HIV-protease inhibitors potentiate the activity of carfilzomib in triple-negative breast cancer
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
U54 CA224076
NCI NIH HHS - United States
NU-21-08-00023
Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
KFS-4990-02-2020
Krebsliga Schweiz (Ligue Suisse Contre le Cancer)
U54CA224076
U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
PubMed
38969867
PubMed Central
PMC11368961
DOI
10.1038/s41416-024-02774-9
PII: 10.1038/s41416-024-02774-9
Knihovny.cz E-zdroje
- MeSH
- ABC transportér z rodiny G, člen 2 * metabolismus antagonisté a inhibitory MeSH
- apoptóza účinky léků MeSH
- bortezomib * farmakologie MeSH
- inhibitory HIV-proteasy * farmakologie MeSH
- inhibitory proteasomu farmakologie MeSH
- lidé MeSH
- Lopinavir * farmakologie MeSH
- nádorové buněčné linie MeSH
- nádorové proteiny antagonisté a inhibitory metabolismus MeSH
- nelfinavir * farmakologie MeSH
- oligopeptidy * farmakologie MeSH
- P-glykoproteiny metabolismus MeSH
- protokoly protinádorové kombinované chemoterapie farmakologie MeSH
- signální dráha UPR * účinky léků MeSH
- stres endoplazmatického retikula účinky léků MeSH
- synergismus léků * MeSH
- triple-negativní karcinom prsu * farmakoterapie patologie MeSH
- XBP1 metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ABC transportér z rodiny G, člen 2 * MeSH
- ABCB1 protein, human MeSH Prohlížeč
- ABCG2 protein, human MeSH Prohlížeč
- bortezomib * MeSH
- carfilzomib MeSH Prohlížeč
- inhibitory HIV-proteasy * MeSH
- inhibitory proteasomu MeSH
- Lopinavir * MeSH
- nádorové proteiny MeSH
- nelfinavir * MeSH
- oligopeptidy * MeSH
- P-glykoproteiny MeSH
- XBP1 protein, human MeSH Prohlížeč
- XBP1 MeSH
BACKGROUND: Resistance to chemotherapy is a major problem in the treatment of patients with triple-negative breast cancer (TNBC). Preclinical data suggest that TNBC is dependent on proteasomes; however, clinical observations indicate that the efficacy of proteasome inhibitors in TNBC may be limited, suggesting the need for combination therapies. METHODS: We compared bortezomib and carfilzomib and their combinations with nelfinavir and lopinavir in TNBC cell lines and primary cells with regard to their cytotoxic activity, functional proteasome inhibition, and induction of the unfolded protein response (UPR). Furthermore, we evaluated the involvement of sXBP1, ABCB1, and ABCG2 in the cytotoxic activity of drug combinations. RESULTS: Carfilzomib, via proteasome β5 + β2 inhibition, is more cytotoxic in TNBC than bortezomib, which inhibits β5 + β1 proteasome subunits. The cytotoxicity of carfilzomib was significantly potentiated by nelfinavir or lopinavir. Carfilzomib with lopinavir induced endoplasmic reticulum stress and pro-apoptotic UPR through the accumulation of excess proteasomal substrate protein in TNBC in vitro. Moreover, lopinavir increased the intracellular availability of carfilzomib by inhibiting carfilzomib export from cells that express high levels and activity of ABCB1, but not ABCG2. CONCLUSION: Proteasome inhibition by carfilzomib combined with nelfinavir/lopinavir represents a potential treatment option for TNBC, warranting further investigation.
Department of Biology Faculty of Medicine Masaryk University Brno 62500 Czech Republic
Department of Comprehensive Cancer Care Masaryk Memorial Cancer Institute Brno 62500 Czech Republic
Department of Oncological Sciences University of Utah Salt Lake City UT USA
Department of Oncology and Hematology Cantonal Hospital St Gallen St Gallen 9000 Switzerland
Faculty of Medicine Masaryk University Brno 62500 Czech Republic
Huntsman Cancer Institute University of Utah Salt Lake City UT USA
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Mendillo ML, Santagata S, Koeva M, Bell GW, Hu R, Tamimi RM, et al. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell. 2012;150:549–62. 10.1016/j.cell.2012.06.031 PubMed DOI PMC
Chen L, Brewer MD, Guo L, Wang R, Jiang P, Yang X. Enhanced degradation of misfolded proteins promotes Tumorigenesis. Cell Rep. 2017;18:3143–54. 10.1016/j.celrep.2017.03.010 PubMed DOI PMC
Petrocca F, Altschuler G, Tan SM, Mendillo ML, Yan H, Jerry DJ, et al. A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells. Cancer Cell. 2013;24:182–96. 10.1016/j.ccr.2013.07.008 PubMed DOI PMC
Ciechanover A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol. 2005;6:79–87. 10.1038/nrm1552 PubMed DOI
Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf DH. The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J Biol Chem. 1997;272:25200–9. 10.1074/jbc.272.40.25200 PubMed DOI
Arendt CS, Hochstrasser M. Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proc Natl Acad Sci USA. 1997;94:7156–61. 10.1073/pnas.94.14.7156 PubMed DOI PMC
Groll M, Heinemeyer W, Jager S, Ullrich T, Bochtler M, Wolf DH, et al. The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proc Natl Acad Sci USA. 1999;96:10976–83. 10.1073/pnas.96.20.10976 PubMed DOI PMC
Besse A, Besse L, Kraus M, Mendez-Lopez M, Bader J, Xin BT, et al. Proteasome inhibition in multiple myeloma: head-to-head comparison of currently available Proteasome inhibitors. Cell Chem Biol. 2019;26:340–51.e3. 10.1016/j.chembiol.2018.11.007 PubMed DOI
Zhou X, Besse A, Peter J, Steinhardt MJ, Vogt C, Nerreter S, et al. High-dose carfilzomib achieves superior anti-tumor activity over lowdose and recaptures response in relapsed/refractory multiple myeloma resistant to low-dose carfilzomib by co-inhibiting the beta2 and beta1 subunits of the proteasome complex. Haematologica. 2023;108:1628–39. 10.3324/haematol.2022.282225 PubMed DOI PMC
Weyburne ES, Wilkins OM, Sha Z, Williams DA, Pletnev AA, de Bruin G, et al. Inhibition of the Proteasome beta2 Site sensitizes triple-negative breast cancer cells to beta5 inhibitors and suppresses Nrf1 activation. Cell Chem Biol. 2017;24:218–30. 10.1016/j.chembiol.2016.12.016 PubMed DOI PMC
Besse A, Stolze SC, Rasche L, Weinhold N, Morgan GJ, Kraus M, et al. Carfilzomib resistance due to ABCB1/MDR1 overexpression is overcome by nelfinavir and lopinavir in multiple myeloma. Leukemia. 2018;32:391–401. 10.1038/leu.2017.212 PubMed DOI PMC
Kraus M, Bader J, Overkleeft H, Driessen C. Nelfinavir augments proteasome inhibition by bortezomib in myeloma cells and overcomes bortezomib and carfilzomib resistance. Blood Cancer J. 2013;3:e103. 10.1038/bcj.2013.2 PubMed DOI PMC
Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M, et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature. 2014;508:103–7. 10.1038/nature13119 PubMed DOI PMC
Deshmukh RR, Kim S, Elghoul Y, Dou QP. P-Glycoprotein inhibition sensitizes human breast cancer cells to proteasome inhibitors. J Cell Biochem. 2017;118:1239–48. 10.1002/jcb.25783 PubMed DOI PMC
Jiang D, Turner B, Song J, Li R, Diehn M, Le QT, et al. Comprehensive analysis of the unfolded protein response in breast cancer subtypes. JCO Precis Oncol. 2017;2017:PO.16.00073. PubMed PMC
Harnoss JM, Le Thomas A, Reichelt M, Guttman O, Wu TD, Marsters SA, et al. IRE1alpha disruption in triple-negative breast cancer cooperates with antiangiogenic therapy by reversing ER stress adaptation and remodeling the tumor microenvironment. Cancer Res. 2020;80:2368–79. 10.1158/0008-5472.CAN-19-3108 PubMed DOI PMC
Remsik J, Fedr R, Navratil J, Bino L, Slabakova E, Fabian P, et al. Plasticity and intratumoural heterogeneity of cell surface antigen expression in breast cancer. Br J Cancer. 2018;118:813–9. 10.1038/bjc.2017.497 PubMed DOI PMC
Guillen KP, Fujita M, Butterfield AJ, Scherer SD, Bailey MH, Chu Z, et al. A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology. Nat Cancer. 2022;3:232–50. 10.1038/s43018-022-00337-6 PubMed DOI PMC
Scherer SD, Zhao L, Butterfield AJ, Yang CH, Cortes-Sanchez E, Guillen KP, et al. Breast cancer PDxO cultures for drug discovery and functional precision oncology. STAR Protoc. 2023;4:102402. 10.1016/j.xpro.2023.102402 PubMed DOI PMC
Zheng S, Wang W, Aldahdooh J, Malyutina A, Shadbahr T, Tanoli Z, et al. SynergyFinder Plus: Toward better interpretation and annotation of drug combination screening datasets. Genomics Proteom Bioinforma. 2022;20:587–96.10.1016/j.gpb.2022.01.004 PubMed DOI PMC
Yadav B, Wennerberg K, Aittokallio T, Tang J. Searching for drug synergy in complex dose-response landscapes using an interaction potency model. Comput Struct Biotechnol J. 2015;13:504–13. 10.1016/j.csbj.2015.09.001 PubMed DOI PMC
de Bruin G, Xin BT, Kraus M, van der Stelt M, van der Marel GA, Kisselev AF, et al. A set of activity-based probes to visualize human (immuno)proteasome activities. Angew Chem Int Ed Engl. 2016;55:4199–203. 10.1002/anie.201509092 PubMed DOI
Kraus M, Bader J, Geurink PP, Weyburne ES, Mirabella AC, Silzle T, et al. The novel β2-selective proteasome inhibitor LU-102 synergizes with bortezomib and carfilzomib to overcome proteasome inhibitor resistance of myeloma cells. Haematologica. 2015;100:1350–60. 10.3324/haematol.2014.109421 PubMed DOI PMC
Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001;107:881–91. 10.1016/S0092-8674(01)00611-0 PubMed DOI
Bakunts A, Orsi A, Vitale M, Cattaneo A, Lari F, Tade L, et al. Ratiometric sensing of BiP-client versus BiP levels by the unfolded protein response determines its signaling amplitude. Elife. 2017;6:e27518. 10.7554/eLife.27518 PubMed DOI PMC
Kanekura K, Ishigaki S, Merksamer PI, Papa FR, Urano F. Establishment of a system for monitoring endoplasmic reticulum redox state in mammalian cells. Lab Invest. 2013;93:1254–8. 10.1038/labinvest.2013.112 PubMed DOI PMC
Lai CW, Aronson DE, Snapp EL. BiP availability distinguishes states of homeostasis and stress in the endoplasmic reticulum of living cells. Mol Biol Cell. 2010;21:1909–21. 10.1091/mbc.e09-12-1066 PubMed DOI PMC
Yang Z, Zhang J, Jiang D, Khatri P, Solow-Cordero DE, Toesca DAS, et al. A human genome-wide RNAi screen reveals diverse modulators that mediate IRE1alpha-XBP1 activation. Mol Cancer Res. 2018;16:745–53. 10.1158/1541-7786.MCR-17-0307 PubMed DOI PMC
Borjan B, Kern J, Steiner N, Gunsilius E, Wolf D, Untergasser G. Spliced XBP1 levels determine sensitivity of multiple myeloma cells to proteasome inhibitor Bortezomib independent of the unfolded protein response mediator GRP78. Front Oncol. 2019;9:1530. 10.3389/fonc.2019.01530 PubMed DOI PMC
Ling SC, Lau EK, Al-Shabeeb A, Nikolic A, Catalano A, Iland H, et al. Response of myeloma to the proteasome inhibitor bortezomib is correlated with the unfolded protein response regulator XBP-1. Haematologica. 2012;97:64–72. 10.3324/haematol.2011.043331 PubMed DOI PMC
Abt D, Besse A, Sedlarikova L, Kraus M, Bader J, Silzle T, et al. Improving the efficacy of proteasome inhibitors in the treatment of renal cell carcinoma by combination with the human immunodeficiency virus (HIV)-protease inhibitors lopinavir or nelfinavir. BJU Int. 2018;121:600–9. 10.1111/bju.14083 PubMed DOI
Besse L, Kraus M, Besse A, Driessen C, Tarantino I. The cytotoxic activity of carfilzomib together with nelfinavir is superior to the bortezomib/nelfinavir combination in non-small cell lung carcinoma. Sci Rep. 2023;13:4411. 10.1038/s41598-023-31400-6 PubMed DOI PMC
Besse L, Besse A, Stolze SC, Sobh A, Zaal EA, van der Ham AJ, et al. Treatment with HIV-Protease inhibitor Nelfinavir identifies membrane lipid composition and fluidity as a therapeutic target in advanced multiple myeloma. Cancer Res. 2021;81:4581–93. 10.1158/0008-5472.CAN-20-3323 PubMed DOI PMC
Kawabata S, Gills JJ, Mercado-Matos JR, Lopiccolo J, Wilson W 3rd, Hollander MC, et al. Synergistic effects of nelfinavir and bortezomib on proteotoxic death of NSCLC and multiple myeloma cells. Cell Death Dis. 2012;3:e353. 10.1038/cddis.2012.87 PubMed DOI PMC
Kraus M, Muller-Ide H, Ruckrich T, Bader J, Overkleeft H, Driessen C. Ritonavir, nelfinavir, saquinavir and lopinavir induce proteotoxic stress in acute myeloid leukemia cells and sensitize them for proteasome inhibitor treatment at low micromolar drug concentrations. Leuk Res. 2014;38:383–92. 10.1016/j.leukres.2013.12.017 PubMed DOI
Fassmannova D, Sedlak F, Sedlacek J, Spicka I, Grantz Saskova K. Nelfinavir Inhibits the TCF11/Nrf1-mediated Proteasome recovery pathway in multiple myeloma. Cancers. 2020;12:1065. 10.3390/cancers12051065 PubMed DOI PMC
Marques-Santos LF, Oliveira JG, Maia RC, Rumjanek VM. Mitotracker green is a P-glycoprotein substrate. Biosci Rep. 2003;23:199–212. 10.1023/B:BIRE.0000007693.33521.18 PubMed DOI
Parlati F, Lee SJ, Aujay M, Suzuki E, Levitsky K, Lorens JB, et al. Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin-like activity of the proteasome. Blood. 2009;114:3439–47. 10.1182/blood-2009-05-223677 PubMed DOI
Kisselev AF, Callard A, Goldberg AL. Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J Biol Chem. 2006;281:8582–90. 10.1074/jbc.M509043200 PubMed DOI
Ruckrich T, Kraus M, Gogel J, Beck A, Ovaa H, Verdoes M, et al. Characterization of the ubiquitin-proteasome system in bortezomib-adapted cells. Leukemia. 2009;23:1098–105. 10.1038/leu.2009.8 PubMed DOI
Kraus M, Bader J, Geurink PP, Weyburne ES, Mirabella AC, Silzle T, et al. The novel beta2-selective proteasome inhibitor LU-102 synergizes with bortezomib and carfilzomib to overcome proteasome inhibitor resistance of myeloma cells. Haematologica. 2015;100:1350–60. 10.3324/haematol.2014.109421 PubMed DOI PMC
Taura M, Kariya R, Kudo E, Goto H, Iwawaki T, Amano M, et al. Comparative analysis of ER stress response into HIV protease inhibitors: lopinavir but not darunavir induces potent ER stress response via ROS/JNK pathway. Free Radic Biol Med. 2013;65:778–88. 10.1016/j.freeradbiomed.2013.08.161 PubMed DOI
Shim JS, Rao R, Beebe K, Neckers L, Han I, Nahta R, et al. Selective inhibition of HER2-positive breast cancer cells by the HIV protease inhibitor nelfinavir. J Natl Cancer Inst. 2012;104:1576–90. 10.1093/jnci/djs396 PubMed DOI PMC
Gills JJ, Lopiccolo J, Tsurutani J, Shoemaker RH, Best CJ, Abu-Asab MS, et al. Nelfinavir, A lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo. Clin Cancer Res. 2007;13:5183–94. 10.1158/1078-0432.CCR-07-0161 PubMed DOI
Lawrence RT, Perez EM, Hernandez D, Miller CP, Haas KM, Irie HY, et al. The proteomic landscape of triple-negative breast cancer. Cell Rep. 2015;11:990. 10.1016/j.celrep.2015.04.059 PubMed DOI
Louie SM, Grossman EA, Crawford LA, Ding L, Camarda R, Huffman TR, et al. GSTP1 is a driver of triple-negative breast cancer cell metabolism and pathogenicity. Cell Chem Biol. 2016;23:567–78. 10.1016/j.chembiol.2016.03.017 PubMed DOI PMC
Larsson P, Pettersson D, Olsson M, Sarathchandra S, Abramsson A, Zetterberg H, et al. Repurposing proteasome inhibitors for improved treatment of triple-negative breast cancer. Cell Death Discov. 2024;10:57. 10.1038/s41420-024-01819-5 PubMed DOI PMC
Driessen C, Kraus M, Joerger M, Rosing H, Bader J, Hitz F, et al. Treatment with the HIV protease inhibitor nelfinavir triggers the unfolded protein response and may overcome proteasome inhibitor resistance of multiple myeloma in combination with bortezomib: a phase I trial (SAKK 65/08). Haematologica. 2016;101:346–55. 10.3324/haematol.2015.135780 PubMed DOI PMC
Driessen C, Muller R, Novak U, Cantoni N, Betticher D, Mach N, et al. The HIV Protease inhibitor Nelfinavir in combination with Bortezomib and Dexamethasone (NVd) has excellent activity in patients with advanced, proteasome inhibitor-refractory multiple myeloma: a multicenter Phase II trial (SAKK 39/13). Blood. 2016;128:6.10.1182/blood.V128.22.487.487 DOI
Bennett R, Chan H, Henderson R, Merriman E, Hanna M, Elinder-Camburn A, et al. The addition of lopinavir-ritonavir to carfilzomib-based triplets can induce meaningful clinical response in carfilzomib-refractory myeloma patients: a single-center experience. Leuk Lymphoma. 2022;63:1738–41. 10.1080/10428194.2022.2038374 PubMed DOI
Gadalla HH, Lee S, Kim H, Armstrong AT, Fathalla D, Habib F, et al. Size optimization of carfilzomib nanocrystals for systemic delivery to solid tumors. J Control Rel. 2022;352:637–51.10.1016/j.jconrel.2022.10.041 PubMed DOI PMC
Adwal A, Kalita-de Croft P, Shakya R, Lim M, Kalaw E, Taege LD, et al. Tradeoff between metabolic i-proteasome addiction and immune evasion in triple-negative breast cancer. Life Sci Alliance. 2020;3:e201900562. 10.26508/lsa.201900562 PubMed DOI PMC