.; Rajo-Iglesias E.; Sipus Z.; Mesa F.; Rodríguez-Berral R.; Medina F.; Asadchy V.; Tretyakov S.; Craeye C. Roadmap on Metasurfaces. J. Opt. 2019, 21 (7), 073002.10.1088/2040-8986/ab161d. DOI
Genevet P.; Capasso F.; Aieta F.; Khorasaninejad M.; Devlin R. Recent Advances in Planar Optics: From Plasmonic to Dielectric Metasurfaces. Optica 2017, 4 (1), 139–152. 10.1364/OPTICA.4.000139. DOI
Khorasaninejad M.; Capasso F. Metalenses: Versatile Multifunctional Photonic Components. Science 2017, 358 (6367), eaam810010.1126/science.aam8100. PubMed DOI
Li Z.; Pestourie R.; Lin Z.; Johnson S. G.; Capasso F. Empowering Metasurfaces with Inverse Design: Principles and Applications. ACS Photonics 2022, 9 (7), 2178–2192. 10.1021/acsphotonics.1c01850. DOI
Yu N.; Capasso F. Flat Optics with Designer Metasurfaces. Nat. Mater. 2014, 13 (2), 139–150. 10.1038/nmat3839. PubMed DOI
Chen W. T.; Zhu A. Y.; Capasso F. Flat Optics with Dispersion-Engineered Metasurfaces. Nat. Rev. Mater. 2020, 5 (8), 604–620. 10.1038/s41578-020-0203-3. DOI
Lin D.; Fan P.; Hasman E.; Brongersma M. L. Dielectric Gradient Metasurface Optical Elements. Science 2014, 345 (6194), 298–302. 10.1126/science.1253213. PubMed DOI
Kuznetsov A. I.; Miroshnichenko A. E.; Brongersma M. L.; Kivshar Y. S.; Luk’yanchuk B. Optically Resonant Dielectric Nanostructures. Science 2016, 354 (6314), aag2472.10.1126/science.aag2472. PubMed DOI
Lalanne P.; Chavel P. Metalenses at Visible Wavelengths: Past, Present, Perspectives. Laser Photonics Rev. 2017, 11 (3), 1600295.10.1002/lpor.201600295. DOI
Hsiao H.-H.; Chu C. H.; Tsai D. P. Fundamentals and Applications of Metasurfaces. Small Methods 2017, 1 (4), 1600064.10.1002/smtd.201600064. DOI
Ding F.; Yang Y.; Deshpande R. A.; Bozhevolnyi S. I. A Review of Gap-Surface Plasmon Metasurfaces: Fundamentals and Applications. Nanophotonics 2018, 7 (6), 1129–1156. 10.1515/nanoph-2017-0125. DOI
Krasnok A.; Tymchenko M.; Alù A. Nonlinear Metasurfaces: A Paradigm Shift in Nonlinear Optics. Mater. Today 2018, 21 (1), 8–21. 10.1016/j.mattod.2017.06.007. DOI
Solntsev A. S.; Agarwal G. S.; Kivshar Y. S. Metasurfaces for Quantum Photonics. Nat. Photonics 2021, 15 (5), 327–336. 10.1038/s41566-021-00793-z. DOI
Su V.-C.; Chu C. H.; Sun G.; Tsai D. P. Advances in Optical Metasurfaces: Fabrication and Applications [Invited]. Opt. Express 2018, 26 (10), 13148–13182. 10.1364/OE.26.013148. PubMed DOI
Deng Y.; Cai Z.; Ding Y.; Bozhevolnyi S. I.; Ding F. Recent Progress in Metasurface-Enabled Optical Waveplates. Nanophotonics 2022, 11 (10), 2219–2244. 10.1515/nanoph-2022-0030. DOI
Overvig A. C.; Malek S. C.; Yu N. Multifunctional Nonlocal Metasurfaces. Phys. Rev. Lett. 2020, 125 (1), 017402.10.1103/PhysRevLett.125.017402. PubMed DOI
Shirmanesh G. K.; Sokhoyan R.; Wu P. C.; Atwater H. A. Electro-Optically Tunable Multifunctional Metasurfaces. ACS Nano 2020, 14 (6), 6912–6920. 10.1021/acsnano.0c01269. PubMed DOI
Kwon H.; Sounas D.; Cordaro A.; Polman A.; Alù A. Nonlocal Metasurfaces for Optical Signal Processing. Phys. Rev. Lett. 2018, 121 (17), 173004.10.1103/PhysRevLett.121.173004. PubMed DOI
Qiu C.-W.; Zhang T.; Hu G.; Kivshar Y. Quo Vadis, Metasurfaces?. Nano Lett. 2021, 21 (13), 5461–5474. 10.1021/acs.nanolett.1c00828. PubMed DOI
Chen H.-T.; Taylor A. J.; Yu N. A Review of Metasurfaces: Physics and Applications. Rep. Prog. Phys. 2016, 79 (7), 076401.10.1088/0034-4885/79/7/076401. PubMed DOI
Minovich A. E.; Miroshnichenko A. E.; Bykov A. Y.; Murzina T. V.; Neshev D. N.; Kivshar Y. S. Functional and Nonlinear Optical Metasurfaces. Laser Photonics Rev. 2015, 9 (2), 195–213. 10.1002/lpor.201400402. DOI
Glybovski S. B.; Tretyakov S. A.; Belov P. A.; Kivshar Y. S.; Simovski C. R. Metasurfaces: From Microwaves to Visible. Phys. Rep. 2016, 634, 1–72. 10.1016/j.physrep.2016.04.004. DOI
Yu N.; Genevet P.; Kats M. A.; Aieta F.; Tetienne J.-P.; Capasso F.; Gaburro Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334 (6054), 333–337. 10.1126/science.1210713. PubMed DOI
Aieta F.; Genevet P.; Yu N.; Kats M. A.; Gaburro Z.; Capasso F. Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities. Nano Lett. 2012, 12 (3), 1702–1706. 10.1021/nl300204s. PubMed DOI
Shalaev V. M.; Cai W.; Chettiar U. K.; Yuan H.-K.; Sarychev A. K.; Drachev V. P.; Kildishev A. V. Negative Index of Refraction in Optical Metamaterials. Opt. Lett. 2005, 30 (24), 3356–3358. 10.1364/OL.30.003356. PubMed DOI
Zheludev N. I.; Kivshar Y. S. From Metamaterials to Metadevices. Nat. Mater. 2012, 11 (11), 917–924. 10.1038/nmat3431. PubMed DOI
Shaltout A. M.; Shalaev V. M.; Brongersma M. L. Spatiotemporal Light Control with Active Metasurfaces. Science 2019, 364 (6441), 648.10.1126/science.aat3100. PubMed DOI
Cortés E.; Wendisch F. J.; Sortino L.; Mancini A.; Ezendam S.; Saris S.; de S. Menezes L.; Tittl A.; Ren H.; Maier S. A. Optical Metasurfaces for Energy Conversion. Chem. Rev. 2022, 122 (19), 15082–15176. 10.1021/acs.chemrev.2c00078. PubMed DOI PMC
Mascaretti L.; Schirato A.; Fornasiero P.; Boltasseva A.; Shalaev V. M.; Alabastri A.; Naldoni A. Challenges and Prospects of Plasmonic Metasurfaces for Photothermal Catalysis. Nanophotonics 2022, 11 (13), 3035–3056. 10.1515/nanoph-2022-0073. DOI
Yu M.-J.; Chang C.-L.; Lan H.-Y.; Chiao Z.-Y.; Chen Y.-C.; Howard Lee H. W.; Chang Y.-C.; Chang S.-W.; Tanaka T.; Tung V.; Chou H.-H.; Lu Y.-J. Plasmon-Enhanced Solar-Driven Hydrogen Evolution Using Titanium Nitride Metasurface Broadband Absorbers. ACS Photonics 2021, 8 (11), 3125–3132. 10.1021/acsphotonics.1c00927. DOI
Hüttenhofer L.; Golibrzuch M.; Bienek O.; Wendisch F. J.; Lin R.; Becherer M.; Sharp I. D.; Maier S. A.; Cortés E. Metasurface Photoelectrodes for Enhanced Solar Fuel Generation. Adv. Energy Mater. 2021, 11 (46), 2102877.10.1002/aenm.202102877. DOI
Li N.; Xu Z.; Dong Y.; Hu T.; Zhong Q.; Fu Y. H.; Zhu S.; Singh N. Large-Area Metasurface on CMOS-Compatible Fabrication Platform: Driving Flat Optics from Lab to Fab. Nanophotonics 2020, 9 (10), 3071–3087. 10.1515/nanoph-2020-0063. DOI
Chang S.; Guo X.; Ni X. Optical Metasurfaces: Progress and Applications. Annu. Rev. Mater. Res. 2018, 48 (1), 279–302. 10.1146/annurev-matsci-070616-124220. DOI
Liu G.-X.; Liu J.-F.; Zhou W.-J.; Li L.-Y.; You C.-L.; Qiu C.-W.; Wu L. Inverse Design in Quantum Nanophotonics: Combining Local-Density-of-States and Deep Learning. Nanophotonics 2023, 12 (11), 1943–1955. 10.1515/nanoph-2022-0746. DOI
Liu Z.; Zhu D.; Rodrigues S. P.; Lee K.-T.; Cai W. Generative Model for the Inverse Design of Metasurfaces. Nano Lett. 2018, 18 (10), 6570–6576. 10.1021/acs.nanolett.8b03171. PubMed DOI
So S.; Badloe T.; Noh J.; Bravo-Abad J.; Rho J. Deep Learning Enabled Inverse Design in Nanophotonics. Nanophotonics 2020, 9 (5), 1041–1057. 10.1515/nanoph-2019-0474. DOI
Jiang J.; Fan J. A. Simulator-Based Training of Generative Neural Networks for the Inverse Design of Metasurfaces. Nanophotonics 2020, 9 (5), 1059–1069. 10.1515/nanoph-2019-0330. DOI
Haegel N. M.; Verlinden P.; Victoria M.; Altermatt P.; Atwater H.; Barnes T.; Breyer C.; Case C.; De Wolf S.; Deline C.; Dharmrin M.; Dimmler B.; Gloeckler M.; Goldschmidt J. C.; Hallam B.; Haussener S.; Holder B.; Jaeger U.; Jaeger-Waldau A.; Kaizuka I.; Kikusato H.; Kroposki B.; Kurtz S.; Matsubara K.; Nowak S.; Ogimoto K.; Peter C.; Peters I. M.; Philipps S.; Powalla M.; Rau U.; Reindl T.; Roumpani M.; Sakurai K.; Schorn C.; Schossig P.; Schlatmann R.; Sinton R.; Slaoui A.; Smith B. L.; Schneidewind P.; Stanbery B.; Topic M.; Tumas W.; Vasi J.; Vetter M.; Weber E.; Weeber A. W.; Weidlich A.; Weiss D.; Bett A. W. Photovoltaics at Multi-Terawatt Scale: Waiting Is Not an Option. Science 2023, 380 (6640), 39–42. 10.1126/science.adf6957. PubMed DOI
Ballif C.; Haug F.-J.; Boccard M.; Verlinden P. J.; Hahn G. Status and Perspectives of Crystalline Silicon Photovoltaics in Research and Industry. Nat. Rev. Mater. 2022, 7 (8), 597–616. 10.1038/s41578-022-00423-2. DOI
Duan L.; Walter D.; Chang N.; Bullock J.; Kang D.; Phang S. P.; Weber K.; White T.; Macdonald D.; Catchpole K.; Shen H. Stability Challenges for the Commercialization of Perovskite-Silicon Tandem Solar Cells. Nat. Rev. Mater. 2023, 8 (4), 261–281. 10.1038/s41578-022-00521-1. DOI
Green M. A.; Dunlop E. D.; Yoshita M.; Kopidakis N.; Bothe K.; Siefer G.; Hao X. Solar Cell Efficiency Tables (Version 62). Prog. Photovolt. Res. Appl. 2023, 31 (7), 651–663. 10.1002/pip.3726. DOI
Almora O.; Baran D.; Bazan G. C.; Cabrera C. I.; Erten-Ela S.; Forberich K.; Guo F.; Hauch J.; Ho-Baillie A. W. Y.; Jacobsson T. J.; Janssen R. A. J.; Kirchartz T.; Kopidakis N.; Loi M. A.; Lunt R. R.; Mathew X.; McGehee M. D.; Min J.; Mitzi D. B.; Nazeeruddin M. K.; Nelson J.; Nogueira A. F.; Paetzold U. W.; Rand B. P.; Rau U.; Snaith H. J.; Unger E.; Vaillant-Roca L.; Yang C.; Yip H.-L.; Brabec C. J. Device Performance of Emerging Photovoltaic Materials (Version 3). Adv. Energy Mater. 2023, 13 (1), 2203313.10.1002/aenm.202203313. DOI
Weinstein L. A.; Loomis J.; Bhatia B.; Bierman D. M.; Wang E. N.; Chen G. Concentrating Solar Power. Chem. Rev. 2015, 115 (23), 12797–12838. 10.1021/acs.chemrev.5b00397. PubMed DOI
Saidur R.; Elcevvadi E. T.; Mekhilef S.; Safari A.; Mohammed H. A. An Overview of Different Distillation Methods for Small Scale Applications. Renew. Sustain. Energy Rev. 2011, 15 (9), 4756–4764. 10.1016/j.rser.2011.07.077. DOI
Li W.; Fan S. Nanophotonic Control of Thermal Radiation for Energy Applications [Invited]. Opt. Express 2018, 26 (12), 15995–16021. 10.1364/OE.26.015995. PubMed DOI
Wang Q.; Domen K. Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chem. Rev. 2020, 120 (2), 919–985. 10.1021/acs.chemrev.9b00201. PubMed DOI
Melchionna M.; Fornasiero P. Updates on the Roadmap for Photocatalysis. ACS Catal. 2020, 10, 5493–5501. 10.1021/acscatal.0c01204. DOI
Segev G.; Kibsgaard J.; Hahn C.; Xu Z. J.; Cheng W.-H. S.; Deutsch T. G.; Xiang C.; Zhang J. Z.; Hammarström L.; Nocera D. G.; Weber A. Z.; Agbo P.; Hisatomi T.; Osterloh F. E.; Domen K.; Abdi F. F.; Haussener S.; Miller D. J.; Ardo S.; McIntyre P. C.; Hannappel T.; Hu S.; Atwater H.; Gregoire J. M.; Ertem M. Z.; Sharp I. D.; Choi K.-S.; Lee J. S.; Ishitani O.; Ager J. W.; Prabhakar R. R.; Bell A. T.; Boettcher S. W.; Vincent K.; Takanabe K.; Artero V.; Napier R.; Cuenya B. R.; Koper M. T. M.; Van de Krol R.; Houle F. The 2022 Solar Fuels Roadmap. J. Phys. Appl. Phys. 2022, 55 (32), 323003.10.1088/1361-6463/ac6f97. DOI
Sivula K.; van de Krol R. Semiconducting Materials for Photoelectrochemical Energy Conversion. Nat. Rev. Mater. 2016, 1, 15010.10.1038/natrevmats.2015.10. DOI
Romano V.; D’Angelo G.; Perathoner S.; Centi G. Current Density in Solar Fuel Technologies. Energy Environ. Sci. 2021, 14 (11), 5760–5787. 10.1039/D1EE02512K. DOI
Spitler M. T.; Modestino M. A.; Deutsch T. G.; Xiang C. X.; Durrant J. R.; Esposito D. V.; Haussener S.; Maldonado S.; Sharp I. D.; Parkinson B. A.; Ginley D. S.; Houle F. A.; Hannappel T.; Neale N. R.; Nocera D. G.; McIntyre P. C. Practical Challenges in the Development of Photoelectrochemical Solar Fuels Production. Sustain. Energy Fuels 2020, 4 (3), 985–995. 10.1039/C9SE00869A. DOI
Carrillo A. J.; González-Aguilar J.; Romero M.; Coronado J. M. Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials. Chem. Rev. 2019, 119 (7), 4777–4816. 10.1021/acs.chemrev.8b00315. PubMed DOI
Zhou Z.; Sakr E.; Sun Y.; Bermel P. Solar Thermophotovoltaics: Reshaping the Solar Spectrum. Nanophotonics 2016, 5 (1), 1–21. 10.1515/nanoph-2016-0011. DOI
Burger T.; Sempere C.; Roy-Layinde B.; Lenert A. Present Efficiencies and Future Opportunities in Thermophotovoltaics. Joule 2020, 4 (8), 1660–1680. 10.1016/j.joule.2020.06.021. DOI
Ghoussoub M.; Xia M.; Duchesne P. N.; Segal D.; Ozin G. Principles of Photothermal Gas-Phase Heterogeneous CO2 Catalysis. Energy Environ. Sci. 2019, 12 (4), 1122–1142. 10.1039/C8EE02790K. DOI
Mascaretti L.; Schirato A.; Montini T.; Alabastri A.; Naldoni A.; Fornasiero P. Challenges in Temperature Measurements in Gas-Phase Photothermal Catalysis. Joule 2022, 6 (8), 1727–1732. 10.1016/j.joule.2022.06.019. DOI
Ra’di Y.; Simovski C. R.; Tretyakov S. A. Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations. Phys. Rev. Appl. 2015, 3 (3), 037001.10.1103/PhysRevApplied.3.037001. DOI
Tagliabue G.; Eghlidi H.; Poulikakos D. Rapid-Response Low Infrared Emission Broadband Ultrathin Plasmonic Light Absorber. Sci. Rep. 2014, 4, 7181.10.1038/srep07181. PubMed DOI PMC
Yang K.; Wang J.; Yao X.; Lyu D.; Zhu J.; Yang Z.; Liu B.; Ren B. Large-Area Plasmonic Metamaterial with Thickness-Dependent Absorption. Adv. Opt. Mater. 2021, 9 (1), 2001375.10.1002/adom.202001375. DOI
Patsalas P.; Kalfagiannis N.; Kassavetis S.; Abadias G.; Bellas D. V.; Lekka Ch.; Lidorikis E. Conductive Nitrides: Growth Principles, Optical and Electronic Properties, and Their Perspectives in Photonics and Plasmonics. Mater. Sci. Eng. R Rep. 2018, 123, 1–55. 10.1016/j.mser.2017.11.001. DOI
Gui L.; Bagheri S.; Strohfeldt N.; Hentschel M.; Zgrabik C. M.; Metzger B.; Linnenbank H.; Hu E. L.; Giessen H. Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas. Nano Lett. 2016, 16 (9), 5708–5713. 10.1021/acs.nanolett.6b02376. PubMed DOI
Gadalla M. N.; Chaudhary K.; Zgrabik C. M.; Capasso F.; Hu E. L. Imaging of Surface Plasmon Polaritons in Low-Loss Highly Metallic Titanium Nitride Thin Films in Visible and Infrared Regimes. Opt. Express 2020, 28 (10), 14536–14546. 10.1364/OE.391482. PubMed DOI
Ishii S.; Shinde S. L.; Jevasuwan W.; Fukata N.; Nagao T. Hot Electron Excitation from Titanium Nitride Using Visible Light. ACS Photonics 2016, 3 (9), 1552–1557. 10.1021/acsphotonics.6b00360. DOI
Ishii S.; Higashino M.; Goya S.; Shkondin E.; Tanaka K.; Nagao T.; Takayama O.; Murai S. Extreme Thermal Anisotropy in High-Aspect-Ratio Titanium Nitride Nanostructures for Efficient Photothermal Heating. Nanophotonics 2021, 10 (5), 1487–1494. 10.1515/nanoph-2020-0569. DOI
Wang Y.; Capretti A.; Dal Negro L. Wide Tuning of the Optical and Structural Properties of Alternative Plasmonic Materials. Opt. Mater. Express 2015, 5 (11), 2415–2430. 10.1364/OME.5.002415. DOI
Briggs J. A.; Naik G. V.; Petach T. A.; Baum B. K.; Goldhaber-Gordon D.; Dionne J. A. Fully CMOS-Compatible Titanium Nitride Nanoantennas. Appl. Phys. Lett. 2016, 108 (5), 051110.10.1063/1.4941413. DOI
Krekeler T.; Rout S. S.; Krishnamurthy G. V.; Störmer M.; Arya M.; Ganguly A.; Sutherland D. S.; Bozhevolnyi S. I.; Ritter M.; Pedersen K.; Petrov A. Y.; Eich M.; Chirumamilla M. Unprecedented Thermal Stability of Plasmonic Titanium Nitride Films up to 1400 °C. Adv. Opt. Mater. 2021, 9 (16), 2100323.10.1002/adom.202100323. DOI
Chang C.-C.; Kuo S.-C.; Cheng H.-E.; Chen H.-T.; Yang Z.-P. Broadband Titanium Nitride Disordered Metasurface Absorbers. Opt. Express 2021, 29 (26), 42813–42826. 10.1364/OE.445247. DOI
Naik G. V.; Shalaev V. M.; Boltasseva A. Alternative Plasmonic Materials: Beyond Gold and Silver. Adv. Mater. 2013, 25 (24), 3264–3294. 10.1002/adma.201205076. PubMed DOI
Jaffray W.; Saha S.; Shalaev V. M.; Boltasseva A.; Ferrera M. Transparent Conducting Oxides: From All-Dielectric Plasmonics to a New Paradigm in Integrated Photonics. Adv. Opt. Photonics 2022, 14 (2), 148–208. 10.1364/AOP.448391. DOI
Fujishima A.; Zhang X.; Tryk D. A. TiO2 Photocatalysis and Related Surface Phenomena. Surf. Sci. Rep. 2008, 63 (12), 515–582. 10.1016/j.surfrep.2008.10.001. DOI
Etacheri V.; Di Valentin C.; Schneider J.; Bahnemann D.; Pillai S. C. Visible-Light Activation of TiO2 Photocatalysts: Advances in Theory and Experiments. J. Photochem. Photobiol. C Photochem. Rev. 2015, 25, 1–29. 10.1016/j.jphotochemrev.2015.08.003. DOI
Look D. C.; Leach J. H. On the Accurate Determination of Absorption Coefficient from Reflectanceand Transmittance Measurements: Application to Fe-Doped GaN. J. Vac. Sci. Technol. B 2016, 34 (4), 04J105.10.1116/1.4954211. DOI
Langereis E.; Heil S. B. S.; Knoops H. C. M.; Keuning W.; van de Sanden M. C. M.; Kessels W. M. M. In Situ Spectroscopic Ellipsometry as a Versatile Tool for Studying Atomic Layer Deposition. J. Phys. Appl. Phys. 2009, 42 (7), 073001.10.1088/0022-3727/42/7/073001. DOI
Kim J.; Naik G. V.; Emani N. K.; Guler U.; Boltasseva A. Plasmonic Resonances in Nanostructured Transparent Conducting Oxide Films. IEEE J. Sel. Top. Quantum Electron. 2013, 19 (3), 4601907–4601907. 10.1109/JSTQE.2013.2238611. DOI
Jolivet A.; Labbé C.; Frilay C.; Debieu O.; Marie P.; Horcholle B.; Lemarié F.; Portier X.; Grygiel C.; Duprey S.; Jadwisienczak W.; Ingram D.; Upadhyay M.; David A.; Fouchet A.; Lüders U.; Cardin J. Structural, Optical, and Electrical Properties of TiO2 Thin Films Deposited by ALD: Impact of the Substrate, the Deposited Thickness and the Deposition Temperature. Appl. Surf. Sci. 2023, 608, 155214.10.1016/j.apsusc.2022.155214. DOI
Alaee R.; Rockstuhl C.; Fernandez-Corbaton I. Exact Multipolar Decompositions with Applications in Nanophotonics. Adv. Opt. Mater. 2019, 7 (1), 1800783.10.1002/adom.201800783. DOI
Riccardi M.; Kiselev A.; Achouri K.; Martin O. J. F. Multipolar Expansions for Scattering and Optical Force Calculations beyond the Long Wavelength Approximation. Phys. Rev. B 2022, 106 (11), 115428.10.1103/PhysRevB.106.115428. DOI
Maier S. A.Plasmonics: Fundamentals and Applications; Springer Science & Business Media, 2007.
Kravets V. G.; Kabashin A. V.; Barnes W. L.; Grigorenko A. N. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem. Rev. 2018, 118 (12), 5912–5951. 10.1021/acs.chemrev.8b00243. PubMed DOI PMC
Schirato A.; Maiuri M.; Cerullo G.; Della Valle G. Ultrafast Hot Electron Dynamics in Plasmonic Nanostructures: Experiments, Modelling, Design. Nanophotonics 2023, 12 (1), 1–28. 10.1515/nanoph-2022-0592. DOI
Besteiro L. V.; Yu P.; Wang Z.; Holleitner A. W.; Hartland G. V.; Wiederrecht G. P.; Govorov A. O. The Fast and the Furious: Ultrafast Hot Electrons in Plasmonic Metastructures. Size and Structure Matter. Nano Today 2019, 27, 120–145. 10.1016/j.nantod.2019.05.006. DOI
Erwin W. R.; Zarick H. F.; Talbert E. M.; Bardhan R. Light Trapping in Mesoporous Solar Cells with Plasmonic Nanostructures. Energy Environ. Sci. 2016, 9 (5), 1577–1601. 10.1039/C5EE03847B. DOI
Yuan L.; Bourgeois B. B.; Carlin C. C.; da Jornada F. H.; Dionne J. A. Sustainable Chemistry with Plasmonic Photocatalysts. Nanophotonics 2023, 12 (14), 2745–2762. 10.1515/nanoph-2023-0149. DOI
Zhang Y.; Guo W.; Zhang Y.; Wei W. D. Plasmonic Photoelectrochemistry: In View of Hot Carriers. Adv. Mater. 2021, 33 (46), 2006654.10.1002/adma.202006654. PubMed DOI
Zhou L.; Swearer D. F.; Zhang C.; Robatjazi H.; Zhao H.; Henderson L.; Dong L.; Christopher P.; Carter E. A.; Nordlander P.; Halas N. J. Quantifying Hot Carrier and Thermal Contributions in Plasmonic Photocatalysis. Science 2018, 362 (6410), 69–72. 10.1126/science.aat6967. PubMed DOI
Zhou L.; Martirez J. M. P.; Finzel J.; Zhang C.; Swearer D. F.; Tian S.; Robatjazi H.; Lou M.; Dong L.; Henderson L.; Christopher P.; Carter E. A.; Nordlander P.; Halas N. J. Light-Driven Methane Dry Reforming with Single Atomic Site Antenna-Reactor Plasmonic Photocatalysts. Nat. Energy 2020, 5, 61–70. 10.1038/s41560-019-0517-9. DOI
Brown A. M.; Sundararaman R.; Narang P.; Goddard W. A.; Atwater H. A. Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry. ACS Nano 2016, 10 (1), 957–966. 10.1021/acsnano.5b06199. PubMed DOI
Habib A.; Florio F.; Sundararaman R. Hot Carrier Dynamics in Plasmonic Transition Metal Nitrides. J. Opt. 2018, 20 (6), 064001.10.1088/2040-8986/aac1d8. DOI
Baffou G.; Quidant R.; Girard C. Heat Generation in Plasmonic Nanostructures: Influence of Morphology. Appl. Phys. Lett. 2009, 94 (15), 153109.10.1063/1.3116645. DOI
Baffou G.; Berto P.; Bermúdez Ureña E.; Quidant R.; Monneret S.; Polleux J.; Rigneault H. Photoinduced Heating of Nanoparticle Arrays. ACS Nano 2013, 7 (8), 6478–6488. 10.1021/nn401924n. PubMed DOI
Richardson H. H.; Carlson M. T.; Tandler P. J.; Hernandez P.; Govorov A. O. Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions. Nano Lett. 2009, 9 (3), 1139–1146. 10.1021/nl8036905. PubMed DOI PMC
Baffou G.; Cichos F.; Quidant R. Applications and Challenges of Thermoplasmonics. Nat. Mater. 2020, 19 (9), 946–958. 10.1038/s41563-020-0740-6. PubMed DOI
Chirumamilla M.; Roberts A. S.; Ding F.; Wang D.; Kristensen P. K.; Bozhevolnyi S. I.; Pedersen K. Multilayer Tungsten-Alumina-Based Broadband Light Absorbers for High-Temperature Applications. Opt. Mater. Express 2016, 6 (8), 2704–2714. 10.1364/OME.6.002704. DOI
Chen T.-A.; Un I.-W.; Wei C.-C.; Lu Y.-J.; Tsai D. P.; Yen T.-J. Alternating Nanolayers of Dielectric MgF2 and Metallic Ag as Hyperbolic Metamaterials: Probing Surface States and Optical Topological Phase Transition and Implications for Sensing Applications. ACS Appl. Nano Mater. 2021, 4 (2), 2211–2217. 10.1021/acsanm.1c00030. DOI
Li W.; Guler U.; Kinsey N.; Naik G. V.; Boltasseva A.; Guan J.; Shalaev V. M.; Kildishev A. V. Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber. Adv. Mater. 2014, 26 (47), 7959–7965. 10.1002/adma.201401874. PubMed DOI
Ding F.; Dai J.; Chen Y.; Zhu J.; Jin Y.; Bozhevolnyi S. I. Broadband Near-Infrared Metamaterial Absorbers Utilizing Highly Lossy Metals. Sci. Rep. 2016, 6 (1), 39445.10.1038/srep39445. PubMed DOI PMC
Jahani S.; Jacob Z. All-Dielectric Metamaterials. Nat. Nanotechnol. 2016, 11 (1), 23–36. 10.1038/nnano.2015.304. PubMed DOI
Castellanos G. W.; Bai P.; Gómez Rivas J. Lattice Resonances in Dielectric Metasurfaces. J. Appl. Phys. 2019, 125 (21), 213105.10.1063/1.5094122. DOI
Luk’yanchuk B.; Zheludev N. I.; Maier S. A.; Halas N. J.; Nordlander P.; Giessen H.; Chong C. T. The Fano Resonance in Plasmonic Nanostructures and Metamaterials. Nat. Mater. 2010, 9 (9), 707–715. 10.1038/nmat2810. PubMed DOI
Limonov M. F.; Rybin M. V.; Poddubny A. N.; Kivshar Y. S. Fano Resonances in Photonics. Nat. Photonics 2017, 11 (9), 543–554. 10.1038/nphoton.2017.142. DOI
Campione S.; Guclu C.; Ragan R.; Capolino F. Enhanced Magnetic and Electric Fields via Fano Resonances in Metasurfaces of Circular Clusters of Plasmonic Nanoparticles. ACS Photonics 2014, 1 (3), 254–260. 10.1021/ph4001313. DOI
Liu Z.; Ye J. Highly Controllable Double Fano Resonances in Plasmonic Metasurfaces. Nanoscale 2016, 8 (40), 17665–17674. 10.1039/C6NR06388H. PubMed DOI
Shah Y. D.; Grant J.; Hao D.; Kenney M.; Pusino V.; Cumming D. R. S. Ultra-Narrow Line Width Polarization-Insensitive Filter Using a Symmetry-Breaking Selective Plasmonic Metasurface. ACS Photonics 2018, 5 (2), 663–669. 10.1021/acsphotonics.7b01011. DOI
Limonov M. F. Fano Resonance for Applications. Adv. Opt. Photonics 2021, 13 (3), 703–771. 10.1364/AOP.420731. DOI
Campione S.; Liu S.; Basilio L. I.; Warne L. K.; Langston W. L.; Luk T. S.; Wendt J. R.; Reno J. L.; Keeler G. A.; Brener I.; Sinclair M. B. Broken Symmetry Dielectric Resonators for High Quality Factor Fano Metasurfaces. ACS Photonics 2016, 3 (12), 2362–2367. 10.1021/acsphotonics.6b00556. DOI
Liu Y.-C.; Li B.-B.; Xiao Y.-F. Electromagnetically Induced Transparency in Optical Microcavities. Nanophotonics 2017, 6 (5), 789–811. 10.1515/nanoph-2016-0168. DOI
Hsu C. W.; Zhen B.; Stone A. D.; Joannopoulos J. D.; Soljačić M. Bound States in the Continuum. Nat. Rev. Mater. 2016, 1 (9), 1–13. 10.1038/natrevmats.2016.48. DOI
Koshelev K.; Bogdanov A.; Kivshar Y. Meta-Optics and Bound States in the Continuum. Sci. Bull. 2019, 64 (12), 836–842. 10.1016/j.scib.2018.12.003. PubMed DOI
Koshelev K.; Kruk S.; Melik-Gaykazyan E.; Choi J.-H.; Bogdanov A.; Park H.-G.; Kivshar Y. Subwavelength Dielectric Resonators for Nonlinear Nanophotonics. Science 2020, 367 (6475), 288–292. 10.1126/science.aaz3985. PubMed DOI
Zhou C.; Huang L.; Jin R.; Xu L.; Li G.; Rahmani M.; Chen X.; Lu W.; Miroshnichenko A. E. Bound States in the Continuum in Asymmetric Dielectric Metasurfaces. Laser Photonics Rev. 2023, 17 (3), 2200564.10.1002/lpor.202200564. DOI
Yang Y.; Kravchenko I. I.; Briggs D. P.; Valentine J. All-Dielectric Metasurface Analogue of Electromagnetically Induced Transparency. Nat. Commun. 2014, 5 (1), 5753.10.1038/ncomms6753. PubMed DOI
Miroshnichenko A. E.; Evlyukhin A. B.; Yu Y. F.; Bakker R. M.; Chipouline A.; Kuznetsov A. I.; Luk’yanchuk B.; Chichkov B. N.; Kivshar Y. S. Nonradiating Anapole Modes in Dielectric Nanoparticles. Nat. Commun. 2015, 6 (1), 8069.10.1038/ncomms9069. PubMed DOI PMC
Savinov V.; Papasimakis N.; Tsai D. P.; Zheludev N. I. Optical Anapoles. Commun. Phys. 2019, 2 (1), 1–4. 10.1038/s42005-019-0167-z. DOI
Guan J.; Park J.-E.; Deng S.; Tan M. J. H.; Hu J.; Odom T. W. Light-Matter Interactions in Hybrid Material Metasurfaces. Chem. Rev. 2022, 122 (19), 15177–15203. 10.1021/acs.chemrev.2c00011. PubMed DOI
Wang F.; Harutyunyan H. Tailoring the Quality Factors and Nonlinear Response in Hybrid Plasmonic-Dielectric Metasurfaces. Opt. Express 2018, 26 (1), 120–129. 10.1364/OE.26.000120. PubMed DOI
Huang Y.; Liu L.; Pu M.; Li X.; Ma X.; Luo X. A Refractory Metamaterial Absorber for Ultra-Broadband, Omnidirectional and Polarization-Independent Absorption in the UV-NIR Spectrum. Nanoscale 2018, 10 (17), 8298–8303. 10.1039/C8NR01728J. PubMed DOI
Yang J.; Gurung S.; Bej S.; Ni P.; Howard Lee H. W. Active Optical Metasurfaces: Comprehensive Review on Physics, Mechanisms, and Prospective Applications. Rep. Prog. Phys. 2022, 85 (3), 036101.10.1088/1361-6633/ac2aaf. PubMed DOI
Wang Q.; Rogers E. T. F.; Gholipour B.; Wang C.-M.; Yuan G.; Teng J.; Zheludev N. I. Optically Reconfigurable Metasurfaces and Photonic Devices Based on Phase Change Materials. Nat. Photonics 2016, 10 (1), 60–65. 10.1038/nphoton.2015.247. DOI
Ladutenko K.; Pal U.; Rivera A.; Peña-Rodríguez O. Mie Calculation of Electromagnetic Near-Field for a Multilayered Sphere. Comput. Phys. Commun. 2017, 214, 225–230. 10.1016/j.cpc.2017.01.017. DOI
Bin-Alam M. S.; Reshef O.; Mamchur Y.; Alam M. Z.; Carlow G.; Upham J.; Sullivan B. T.; Ménard J.-M.; Huttunen M. J.; Boyd R. W.; Dolgaleva K. Ultra-High-Q Resonances in Plasmonic Metasurfaces. Nat. Commun. 2021, 12 (1), 974.10.1038/s41467-021-21196-2. PubMed DOI PMC
Campbell S. D.; Sell D.; Jenkins R. P.; Whiting E. B.; Fan J. A.; Werner D. H. Review of Numerical Optimization Techniques for Meta-Device Design [Invited]. Opt. Mater. Express 2019, 9 (4), 1842.10.1364/OME.9.001842. DOI
Minkov M.; Williamson I. A. D.; Andreani L. C.; Gerace D.; Lou B.; Song A. Y.; Hughes T. W.; Fan S. Inverse Design of Photonic Crystals through Automatic Differentiation. ACS Photonics 2020, 7 (7), 1729–1741. 10.1021/acsphotonics.0c00327. DOI
Peurifoy J.; Shen Y.; Jing L.; Yang Y.; Cano-Renteria F.; DeLacy B. G.; Joannopoulos J. D.; Tegmark M.; Soljačić M. Nanophotonic Particle Simulation and Inverse Design Using Artificial Neural Networks. Sci. Adv. 2018, 4 (6), eaar420610.1126/sciadv.aar4206. PubMed DOI PMC
Krasikov S.; Tranter A.; Bogdanov A.; Kivshar Y. Intelligent Metaphotonics Empowered by Machine Learning. Opto-Electron. Adv. 2022, 5 (3), 210147–24. 10.29026/oea.2022.210147. DOI
An S.; Zheng B.; Tang H.; Shalaginov M. Y.; Zhou L.; Li H.; Kang M.; Richardson K. A.; Gu T.; Hu J.; Fowler C.; Zhang H. Multifunctional Metasurface Design with a Generative Adversarial Network. Adv. Opt. Mater. 2021, 9 (5), 2001433.10.1002/adom.202001433. DOI
Ma W.; Liu Z.; Kudyshev Z. A.; Boltasseva A.; Cai W.; Liu Y. Deep Learning for the Design of Photonic Structures. Nat. Photonics 2021, 15 (2), 77–90. 10.1038/s41566-020-0685-y. DOI
Jiang J.; Chen M.; Fan J. A. Deep Neural Networks for the Evaluation and Design of Photonic Devices. Nat. Rev. Mater. 2021, 6 (8), 679–700. 10.1038/s41578-020-00260-1. DOI
Yao K.; Unni R.; Zheng Y. Intelligent Nanophotonics: Merging Photonics and Artificial Intelligence at the Nanoscale. Nanophotonics 2019, 8 (3), 339–366. 10.1515/nanoph-2018-0183. PubMed DOI PMC
Fan J. A. Freeform Metasurface Design Based on Topology Optimization. MRS Bull. 2020, 45 (3), 196–201. 10.1557/mrs.2020.62. DOI
Lin Z.; Liu V.; Pestourie R.; Johnson S. G. Topology Optimization of Freeform Large-Area Metasurfaces. Opt. Express 2019, 27 (11), 15765.10.1364/OE.27.015765. PubMed DOI
Wang E. W.; Sell D.; Phan T.; Fan J. A. Robust Design of Topology-Optimized Metasurfaces. Opt. Mater. Express 2019, 9 (2), 469–482. 10.1364/OME.9.000469. DOI
Jiang J.; Fan J. A. Global Optimization of Dielectric Metasurfaces Using a Physics-Driven Neural Network. Nano Lett. 2019, 19 (8), 5366–5372. 10.1021/acs.nanolett.9b01857. PubMed DOI
Diaz A. R.; Sigmund O. A Topology Optimization Method for Design of Negative Permeability Metamaterials. Struct. Multidiscip. Optim. 2010, 41 (2), 163–177. 10.1007/s00158-009-0416-y. DOI
Christiansen R. E.; Sigmund O. Inverse Design in Photonics by Topology Optimization: Tutorial. JOSA B 2021, 38 (2), 496–509. 10.1364/JOSAB.406048. DOI
Lalau-Keraly C. M.; Bhargava S.; Miller O. D.; Yablonovitch E. Adjoint Shape Optimization Applied to Electromagnetic Design. Opt. Express 2013, 21 (18), 21693–21701. 10.1364/OE.21.021693. PubMed DOI
Khatib O.; Ren S.; Malof J.; Padilla W. J. Deep Learning the Electromagnetic Properties of Metamaterials—A Comprehensive Review. Adv. Funct. Mater. 2021, 31 (31), 2101748.10.1002/adfm.202101748. DOI
Rycroft M. J. Computational Electrodynamics, the Finite-Difference Time-Domain Method. J. Atmospheric Terr. Phys. 1996, 58 (15), 1817–1818. 10.1016/0021-9169(96)80449-1. DOI
Rumpf R. C. Simple Implementation of Arbitrarily Shaped Total-Field/Scattered-Field Regions in Finite-Difference Frequency-Domain. Prog. Electromagn. Res. B 2012, 36, 221–248. 10.2528/PIERB11092006. DOI
Sumithra P.; Thiripurasundari D. Review on Computational Electromagnetics Methods. Adv. Electromagnetics 2017, 6 (1), 42–55. 10.7716/aem.v6i1.407. DOI
Christiansen R. E.; Lin Z.; Roques-Carmes C.; Salamin Y.; Kooi S. E.; Joannopoulos J. D.; Soljačić M.; Johnson S. G. Fullwave Maxwell Inverse Design of Axisymmetric, Tunable, and Multi-Scale Multi-Wavelength Metalenses. Opt. Express 2020, 28 (23), 33854.10.1364/OE.403192. PubMed DOI
Lin Z.; Roques-Carmes C.; Christiansen R. E.; Soljačić M.; Johnson S. G. Computational Inverse Design for Ultra-Compact Single-Piece Metalenses Free of Chromatic and Angular Aberration. Appl. Phys. Lett. 2021, 118 (4), 041104.10.1063/5.0035419. DOI
Chung H.; Miller O. D. High-NA Achromatic Metalenses by Inverse Design. Opt. Express 2020, 28 (5), 6945.10.1364/OE.385440. PubMed DOI
Pestourie R.; Mroueh Y.; Nguyen T. V.; Das P.; Johnson S. G. Active Learning of Deep Surrogates for PDEs: Application to Metasurface Design. Npj Comput. Mater. 2020, 6 (1), 164.10.1038/s41524-020-00431-2. DOI
Arbabi E.; Arbabi A.; Kamali S. M.; Horie Y.; Faraon A. Multiwavelength Polarization-Insensitive Lenses Based on Dielectric Metasurfaces with Meta-Molecules. Optica 2016, 3 (6), 628.10.1364/OPTICA.3.000628. DOI
Fan Z.-B.; Shao Z.-K.; Xie M.-Y.; Pang X.-N.; Ruan W.-S.; Zhao F.-L.; Chen Y.-J.; Yu S.-Y.; Dong J.-W. Silicon Nitride Metalenses for Close-to-One Numerical Aperture and Wide-Angle Visible Imaging. Phys. Rev. Appl. 2018, 10 (1), 014005.10.1103/PhysRevApplied.10.014005. DOI
Shi Z.; Khorasaninejad M.; Huang Y.-W.; Roques-Carmes C.; Zhu A. Y.; Chen W. T.; Sanjeev V.; Ding Z.-W.; Tamagnone M.; Chaudhary K.; Devlin R. C.; Qiu C.-W.; Capasso F. Single-Layer Metasurface with Controllable Multiwavelength Functions. Nano Lett. 2018, 18 (4), 2420–2427. 10.1021/acs.nanolett.7b05458. PubMed DOI
Venter G.Review of Optimization Techniques. In Encyclopedia of Aerospace Engineering; Blockley R., Shyy W., Eds.; John Wiley & Sons, Ltd: Chichester, U.K., 2010; p eae495. 10.1002/9780470686652.eae495. DOI
Lalau-Keraly C. M.; Bhargava S.; Miller O. D.; Yablonovitch E. Adjoint Shape Optimization Applied to Electromagnetic Design. Opt. Express 2013, 21 (18), 21693.10.1364/OE.21.021693. PubMed DOI
Bendsøe M. P.; Sigmund O.. Topology Optimization; Springer: Berlin, Heidelberg, 2004. 10.1007/978-3-662-05086-6. DOI
Jenkins R. P.; Whiting E. B.; Campbell S. D.; Werner D. H. Improved Convergence in Planar Nanophotonic Topology Optimization via the Multigradient. Photonics Nanostructures - Fundam. Appl. 2022, 52, 101067.10.1016/j.photonics.2022.101067. DOI
Yu S.; Wang C.; Sun C.; Chen W. Topology Optimization for Light-Trapping Structure in Solar Cells. Struct. Multidiscip. Optim. 2014, 50 (3), 367–382. 10.1007/s00158-014-1077-z. DOI
Park J.; Kim S.; Nam D. W.; Chung H.; Park C. Y.; Jang M. S. Free-Form Optimization of Nanophotonic Devices: From Classical Methods to Deep Learning. Nanophotonics 2022, 11 (9), 1809–1845. 10.1515/nanoph-2021-0713. DOI
Martí R.Multi-Start Methods. In Handbook of Metaheuristics; Glover F., Kochenberger G. A., Eds.; International Series in Operations Research & Management Science; Kluwer Academic Publishers: Boston, 2003; Vol. 57, pp 355–368. 10.1007/0-306-48056-5_12. DOI
Floudas C. A.Deterministic Global Optimization; Pardalos P., Horst R., Eds.; Nonconvex Optimization and Its Applications; Springer US: Boston, MA, 2000; Vol. 37. 10.1007/978-1-4757-4949-6. DOI
Holm E. A.; Cohn R.; Gao N.; Kitahara A. R.; Matson T. P.; Lei B.; Yarasi S. R. Overview: Computer Vision and Machine Learning for Microstructural Characterization and Analysis. Metall. Mater. Trans. A 2020, 51 (12), 5985–5999. 10.1007/s11661-020-06008-4. DOI
Nassif A. B.; Shahin I.; Attili I.; Azzeh M.; Shaalan K. Speech Recognition Using Deep Neural Networks: A Systematic Review. IEEE Access 2019, 7, 19143–19165. 10.1109/ACCESS.2019.2896880. DOI
Otter D. W.; Medina J. R.; Kalita J. K. A Survey of the Usages of Deep Learning for Natural Language Processing. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32 (2), 604–624. 10.1109/TNNLS.2020.2979670. PubMed DOI
Kim D.; Kim S.-H.; Kim T.; Kang B. B.; Lee M.; Park W.; Ku S.; Kim D.; Kwon J.; Lee H.; Bae J.; Park Y.-L.; Cho K.-J.; Jo S. Review of Machine Learning Methods in Soft Robotics. PLoS One 2021, 16 (2), e024610210.1371/journal.pone.0246102. PubMed DOI PMC
Punia S. K.; Kumar M.; Stephan T.; Deverajan G. G.; Patan R. Performance Analysis of Machine Learning Algorithms for Big Data Classification: ML and AI-Based Algorithms for Big Data Analysis. Int. J. E-Health Med. Commun. 2021, 12 (4), 60–75. 10.4018/IJEHMC.20210701.oa4. DOI
Ma W.; Liu Z.; Kudyshev Z. A.; Boltasseva A.; Cai W.; Liu Y. Deep Learning for the Design of Photonic Structures. Nat. Photonics 2021, 15 (2), 77–90. 10.1038/s41566-020-0685-y. DOI
Malkiel I.; Mrejen M.; Nagler A.; Arieli U.; Wolf L.; Suchowski H. Plasmonic Nanostructure Design and Characterization via Deep Learning. Light Sci. Appl. 2018, 7 (1), 60.10.1038/s41377-018-0060-7. PubMed DOI PMC
Yesilyurt O.; Peana S.; Mkhitaryan V.; Pagadala K.; Shalaev V. M.; Kildishev A. V.; Boltasseva A. Fabrication-Conscious Neural Network Based Inverse Design of Single-Material Variable-Index Multilayer Films:. Nanophotonics 2023, 12 (5), 993–1006. 10.1515/nanoph-2022-0537. DOI
Sajedian I.; Kim J.; Rho J. Finding the Optical Properties of Plasmonic Structures by Image Processing Using a Combination of Convolutional Neural Networks and Recurrent Neural Networks. Microsyst. Nanoeng. 2019, 5 (1), 27.10.1038/s41378-019-0069-y. PubMed DOI PMC
So S.; Rho J. Designing Nanophotonic Structures Using Conditional Deep Convolutional Generative Adversarial Networks. Nanophotonics 2019, 8 (7), 1255–1261. 10.1515/nanoph-2019-0117. DOI
Ma W.; Liu Y. A Data-Efficient Self-Supervised Deep Learning Model for Design and Characterization of Nanophotonic Structures. Sci. China Phys. Mech. Astron. 2020, 63 (8), 284212.10.1007/s11433-020-1575-2. DOI
Kudyshev Z. A.; Kildishev A. V.; Shalaev V. M.; Boltasseva A. Machine Learning-Assisted Global Optimization of Photonic Devices. Nanophotonics 2020, 10 (1), 371–383. 10.1515/nanoph-2020-0376. DOI
Kudyshev Z. A.; Kildishev A. V.; Shalaev V. M.; Boltasseva A. Machine-Learning-Assisted Metasurface Design for High-Efficiency Thermal Emitter Optimization. Appl. Phys. Rev. 2020, 7 (2), 021407.10.1063/1.5134792. DOI
Xu D.; Luo Y.; Luo J.; Pu M.; Zhang Y.; Ha Y.; Luo X. Efficient Design of a Dielectric Metasurface with Transfer Learning and Genetic Algorithm. Opt. Mater. Express 2021, 11 (7), 1852.10.1364/OME.427426. DOI
Zhu R.; Qiu T.; Wang J.; Sui S.; Li Y.; Feng M.; Ma H.; Qu S. Multiplexing the Aperture of a Metasurface: Inverse Design via Deep-Learning-Forward Genetic Algorithm. J. Phys. Appl. Phys. 2020, 53 (45), 455002.10.1088/1361-6463/aba64f. DOI
Elsawy M. M. R.; Lanteri S.; Duvigneau R.; Brière G.; Mohamed M. S.; Genevet P. Global Optimization of Metasurface Designs Using Statistical Learning Methods. Sci. Rep. 2019, 9 (1), 17918.10.1038/s41598-019-53878-9. PubMed DOI PMC
Elsawy M. M. R.; Lanteri S.; Duvigneau R.; Fan J. A.; Genevet P. Numerical Optimization Methods for Metasurfaces. Laser Photonics Rev. 2020, 14 (10), 1900445.10.1002/lpor.201900445. DOI
Jiang J.; Sell D.; Hoyer S.; Hickey J.; Yang J.; Fan J. A. Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks. ACS Nano 2019, 13 (8), 8872–8878. 10.1021/acsnano.9b02371. PubMed DOI
Sullivan J.; Mirhashemi A.; Lee J. Deep Learning Based Analysis of Microstructured Materials for Thermal Radiation Control. Sci. Rep. 2022, 12 (1), 9785.10.1038/s41598-022-13832-8. PubMed DOI PMC
Du X.; Zhou C.; Bai H.; Liu X. Inverse Design Paradigm for Fast and Accurate Prediction of a Functional Metasurface via Deep Convolutional Neural Networks. Opt. Mater. Express 2022, 12 (10), 4104.10.1364/OME.470819. DOI
So S.; Yang Y.; Lee T.; Rho J. On-Demand Design of Spectrally Sensitive Multiband Absorbers Using an Artificial Neural Network. Photonics Res. 2021, 9 (4), B153.10.1364/PRJ.415789. DOI
Ding W.; Chen J.; Wu R.-x. A Generative Meta-Atom Model for Metasurface-Based Absorber Designs. Adv. Opt. Mater. 2023, 11, 2201959.10.1002/adom.202201959. DOI
Deng Y.; Ren S.; Malof J.; Padilla W. J. Deep Inverse Photonic Design: A Tutorial. Photonics Nanostructures - Fundam. Appl. 2022, 52, 101070.10.1016/j.photonics.2022.101070. DOI
Aryal U. K.; Ahmadpour M.; Turkovic V.; Rubahn H.-G.; Di Carlo A.; Madsen M. 2D Materials for Organic and Perovskite Photovoltaics. Nano Energy 2022, 94, 106833.10.1016/j.nanoen.2021.106833. DOI
Günes S.; Neugebauer H.; Sariciftci N. S. Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 2007, 107 (4), 1324–1338. 10.1021/cr050149z. PubMed DOI
Atwater H. A.; Polman A. Plasmonics for Improved Photovoltaic Devices. Nat. Mater. 2010, 9 (3), 205–213. 10.1038/nmat2629. PubMed DOI
Elshorbagy M. H.; Sánchez P. A.; Cuadrado A.; Alda J.; Esteban Ó. Resonant Nano-Dimer Metasurface for Ultra-Thin a-Si:H Solar Cells. Sci. Rep. 2021, 11 (1), 7179.10.1038/s41598-021-86738-6. PubMed DOI PMC
Pala R. A.; Butun S.; Aydin K.; Atwater H. A. Omnidirectional and Broadband Absorption Enhancement from Trapezoidal Mie Resonators in Semiconductor Metasurfaces. Sci. Rep. 2016, 6 (1), 31451.10.1038/srep31451. PubMed DOI PMC
Odebo Länk N.; Verre R.; Johansson P.; Käll M. Large-Scale Silicon Nanophotonic Metasurfaces with Polarization Independent Near-Perfect Absorption. Nano Lett. 2017, 17 (5), 3054–3060. 10.1021/acs.nanolett.7b00416. PubMed DOI
Esfandyarpour M.; Garnett E. C.; Cui Y.; McGehee M. D.; Brongersma M. L. Metamaterial Mirrors in Optoelectronic Devices. Nat. Nanotechnol. 2014, 9 (7), 542–547. 10.1038/nnano.2014.117. PubMed DOI
Ou Q.-D.; Xie H.-J.; Chen J.-D.; Zhou L.; Li Y.-Q.; Tang J.-X. Enhanced Light Harvesting in Flexible Polymer Solar Cells: Synergistic Simulation of a Plasmonic Meta-Mirror and a Transparent Silver Mesowire Electrode. J. Mater. Chem. A 2016, 4 (48), 18952–18962. 10.1039/C6TA08119C. DOI
Shameli M. A.; Yousefi L. Absorption Enhancement in Thin-Film Solar Cells Using an Integrated Metasurface Lens. JOSA B 2018, 35 (2), 223–230. 10.1364/JOSAB.35.000223. DOI
Cai J.; Qi L. Recent Advances in Antireflective Surfaces Based on Nanostructure Arrays. Mater. Horiz. 2015, 2 (1), 37–53. 10.1039/C4MH00140K. DOI
Spinelli P.; Verschuuren M. A.; Polman A. Broadband Omnidirectional Antireflection Coating Based on Subwavelength Surface Mie Resonators. Nat. Commun. 2012, 3 (1), 692.10.1038/ncomms1691. PubMed DOI PMC
Pecora E. F.; Cordaro A.; Kik P. G.; Brongersma M. L. Broadband Antireflection Coatings Employing Multiresonant Dielectric Metasurfaces. ACS Photonics 2018, 5 (11), 4456–4462. 10.1021/acsphotonics.8b00913. DOI
Piechulla P. M.; Slivina E.; Bätzner D.; Fernandez-Corbaton I.; Dhawan P.; Wehrspohn R. B.; Sprafke A. N.; Rockstuhl C. Antireflective Huygens’ Metasurface with Correlated Disorder Made from High-Index Disks Implemented into Silicon Heterojunction Solar Cells. ACS Photonics 2021, 8 (12), 3476–3485. 10.1021/acsphotonics.1c00601. DOI
Uleman F.; Neder V.; Cordaro A.; Alù A.; Polman A. Resonant Metagratings for Spectral and Angular Control of Light for Colored Rooftop Photovoltaics. ACS Appl. Energy Mater. 2020, 3 (4), 3150–3156. 10.1021/acsaem.0c00027. DOI
Ferry V. E.; Sweatlock L. A.; Pacifici D.; Atwater H. A. Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells. Nano Lett. 2008, 8 (12), 4391–4397. 10.1021/nl8022548. PubMed DOI
Simovski C.; Morits D.; Voroshilov P.; Guzhva M.; Belov P.; Kivshar Y. Enhanced Efficiency of Light-Trapping Nanoantenna Arrays for Thin-Film Solar Cells. Opt. Express 2013, 21 (104), A714–A725. 10.1364/OE.21.00A714. PubMed DOI
Voroshilov P. M.; Ovchinnikov V.; Papadimitratos A.; Zakhidov A. A.; Simovski C. R. Light Trapping Enhancement by Silver Nanoantennas in Organic Solar Cells. ACS Photonics 2018, 5 (5), 1767–1772. 10.1021/acsphotonics.7b01459. DOI
Chen X.; Shen S.; Guo L.; Mao S. S. Semiconductor-Based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110 (11), 6503–6570. 10.1021/cr1001645. PubMed DOI
Ghobadi A.; Ulusoy Ghobadi T. G.; Karadas F.; Ozbay E. Semiconductor Thin Film Based Metasurfaces and Metamaterials for Photovoltaic and Photoelectrochemical Water Splitting Applications. Adv. Opt. Mater. 2019, 7 (14), 1900028.10.1002/adom.201900028. DOI
Nwosu U.; Wang A.; Palma B.; Zhao H.; Khan M. A.; Kibria M.; Hu J. Selective Biomass Photoreforming for Valuable Chemicals and Fuels: A Critical Review. Renew. Sustain. Energy Rev. 2021, 148, 111266.10.1016/j.rser.2021.111266. DOI
Ma J.; Liu K.; Yang X.; Jin D.; Li Y.; Jiao G.; Zhou J.; Sun R. Recent Advances and Challenges in Photoreforming of Biomass-Derived Feedstocks into Hydrogen, Biofuels, or Chemicals by Using Functional Carbon Nitride Photocatalysts. ChemSusChem 2021, 14 (22), 4903–4922. 10.1002/cssc.202101173. PubMed DOI
Bosomtwi D.; Osiński M.; Babicheva V. E. Lattice Effect for Enhanced Hot-Electron Generation in Nanoelectrodes. Opt. Mater. Express 2021, 11 (9), 3232–3244. 10.1364/OME.430577. DOI
Deng S.; Zhang B.; Choo P.; Smeets P. J. M.; Odom T. W. Plasmonic Photoelectrocatalysis in Copper-Platinum Core-Shell Nanoparticle Lattices. Nano Lett. 2021, 21 (3), 1523–1529. 10.1021/acs.nanolett.0c05029. PubMed DOI
Xu R.; Wen L.; Wang Z.; Zhao H.; Mu G.; Zeng Z.; Zhou M.; Bohm S.; Zhang H.; Wu Y.; Runge E.; Lei Y. Programmable Multiple Plasmonic Resonances of Nanoparticle Superlattice for Enhancing Photoelectrochemical Activity. Adv. Funct. Mater. 2020, 30 (48), 2005170.10.1002/adfm.202005170. DOI
Li J.; Cushing S. K.; Zheng P.; Meng F.; Chu D.; Wu N. Plasmon-Induced Photonic and Energy-Transfer Enhancement of Solar Water Splitting by a Hematite Nanorod Array. Nat. Commun. 2013, 4 (1), 2651.10.1038/ncomms3651. PubMed DOI
Yalavarthi R.; Yesilyurt O.; Henrotte O.; Kment Š.; Shalaev V. M.; Boltasseva A.; Naldoni A. Multimetallic Metasurfaces for Enhanced Electrocatalytic Oxidations in Direct Alcohol Fuel Cells. Laser Photonics Rev. 2022, 16 (7), 2200137.10.1002/lpor.202200137. DOI
Yalavarthi R.; Henrotte O.; Kment Š.; Naldoni A. Determining the Role of Pd Catalyst Morphology and Deposition Criteria over Large Area Plasmonic Metasurfaces during Light-Enhanced Electrochemical Oxidation of Formic Acid. J. Chem. Phys. 2022, 157 (11), 114706.10.1063/5.0102012. PubMed DOI
Wu Y.; Yang W.; Fan Y.; Song Q.; Xiao S. TiO2Metasurfaces: From Visible Planar Photonics to Photochemistry. Sci. Adv. 2019, 5 (11), eaax093910.1126/sciadv.aax0939. PubMed DOI PMC
Hu H.; Weber T.; Bienek O.; Wester A.; Hüttenhofer L.; Sharp I. D.; Maier S. A.; Tittl A.; Cortés E. Catalytic Metasurfaces Empowered by Bound States in the Continuum. ACS Nano 2022, 16 (8), 13057–13068. 10.1021/acsnano.2c05680. PubMed DOI PMC
Xiao Q.; Connell T. U.; Cadusch J. J.; Roberts A.; Chesman A. S. R.; Gómez D. E. Hot-Carrier Organic Synthesis via the Near-Perfect Absorption of Light. ACS Catal. 2018, 8 (11), 10331–10339. 10.1021/acscatal.8b03486. DOI
Wang W.; Besteiro L. V.; Liu T.; Wu C.; Sun J.; Yu P.; Chang L.; Wang Z.; Govorov A. O. Generation of Hot Electrons with Chiral Metamaterial Perfect Absorbers: Giant Optical Chirality for Polarization-Sensitive Photochemistry. ACS Photonics 2019, 6 (12), 3241–3252. 10.1021/acsphotonics.9b01180. DOI
Wei X.; Liu J.; Xia G.-J.; Deng J.; Sun P.; Chruma J. J.; Wu W.; Yang C.; Wang Y.-G.; Huang Z. Enantioselective Photoinduced Cyclodimerization of a Prochiral Anthracene Derivative Adsorbed on Helical Metal Nanostructures. Nat. Chem. 2020, 12 (6), 551–559. 10.1038/s41557-020-0453-0. PubMed DOI
Xiao Q.; Kinnear C.; Connell T. U.; Kashif M. K.; Easton C. D.; Seeber A.; Bourgeois L.; Bonin Gus. O.; Duffy N. W.; Chesman A. S. R.; Gómez D. E. Dual Photolytic Pathways in an Alloyed Plasmonic Near-Perfect Absorber: Implications for Photoelectrocatalysis. ACS Appl. Nano Mater. 2021, 4 (3), 2702–2712. 10.1021/acsanm.0c03341. DOI
Baranov D. G.; Zuev D. A.; Lepeshov S. I.; Kotov O. V.; Krasnok A. E.; Evlyukhin A. B.; Chichkov B. N. All-Dielectric Nanophotonics: The Quest for Better Materials and Fabrication Techniques. Optica 2017, 4 (7), 814–825. 10.1364/OPTICA.4.000814. DOI
Naldoni A.; Guler U.; Wang Z.; Marelli M.; Malara F.; Meng X.; Besteiro L. V.; Govorov A. O.; Kildishev A. V.; Boltasseva A.; Shalaev V. M. Broadband Hot-Electron Collection for Solar Water Splitting with Plasmonic Titanium Nitride. Adv. Opt. Mater. 2017, 5 (15), 1601031.10.1002/adom.201601031. DOI
Xu L.; Rahmani M.; Ma Y.; Smirnova D. A.; Kamali K. Z.; Deng F.; Chiang Y. K.; Huang L.; Zhang H.; Gould S.; Neshev D. N.; Miroshnichenko A. E. Enhanced Light-Matter Interactions in Dielectric Nanostructures via Machine-Learning Approach. Adv. Photonics 2020, 2 (2), 026003.10.1117/1.AP.2.2.026003. DOI
Ma W.; Xu Y.; Xiong B.; Deng L.; Peng R.-W.; Wang M.; Liu Y. Pushing the Limits of Functionality-Multiplexing Capability in Metasurface Design Based on Statistical Machine Learning. Adv. Mater. 2022, 34 (16), 2110022.10.1002/adma.202110022. PubMed DOI
Neumann O.; Neumann A. D.; Tian S.; Thibodeaux C.; Shubhankar S.; Müller J.; Silva E.; Alabastri A.; Bishnoi S. W.; Nordlander P.; Halas N. J. Combining Solar Steam Processing and Solar Distillation for Fully Off-Grid Production of Cellulosic Bioethanol. ACS Energy Lett. 2017, 2 (1), 8–13. 10.1021/acsenergylett.6b00520. DOI
Dongare P. D.; Alabastri A.; Pedersen S.; Zodrow K. R.; Hogan N. J.; Neumann O.; Wu J.; Wang T.; Deshmukh A.; Elimelech M.; Li Q.; Nordlander P.; Halas N. J. Nanophotonics-Enabled Solar Membrane Distillation for off-Grid Water Purification. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (27), 6936–6941. 10.1073/pnas.1701835114. PubMed DOI PMC
Schmid W.; Machorro-Ortiz A.; Jerome B.; Naldoni A.; Halas N. J.; Dongare P. D.; Alabastri A. Decentralized Solar-Driven Photothermal Desalination: An Interdisciplinary Challenge to Transition Lab-Scale Research to Off-Grid Applications. ACS Photonics 2022, 9 (12), 3764–3776. 10.1021/acsphotonics.2c01251. DOI
Zhou L.; Tan Y.; Wang J.; Xu W.; Yuan Y.; Cai W.; Zhu S.; Zhu J. 3D Self-Assembly of Aluminium Nanoparticles for Plasmon-Enhanced Solar Desalination. Nat. Photonics 2016, 10 (6), 393–398. 10.1038/nphoton.2016.75. DOI
Zhou L.; Tan Y.; Ji D.; Zhu B.; Zhang P.; Xu J.; Gan Q.; Yu Z.; Zhu J. Self-Assembly of Highly Efficient, Broadband Plasmonic Absorbers for Solar Steam Generation. Sci. Adv. 2016, 2 (4), e150122710.1126/sciadv.1501227. PubMed DOI PMC
Kaur M.; Ishii S.; Shinde S. L.; Nagao T. All-Ceramic Solar-Driven Water Purifier Based on Anodized Aluminum Oxide and Plasmonic Titanium Nitride. Adv. Sustain. Syst. 2019, 3 (2), 1800112.10.1002/adsu.201800112. DOI
Liu Y.; Song H.; Bei Z.; Zhou L.; Zhao C.; Ooi B. S.; Gan Q. Ultra-Thin Dark Amorphous TiOx Hollow Nanotubes for Full Spectrum Solar Energy Harvesting and Conversion‡. Nano Energy 2021, 84, 105872.10.1016/j.nanoen.2021.105872. DOI
Mascaretti L.; Schirato A.; Zbořil R.; Kment Š.; Schmuki P.; Alabastri A.; Naldoni A. Solar Steam Generation on Scalable Ultrathin Thermoplasmonic TiN Nanocavity Arrays. Nano Energy 2021, 83, 105828.10.1016/j.nanoen.2021.105828. DOI
Chen W.; Gao Y.; Li Y.; Yan Y.; Ou J.-Y.; Ma W.; Zhu J. Broadband Solar Metamaterial Absorbers Empowered by Transformer-Based Deep Learning. Adv. Sci. 2023, 10 (13), 2206718.10.1002/advs.202206718. PubMed DOI PMC
Chang C.-C.; Kort-Kamp W. J. M.; Nogan J.; Luk T. S.; Azad A. K.; Taylor A. J.; Dalvit D. A. R.; Sykora M.; Chen H.-T. High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting. Nano Lett. 2018, 18 (12), 7665–7673. 10.1021/acs.nanolett.8b03322. PubMed DOI
Rinnerbauer V.; Lenert A.; Bierman D. M.; Yeng Y. X.; Chan W. R.; Geil R. D.; Senkevich J. J.; Joannopoulos J. D.; Wang E. N.; Soljačić M.; Celanovic I. Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics. Adv. Energy Mater. 2014, 4 (12), 1400334.10.1002/aenm.201400334. DOI
Rana A. S.; Zubair M.; Chen Y.; Wang Z.; Deng J.; Chani M. T. S.; Danner A.; Teng J.; Mehmood M. Q. Broadband Solar Absorption by Chromium Metasurface for Highly Efficient Solar Thermophotovoltaic Systems. Renew. Sustain. Energy Rev. 2023, 171, 113005.10.1016/j.rser.2022.113005. DOI
Chirumamilla M.; Chirumamilla A.; Yang Y.; Roberts A. S.; Kristensen P. K.; Chaudhuri K.; Boltasseva A.; Sutherland D. S.; Bozhevolnyi S. I.; Pedersen K. Large-Area Ultrabroadband Absorber for Solar Thermophotovoltaics Based on 3D Titanium Nitride Nanopillars. Adv. Opt. Mater. 2017, 5 (22), 1700552.10.1002/adom.201700552. DOI
Chou J. B.; Yeng Y. X.; Lee Y. E.; Lenert A.; Rinnerbauer V.; Celanovic I.; Soljačić M.; Fang N. X.; Wang E. N.; Kim S.-G. Enabling Ideal Selective Solar Absorption with 2D Metallic Dielectric Photonic Crystals. Adv. Mater. 2014, 26 (47), 8041–8045. 10.1002/adma.201403302. PubMed DOI
Zhang F.; Li Y.-H.; Qi M.-Y.; Yamada Y. M. A.; Anpo M.; Tang Z.-R.; Xu Y.-J. Photothermal Catalytic CO2 Reduction over Nanomaterials. Chem. Catal. 2021, 1 (2), 272–297. 10.1016/j.checat.2021.01.003. DOI
Naldoni A.; Kudyshev Z. A.; Mascaretti L.; Sarmah S. P.; Rej S.; Froning J. P.; Tomanec O.; Yoo J. E.; Wang D.; Kment Š.; Montini T.; Fornasiero P.; Shalaev V. M.; Schmuki P.; Boltasseva A.; Zbořil R. Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis. Nano Lett. 2020, 20 (5), 3663–3672. 10.1021/acs.nanolett.0c00594. PubMed DOI
Nguyen N. T.; Xia M.; Duchesne P. N.; Wang L.; Mao C.; Ali F. M.; Yan T.; Li P.; Lu Z.-H.; Ozin G. A. Enhanced CO2 Photocatalysis by Indium Oxide Hydroxide Supported on TiN@TiO2 Nanotubes. Nano Lett. 2021, 21 (3), 1311–1319. 10.1021/acs.nanolett.0c04008. PubMed DOI
Hong J.; Xu C.; Deng B.; Gao Y.; Zhu X.; Zhang X.; Zhang Y. Photothermal Chemistry Based on Solar Energy: From Synergistic Effects to Practical Applications. Adv. Sci. 2022, 9 (3), 2103926.10.1002/advs.202103926. PubMed DOI PMC
Gao W.; Chen Y. Emerging Materials and Strategies for Passive Daytime Radiative Cooling. Small 2023, 19 (18), 2206145.10.1002/smll.202206145. PubMed DOI
Rephaeli E.; Raman A.; Fan S. Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling. Nano Lett. 2013, 13 (4), 1457–1461. 10.1021/nl4004283. PubMed DOI
Li W.; Shi Y.; Chen K.; Zhu L.; Fan S. A Comprehensive Photonic Approach for Solar Cell Cooling. ACS Photonics 2017, 4 (4), 774–782. 10.1021/acsphotonics.7b00089. DOI
Zhu L.; Raman A. P.; Fan S. Radiative Cooling of Solar Absorbers Using a Visibly Transparent Photonic Crystal Thermal Blackbody. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (40), 12282–12287. 10.1073/pnas.1509453112. PubMed DOI PMC
Hossain M. M.; Jia B.; Gu M. A Metamaterial Emitter for Highly Efficient Radiative Cooling. Adv. Opt. Mater. 2015, 3 (8), 1047–1051. 10.1002/adom.201500119. DOI
Cho J.-W.; Park S.-J.; Park S.-J.; Kim Y.-B.; Moon Y.-J.; Kim S.-K. Cooling Metals via Gap Plasmon Resonance. Nano Lett. 2021, 21 (9), 3974–3980. 10.1021/acs.nanolett.1c00741. PubMed DOI
Zou C.; Ren G.; Hossain M. M.; Nirantar S.; Withayachumnankul W.; Ahmed T.; Bhaskaran M.; Sriram S.; Gu M.; Fumeaux C. Metal-Loaded Dielectric Resonator Metasurfaces for Radiative Cooling. Adv. Opt. Mater. 2017, 5 (20), 1700460.10.1002/adom.201700460. DOI
Dang S.; Wang X.; Ye H. An Ultrathin Transparent Radiative Cooling Photonic Structure with a High NIR Reflection. Adv. Mater. Interfaces 2022, 9 (30), 2201050.10.1002/admi.202201050. DOI
Long L.; Taylor S.; Wang L. Enhanced Infrared Emission by Thermally Switching the Excitation of Magnetic Polariton with Scalable Microstructured VO2Metasurfaces. ACS Photonics 2020, 7 (8), 2219–2227. 10.1021/acsphotonics.0c00760. DOI
Sun K.; Xiao W.; Wheeler C.; Simeoni M.; Urbani A.; Gaspari M.; Mengali S.; de Groot C. H. K.; Muskens O. L. VO2Metasurface Smart Thermal Emitter with High Visual Transparency for Passive Radiative Cooling Regulation in Space and Terrestrial Applications. Nanophotonics 2022, 11 (17), 4101–4114. 10.1515/nanoph-2022-0020. DOI
Wang W.; Zhao Z.; Zou Q.; Hong B.; Zhang W.; Wang G. P. Self-Adaptive Radiative Cooling and Solar Heating Based on a Compound Metasurface. J. Mater. Chem. C 2020, 8 (9), 3192–3199. 10.1039/C9TC05634C. DOI